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The Multi-Item Joint Replenishment Problem
with Volume-Sensitive Transportation Costs
and Container Constraints

Abstract

We address the problem of scheduling the delivery of multiple items from a
single supplier to a manufacturer. The items are packaged into containers and the
containers are shipped by truck. There is a fixed charge per truck shipment, and
inventory holding costs are charged on end-of-period inventory. We seek to minimize
the sum of transportation and inventory costs. The problem is a combination of a bin-
packing problem and a multi-item joint replenishment problem. We first investigate
the single-item case, for which an optimal algorithm is constructed. Then we present
a variety of heuristics which start with the solution from the problem in which
container constraints are relaxed. On the basis of results for a variation of the single-
item problem, this initial solution is adapted to satisfy container constraints while
considering the impact on transportaion costs. One of the heuristics is shown to
perform consistently well in a series of computational tests.

Keywords: Inventory--Multi-Item
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1. Introduction

We consider the problem of scheduling the delivery of multiple components (items) from a
single supplier, over a finite horizon, to meet the requirements for each component at an
assembly facility. Each component is loaded into a container of a specific type and size, and
the containers are shipped by truck from the supplier to the assembler. The delivery
schedule must specify the timing and contents of each shipment (number of trucks per
delivery day, assignment of containers to trucks, and number of items in each container).

The problem is solved in a just-in-time (JIT) context. The adoption of JIT principles in
the purchasing process has led to supply networks with relatively few direct suppliers, each
one delivering a range of items. This is especially evident in the U.S. automobile industry,
which motivated our study. JIT also has resulted in a change in the ordering cost structure.
Order processing costs have been reduced through the use of long-term supply contracts and
electronic ordering. Consequently, a volume-sensitive transportation cost has become the
main component of the ordering cost. Because of these costs, however, U.S. manufacturers
must address the question of how JIT should be implemented in dealing with their suppliers.

Typically, a U.S. automobile assembly facility uses three different strategies for
coordinating inbound freight. For low volume suppliers, there may be direct, less-than-
truckload shipments. Alternatively, shipments from several suppliers may be consolidated
by using "milk runs" in which a vehicle stops at several suppliers before arriving at the
assembly facility. For medium-volume suppliers that produce components for several
assembly facilities, it is common to arrange for full truckload shipments into a break-bulk
facility. At this point, the components are sorted by destination and mixed truckload
shipments of components are shipped to each assembly facility. For high-volume suppliers,
direct shipments to the assembly facility are arranged. In all of these cases, it has become
quite common to establish transportation contracts, normally with common carriers, to
transport the freight. These contracts specify the origin and destination, the day of the week,
and the time of delivery (or a time window) for each shipment. Because these contracts
specify only truck movements, the contracted price is normally based on the distance and/or
time for each trip, and not on the volume of freight in each truck.

In this paper, we investigate the problem of finding delivery schedules for high-volume
suppliers with direct shipments to the assembly facility. In many instances, the components
from these suppliers, as a group, constitute a significant portion of both the physical volume

and dollar value of the inbound freight. Moreover, much of the transportation cost is



attributable to these components. Examples of these components include engines,
transmissions, stamped metal body parts, instrument panels, and tires.

We seek to find a delivery schedule that achieves the best tradeoff between the cost of
transportation, which exhibits economies of scale, and the cost of inventory. The solutions
can be used to schedule deliveries in the short term. They also can be used to establish
longer-term repeating delivery schedules and associated transportation contracts in
companies with stable usage rates. Finally, they can be used to assess the benefits of using
closer suppliers or different container sizes. In the next section, we present our assumptions

and a formulation of the problem.
2. Problem Formulation
Assumptions

The model is based on the following assumptions :

1. Time is divided into discrete time periods of equal duration. For simplicity, we will

assume a period is one day.
2. Afinite horizon is considered, but the finite horizon schedule can repeat indefinitely.

3. The individual item demands are deterministic but may vary over time. Near-term

demands generally exhibit this property in actual applications.

4. No backordering is allowed. The requirement for any period t must be on hand (at the
assembly facility) by the beginning of period t. This assumption is a consequence of the high
cost of rescheduling the assembly facility in response to component shortages, or the
opportunity cost of a lost sale if the assembly facility is operating at capacity and the

assembly line is idled because of the shortage.

5. The delivery lead times are deterministic and constant over time, and therefore, without
loss of generality, equal to zero. Most common carriers are able to estimate these lead times

quite accurately on the basis of experience.

6. There is no initial inventory and no inventory is left at the end of the final period. This

permits us to repeat the schedule indefinitely.

7. The order quantities are expressed as an integer number of containers, but the containers

may be partially loaded.

8. The containers fit into a truck as long as their total volume does not exceed a specified
fraction of the truck volume. If the containers are standardized and designed to fit together

well in the trailer, this assumption is realistic. Even if the containers are not standardized,
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it is usually possible to estimate the effective capacity of a truck trailer. We also assume that
the effective capacity of a truck trailer is known for any given supplier. We will refer to it as
a truckload.

The costs incurred are of two types :

a. Inventory holding cost: A cost of Hj per unit (full container) of item j is charged on end-of-
period inventory. Partially loaded containers are charged pro rata.

b. Transportation cost: There is a fixed charge K for each truck shipped. There are no
economies of scale from shipping more than one truck on any route on any given day. Any
discounts attributable to the contract are considered to be subsumed in the contracted prices.

These assumptions are consistent with the circumstances described earlier.

Notation
The input data for the model are :

Djt: demand for item j in period t ( fraction of a container or number of containers)
Hj:  inventory holding cost per container of item j per period

Vj:  volume of item j container (fraction of a truckload)

K: fixed charge per truck shipped

T:  planning horizon (number of periods)

N: total number of items

M: upper bound on the number of trucks used in one period

The decision variables for the model are:

Xitm: number of item j containers delivered in period t by truck m
Yjt: total number of item j containers delivered in period t
Ijt: inventory of item j at the end of period t

Fjt: fraction of item j container left empty in period t

Note that in an optimal solution, at most one container of each item is partially empty in any
shipment. If two (or more) containers are partially empty , it is possible to consolidate the

same units into as few containers as possible, possibly reducing transportation costs.



A mathematical formulation

The multi-item joint replenishment (MIJR) problem with volume-sensitive (VS)

transportation cost and container (C) restrictions, MIJR-VSC, can be formulated as:

) T N T M N
Min Z= Y _2 Hj Ijt + Y Y K3 [.Z Xjtm | (1)
t=1j=1 t=1m=1 j=1
subject to
Ijt = th - th + Ijt-l - Djt , t=1,..,T ;j=1,..N , (2)
. Vj thm <1, t=1,.,T;m=1,.. M ; 3)
=1
M .
2 Xjtm=Yjt, t=1,.,T ;j=1,.N; (4)
m=1
th <Min (1 ,th} , t=1,..,T;j=1,.N; (5)
IJT = JO =0 , j:l,..,N , (6)
Yit, Ijt’ th >0, t=1,.,T;j=1,.N; @)
thm integer , t=1,.,T;j=1,.N;m=1,.,M; (8)
1 if u>0
where 8[u] = { 0 otherwise.

The first term in the objective function is the linear inventory holding cost. The
inventory of item j in period t, Ijt, is given by the inventory balance equation in (2). Itis a
function of the actual quantity of item j shipped in period t, i.e., Yjt - Fjt, not the number of
containers. The second term in (1) is the transportation cost. It is proportional to the
number of trucks shipped, which is a function of the total volume of containers delivered,
regardless of whether these containers are full. Constraints (3) are the truck capacity
constraints. Constraints (4) give the total number of containers delivered for each item in
each period. Constraints (5) ensure that the empty portion of the container is less than 1,
and is zero when that item is not delivered. Constraints (6) correspond to the assumption
that the initial and final inventory are zero. Constraints (7) are the non-negativity
constraints and ensure that no backlogging is allowed. Finally, constraints (8) restrict the
number of containers to integer values.

MIJR-VSC can be formulated as a mixed integer program (MIP) by rewriting the
transportation cost in terms of 0-1 variables. Problems of realistic size would have
thousands of integer variables and therefore would require exorbitant solution times if they
were solved optimally by general MIP codes. We seek to find good solution procedures that

take advantage of the special structure of the problem.



The complexity of MIJR-VSC stems from the fact that it contains features of both the
multi-item joint replenishment (MIJR) problem and the bin-packing (BP) problem. Indeed,
the problem can be approached as a lot-sizing problem, where we decide when and how much
of each item to deliver in each period, and in which the computation of the ordering cost is
itself an optimization problem, where we fit containers into trucks to minimize the number of
trucks . Both subproblems are known to be difficult to solve optimally. The MIJR problem,
with a fixed joint ordering cost andwith an individual ordering cost associated with each item
is reported to be NP-complete by Joneja (1987). A special instance of our problem, where the

unit inventory holding costs are equal to zero, can be stated as "Given N items of sizes
V1,.,VN, where 0 < V; < 1, 1<j <N, what is the minimum number of unit size bins needed to

pack Qj units of each item j, 1 <j < N?". In our problem, Q; represents the number of item j
containers to be delivered over the planning horizon. This problem is equivalent to the one
dimensional bin-packing problem, which is known to be NP-hard (Garey and Johnson 1979).
These results imply that it is unlikely that any computationally efficient optimal algorithm
can be developed.

Our approach to MIJR-VSC is a combination of two heuristic procedures, both of which
explicitly consider the volume-sensitive nature of the tranportation cost. We briefly describe
the two approaches, and then explain how we combine them.

One approach to solve this problem is to approximate the transportation cost by ignoring
the integrality of the containers. The item demands as well as the order quantities are
expressed as fractions of a truckload. The resulting problem can be viewed as a "continuous”
version of the original problem. It differs from the traditional MIJR problems in the
structure of the ordering cost, which here is volume-sensitive. Ben-Kheder and Yano (1989a)
characterize the solution to this relaxed problem and develop an optimal algorithm as well as
a simple heuristic to solve it. Once the solution to this problem is obtained, the container
decisions are carefully rounded to provide a good solution to the original problem.

An alternate approach is to solve a sequence of single-item lot-sizing problems, each with
a modified transportation cost. At each stage, the lot sizes for one item are decided using a
transportation cost function that recognizes the availability of "free" capacity if a truck is
required by the items assigned earlier, but its capacity is not fully utilized. The critical
decision in this heuristic is how to sequence the items.

Our heuristic combines the two approaches. First, we relax the integrality constraint on
the number of containers. The transportation cost can then be written as an explicit function
of the order quantities. We use this approximation to determine the lot sizes (in truckloads),
which may represent fractional numbers of containers. A portion of the delivery quantity is

fixed by rounding the non-integral values down to the nearest integer. The remaining



demand is assigned by a sequential procedure, item by item, where the items are ranked
according to some importance measure. At each step, we solve a single-item lot-sizing
problem to determine when to deliver the unsatisfied demand. We consider the inventory
cost and a modified transportation cost that takes into account the truck volume remaining
after loading the lot sizes of the previously assigned items.

The remainder of this paper is organized as follows. First, we discuss the single-item
problem. We characterize the optimal solution and give an O(T3) algorithm to solve the
problem optimally. Then, we discuss a generalization of these results to the case where the
transportation cost function varies with time. A pseudopolynomial algorithm is presented.
Next, we address the multi-item problem. We suggest a number of heuristics, and focus on
the one outlined in our preliminary discussion. We conclude with results of a series of
computational experiments that demonstrate both the efficiency and robustness of our

heuristic and its ability to handle large problems on a routine basis.

3. The Single-Item Problem

The single-item (SI) dynamic lot-sizing problem with volume-sensitive (VS) ordering cost
(SIVS), was first introduced by Lippman (1969). In his model, the cost associated with each
truck is a non-decreasing concave function of the amount delivered by that truck. He shows
that such a function is subadditive on [0,+), i.e., c(u+v) < c(u) + ¢(v) for u,v > 0 where ¢ is
the cost function. He uses the subadditivity property to characterize the optimal solution to

his problem. He proves that there is an optimal schedule X such that:
1. an integer number of full trucks is ordered in periods with positive initial inventory, and

2. the inventory held at the end of each period is less than a truckload.

He exploits these results to develop a Wagner-Whitin type algorithm which is O(T3).

All quantities in Lippman's model are expressed as a fraction of a truckload, which once
converted to the actual number of items may result in fractional values. This discrepancy is
corrected in our model, where we restrict the order quantities to be an integer number of
containers and allow the containers to be partially loaded to account for the fact that the
demand (and therefore shipment quantities) may not be an integer number of containers.

In the remainder of this section, we will first show that the solution to the BP component
of the problem is trivial in the single-item case, yielding a simpler formulation. We then
extend Lippman's result to the single-item problem with container constraints and present

an O(T3) solution procedure. For simplicity, we suppress the item subscript in this section.



Problem Analysis

Let Q be the unique integer such that QV <1 < (Q+1)V, i.e., Q is the maximum number
of containers that fit into a truck. Consider a solution (Y} to the single-item problem, and let

L =[Yy/Q]l, i.e., the minimum number of trucks needed to ship Y; containers in period t.
Clearly, an optimal assignment of containers to trucks is to assign Q containers each to

trucks 1 through L-1 and to assign the remaining containers to the Lt truck. As a result,

the transportation cost in period t, TCt, can be expressed in terms of the total number of
containers, Yt, and the maximum number of containers that fit into the truck, Q. Thus,
M
TCt=K f Xem) = K[ Y Xem /Q1=KIYyQ] .
m=1 m=1
The truck index m can be omitted and consequently also constraints (4), as well as the

truck capacity constraints (3). SIVS can be formulated as :

Min i HI; + i K[YyQl )
t=1 t=1

subject to
Yi-Fy+1 -1, =Dt , t=1,.,T ; (10)
F, <Min (1,Y,], t=1,..,T ; (11)
IT = IO =0 ’ (12)
It’ Ft 2 0 5 t'—'l,..,T , (13)
Y, integer, t=1,..T. (14)

For a given Q, the transportation cost remains unchanged for all container volumes V
such that 1/(Q+1) < V < 1/Q. Therefore, we will assume without loss of generality that V=1/Q

for some integer Q.

Characterization of the optimal solution
Theorem 1:  Let Y be an optimal delivery schedule. ThenIt.1 Ft=0,Vt .

Proof : See Appendix.
Theorem 1 states that in any period t, 1<t<T, either the containers are full, or the initial
inventory is zero. This result is quite intuitive. If the containers are partially loaded then

the order in period t can be increased with no additional ordering charge and an order in an

earlier period can be decreased, reducing the cost of holding inventory in earlier periods.

Theorem 2:  Let Y be an optimal delivery schedule. Then It <Q, Vt .

Proof: See Appendix.



Theorem 2 states that less than a truckload of inventory is held at the end of each period.
This result is also intuitive. If a full truckload is not needed until period t+1, then by
delaying its delivery from period t to period t+1, the inventory cost is decreased, while the

transportation cost is unaltered.

Theorem 3: Let Y be an optimal delivery schedule. Then I;.1(Yimod Q) =0, V¢ .

Proof: See Appendix.

Theorem 3 asserts that the shipment, if any, consists of one or more full trucks in each period
with positive initial inventory. Based on the results of Theorems 1, 2, and 3, we have
developed a DP procedure similar to Lippman's procedure for the "continuous” case. We
solve a shortest path problem with T nodes and T2 arcs. An are (u,v) links two consecutive
regeneration points u and v (u<v). The computation of the arc cost, Cyy, is achieved by a
backward inductive scheme based on properties of the optimal solution (see Ben-Kheder and
Yano 1989b). The amount of work required to compute Cyy is shown to be O(T), so the
procedure for the single-item problem is O(T3). Next, we investigate how to adapt the
single-item solution to a good solution in a multi-item context.

One possible approach to the multi-item problem, MIJR-VSC, is to ignore the
interdependencies among items and solve the single-item problems independently. This
approach, while computationally simple, can yield substantial cost penalties, since it does not
consider the economies of jointly ordering the items. One possible improvement on this
simplistic approach is to partially coordinate the decisions among the items by an
appropriate modification of the costs. The interaction among items is reflected principally in
the volume-sensitive transportation cost. Assume that the solution for a given set of items is

known, and that we have assigned the containers to trucks in each time period by some bin-
packing rule. For a given period, t, there is a positive volume slack, Sy, for each partially

loaded truck, m. Let j be the item to be scheduled next. Let V;j be the volume of an item j
container. Also let Q;jt° = %l. Smt /Vj], which represents the number of item j containers
m=1

that can be delivered in period t with no additional transportation charge. We adjust the
transportation cost accordingly, i.e., the cost of transporting Yj; containers of item j is set
equal to K max (0, [(Yj; - Q;t° /Qj1) where @ = 1/V; |is the maximum number of item j
containers that fit into a truck. The resulting transportation cost function is time varying.
Theorem 2 and Theorem 3 do not hold in this case, so the algorithm discussed in Section 3

needs to be modified to handle time-varying costs, as described in the next section.



4. The Single-Item Problem with Time Varying Transportation Cost

This problem is a variant of SIVS, where the transportation cost, Ct, is volume-sensitive
as well as time-varying. We denote by Qt° the number of containers free of charge (FOC) in
period t. The single-item problem with volume- and time-sensitive transportation cost can

be stated mathematically as:
Min i HI; + i CilYtl (15)
t=1 t=1

subject to  (10) through (14)

where C[Y¢]= K Max { 0, (Y - Q:°/Q1} is the volume sensitive cost shown in Figure 3.1

Transportation cost
'\
3K
2K
K
> shi_pment volume
Q: Q+Q: 2Q+Qg 3Q+Q: (in containers)

Figure 1 : Modified transportation cost in period t
We extend the results for SIVS to the problem with volume-sensitive, time-varying
transportation costs, SIVTS (short for single-item, volume and time sensitive). Theorem 1
still holds for the same intuitive reasons. Theorem 2 must be altered because it might be
more economical to group deliveries in periods with FOC transportation. Theorem 3 needs to
be restated to account for the FOC volume in each period. Theorems 2 and 3 are modified

below.
Theorem 4:  Let Y be an optimal delivery schedule. Then Yt >Qt°® ==>1;<Q, Vt.

Proof: See Appendix.

Theorem 4 states that if the delivery in period t exceeds the number of FOC containers then

less-than-a truckload of inventory is held in period t.

Theorem 5: Let Y be an optimal schedule. Then It.1 [(Y;-Qt ©) Mod Q1 Y;=0, V¢t

Proof: See Appendix.



Theorem 5 asserts that if a delivery occurs in period t, then either the initial inventory is

zero, or the delivery quantity is equal to the number of FOC containers, plus an integer
number of full trucks. In the following corollary, the number of trucks in a period t, ki, is

shown to be restricted for any regeneration interval.

Corollary 5.1 : Let (Yy41,..,Yt.1) be a partial solution in the regeneration interval [u+1,v].
Then there exists at most one positive integer value k¢, for which

Yt = Qt°+ ktQ > 0 and (Yy,1,..,Yt-1,Yt) is a partial solution.

Proof: See Appendix.

Corollary 5.1 restricts the number of possible solutions in each period, which is an important

factor in reducing the complexity of our solution procedure.
Solution procedure

We use the same DP structure as for the basic single-item problem, but a more elaborate
procedure is needed to compute the arc costs. Let u and v be two consecutive regeneration

points, and Y be an optimal delivery schedule. Then the following properties hold:

1. By Theorem 1, Fy=0 for all except the first period in the regeneration interval and Fy,1 = f

= i D¢ |- i D¢ , which is the number of container units shipped in excess of the
t=u+l t=u+l

number of container units required during the time interval [u+1,v]. All the containers are
full, except possibly one container in period u+1, which has a fraction f of a container of

unfilled space.

2. By Theorem 5, Yt , u+l < t <v, is equal either to zero, or to Q{°+k¢Q for some integer k.

3. Let St and Ry be the total quantity shipped and required, respectively, over the time
interval [u+1,t]. Assume St.; is known. Then by Corollary 5.1, if Yy > 0, there is a unique
integer k¢ such that Y = Q%+ k:Q, i.e., Max { 0, [(R¢ - St.1 - Qt°//Q1}, as derived in the

proof of Corollary 5.1.

This characterization of the optimal solution in a regeneration interval suggests the following
DP procedure to compute C,y .

Computation of Cyy

The stage variables are the time periods u+1,..,v. At stage t, the state S; is the total

number of containers delivered from period u+1 up to and including period t. The quantities
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Rt, u+1<t<v, and f are as defined above. Then for an admissible state St, the end-of-period

inventory, I(St), is equal to St - f- Rt. The DP recursion formula is given by:
g(Sy) = HI(Sy) + Min { g(St+1) , g(St+1+Qt+1%+ ke 1Q)+ kiy1 K)  for St e At (16)
and g(Sy) = 0 for Sy € Ay

where At, u+1 <t<v, is the set of admissible states in period t.

There are at most two admissible ways to reach a state S; from stage t+1. Either no
delivery occurs in period t+1, which is only feasible if St - > R4, or we deliver Q;41°
containers plus k¢,1 full trucks, where k¢, = Max {0, [ (Rgs1 - (St - D) - Qe+1°/Q1}. In

determining g(St) in (16), we choose between these two delivery policies.
A state St is admissible at stage t if :

1. it results in positive inventory at the end of period t, i.e., St - f> R¢, and

2. it is less than the maximum number of containers required during the time interval
[u+1,v], Quy, which is equal to[ Ry |. Observe that Ay={Qu), and that | A¢| < Qyy for u <t<v.

In the first period of the regeneration interval, a tighter upper bound on Sy, can be
obtained from Theorem 4. If Sy41 > Qu+1° then Iyy1 = Sus1 - - Dus1 < Q (by Theorem 4),
which implies that Sy4+1 < max (Qu+1°, [ Q+(f+Dy4+1)1}. Once g(Sy+1 ) is computed for Sy47 in

Ay41, Cyy is obtained from:
Cyv = Min { g(Sy+1) + Kk(Su41), Sus1 € Ays1) 17

where k(Sy ;1) is the number of trucks needed to deliver the Sy,1 containers in excess of the
Qu+1° FOC containers, i.e., k(Sy41 ) = Max {0,[(Sys1 -Qus19/Q 1}

ional complexi

The value at each node in the shortest path network is determined by comparing the two
costs, as stated in (16). Let L = Maxysy {Qyuy), be an upper bound on the number of

containers needed in a regeneration interval. Then the total number of nodes in the DP
computation of Cy is bounded by LT. Therefore, the computational effort required by our

two DP procedures combined is O(LT3), which is polynomial if L is bounded above by a
polynomial in T, but in general is exponential. The following results allow us to transform a
given problem into an equivalent problem with a smaller value of L, which results in a

reduction of the computation time.
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Theorem 7:  Let Y be an optimal schedule. Then Yy >Min (D¢ ], Q;%),Vt.

Proof : The proof is intuitive. Suppose Yt < LDt 1< Q0. Thenl;.q2D;- Y2 LDt _I -Yi=¢>
0. Thus, there is a feasible schedule in which an earlier shipment is reduced by € and Yy is

increased by an equal quantity. The transportation cost is the same, and the inventory cost
is is reduced by at least He. Thus, Yi <Dt | < Q¥ cannot be optimal. Now suppose that Y <

Qi° <LD; J. Then we can set € = Q° - Y and the same argument above applies.
Let P be a problem with demand D, and let {Q;°) be the set of FOC containers allowed.
Let Yi = Min { LDt ] , Q). Then the optimal solution to P can be obtained by solving a

problem P', derived from P by:

(i) reducing Dy to Dy = Dy - Y, and
(ii) reducing Qi° to Q1°=Q¢° -Ys.

Let Y' be the solution to problem P'. Then the solution to problem P is obtained by
summing Y'y and Y¢ in each period. Observe that in P, in each period, either the reduced
demand is less than a container, or the reduced FOC volume is zero. This will considerably
reduce the amount of computation. Note that if the demand is less than a container in each
period, then the amount of computation is O(T4). Also, if the FOC volume is zero in each
period, then the problem reduces to the basic single-item problem, SIVS, for which we have
devised an O(T3) solution procedure.

A heuristic solution to the multi-item problem can be developed on the basis of the single-
item analysis. The problem is decomposed into single-item problems which are solved
sequentially. One of the most important factors in a procedure of this type is the sequencing
rule. Two logical ways of ranking the items are by inventory cost (per unit of truck volume),
or by container volume. The first measure is important in a lot-sizing context, and the
second is critical in a bin-packing context. From preliminary experimental results, it is not
clear which ranking rule is better. As we will see later, this myopic approach is
outperformed by a heuristic that considers all items simultaneously. This multi-item

heuristic is described in the next section.

5. A Multi-Item Heuristic

Any optimal procedure to the multi-item problem must simultaneously consider lot-sizing
and bin-packing decisions. We present a heuristic procedure, where we make initial lot-
sizing decisions, which are then adjusted, taking into account container sizes and truck
capacity considerations. This heuristic will be referred to as the bin-packing/lot-sizing
(BINLOT) heuristic. The heuristic features three main modules:

-12-



1. Lot-sizing based on an approximation of the transporation costs and a relaxation of the
container constraints.
2. Bin-packing.

3. Adjustment of the lot-sizes from those in the relaxed problem.

We now discuss these modules, and the flow of information among them, in more detail.

Lot-sizing:
MIJR-VSC is a multi-item dynamic lot-sizing problem that is complicated by the

structure of the ordering cost. In the MIJR literature, the ordering cost structure is usually
assumed to be very simple. Most authors assume that the ordering cost, A, is equal to A=A

+ 2 aj, where Aq is a fixed cost associated with an order and aj is the cost associated with
]

ordering item j. Literature based on this cost assumption is surveyed by Aksoy and Erenguc
(1988). In our problem, the joint-ordering cost, i.e., the volume-sensitive transportation cost,

cannot be computed explicitly. Its value is obtained by solving a bin-packing subproblem in
each period: given the decision to order Yj; containers of item j, 1<j<N, in some period t,

1<t<T, the transportation cost, TCt, is computed as:

) M N
TCt=MinK 3 8[Y Xjtm] (18)
m=1 j=1
subject to
iVj thm <1 m=1,..,.M (19)
=1
M .
2 Xjtm = Yjt =1,.N (20)
m=1
thm integer j=1,.N;m=1,.,M (21)

This is a one dimensional bin-packing problem, which is known to be NP-hard. Therefore,
we need to approximate TC;. We disregard the integrality of the containers and implicitly
assume that no space is wasted because of partially loaded containers. We express all the
data and decision variables related to the items in terms of truckloads. Let Yjt' be the
delivery quantity of item j, 1<j<N, in period t, 1<t<T. Then the number of trucks used in

N
period t, is given by [ Zth'l The truck capacity constraint (19) and the truck index m can
=1
now be eliminated from the model. The relaxed problem, (MIJR-VS), is formulated as:

-13-



T N T _N
Minimize 3 Y HjTjt'+ ZKf_ZYjﬂ (22)

t=1 j=1 t=1 j=1
subject to ILjt' =Ijt-1'+ Yjt - Djt’ (23)
Lr'=Tj0'=0 (24)
Iit', Yjt' 2 0 (25)

where Hj' = Hj/Vjis the inventory holding cost per truckload of item j,
Djt'= DjtVjis the demand for item j in period t expressed in truckloads,
Yjt' is the delivery quantity for item j in period t (in truckloads), and
Ijt' is the inventory for item j held in period t (in truckloads).

Note that MIJR-VS is not the linear programming relaxation of MIJR-VSC because the
integrality of trucks is still maintained. It can be formulated as a mixed integer program by
rewriting the transportation cost in terms of T integer variables representing the number of
trucks used in each period. Ben-Kheder and Yano (BY) (1989a) characterize the optimal
solution for this problem. They show, among other results, that at most one item has both a
positive initial inventory and a positive delivery quantity in any given period. Furthermore,
they show that if such an item exists then the total shipment size in that period is an integer
number of full trucks. They develop a mixed branch and bound-dynamic programming
procedure to solve the problem optimally. As a substitute, they suggest an O(NT3) heuristic
based on the restriction of holding less than a truckload of inventory in each period. Both the
optimal algorithm and the heuristic are shown to be computationally reasonable for very
large problems. Their computational results indicate that the heuristic performs very well.

Our heuristic procedure consists of three main steps. In the first step, we use the BY
algorithm (either optimal or heuristic) to find the solution to our relaxed problem, MIJR-VS.
The delivery schedule, Y', is converted to container units by letting Yj; = th'/V j» which in
general is not integer. At this point, a feasible solution to the original problem could be
obtained by rounding up to the next container. This, however, may result in substantial
transportation cost penalties. Consequently, we defer the decision to round down or round
up, as well as the decision of whether to ship full or partially loaded containers, to Step 3 of
the heuristic. In Step 2, we consider the delivery of Lth'/V jJ (= Y;jt°) full containers which
partially satisfies the demand, and assign these containers to trucks so as to minimize the
number of trucks operated in each period. In Step 3, the remaining demands are considered,
and the heuristic considers opportunities for container consolidation, as well as opportunities

to fill the remaining capacity of partially loaded trucks at no additional transportation cost.
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Bin-packi

The bin-packing problem is one of the most well-studied problems in the field of
Operations Research. Extensive surveys of results for this problem appear in Garey and
Johnson (1981) and in Coffman et al. (1984). Empirical studies (e.g., Hall et al. 1986)
indicate that several heuristics routinely provide solutions which are very close to optimal for
many instances of the problem. Worst case analysis of several heuristics has been conducted
by Johnson et al. (1974), Coffman et al. (1978) and Yao (1980). The most popular heuristic,
namely the first-fit decreasing heuristic (FFD), has been shown to use at most 22.2% more
bins than required by the optimal solution. This bound is reduced to 15% in the case where
the volume of each item does not exceed 1/4 of the bin volume. Empirical studies indicate
that the error ratio for the heuristic is less than 2% on the average. In the FFD heuristic, the
items are arranged in decreasing order of size. The algorithm sequentially assigns the items

to the lowest-indexed bin into which the item fits, starting a new bin only when necessary.
We suggest the following algorithm which is based on FFD. Let Yjt® be the number of

item j containers in period t, as determined by the lot-sizing step. Define Ep, as the unfilled

portion of truck m, and Mas the total number of trucks used.

Step 0. Rank the items in decreasing order of their unit container volumes. Assume
the items are indexed in that order.
t <-1
Step 1. (1a) j<--1,M<--1,Ep<-- 1.
(Ib) Y<--Yjt©
Load non-empty trucks:
For m:=1to M do
Q= Ep/V i 1 (# of item j containers that will fit into truck m)
q:=Min {Q,Y} (# of item j containers to be assigned to truck m)
Y<--Y-q
Em <-- Em = q Vj
Load empty trucks:
While (Y > 0) do
M <-- M+1
Q= |_1ij J(maximum # of item j containers that fit into truck m)
q:=Min (Q,Y) (# of item j containers to be assigned to truck m)

Y<-Y-q
EM<--1-qVj
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(Ie) j<--j+1
if j <N then go to Step 1b
else go to Step 2.
Step 2. t<-t+l
if t<T,gotostepl

else terminate.

The most complex part of the algorithm is sorting the items which is O(NlogN).
\di Flotesi

In step 1, the delivery quantities in the solution to the relaxed problem, MIJR-VS, were
rounded down in order to obtain integer container units. Therefore, only a portion of the

demand is satisfied by this solution. These quantities need to be properly adjusted to satisfy
the total demand requirements. Let I;t° be the inventory, if any, resulting from the delivery

of Yjt° full containers in period t, i.e., I;t° = max (0, Ijt.1+Yjt° - Djt}. Then the demand

remaining to be satisfied in period t is given by

djt = Max (0, Djt - (Ijt_1°+th°) ). (26)

The multi-item problem with these reduced demands is then solved by a variation of the
heuristic for the single-item problem presented in Sections 3 and 4, as described below.
Since inventory costs are an important factor in this problem, it would be logical to try to

ship the expensive items as they are needed. For this reason, we rank the items in
decreasing order of their inventory holding costs per truckload (HjVj), and henceforth

assume that the items are indexed accordingly. The incremental delivery quantities, thl,

are determined by the following procedure :

Step 0. j<--1
M; <-- total # of trucks used for loading Y;:°,..., YNt©, 1<t<T.

Emt <-- capacity slack of truck m in period t
Step 1.
(la)  Determine the number of free of charge containers and the remaining
demand :

M
Qjt%:= 2 [Emt/Vj | 1st<T.
m=1

djt defined by (26), 1<t<T.
(1b)  Solve the single-item problem SIVTS(j,d;t,Q;t°).
Let thl,thl be the solution obtained.
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(1e)  Update My, 1<t<T.
Update Ep, 1<m<My, 1<t<T.
Step 2. Update the delivery quantities :
Yji:=Y;t%+ Yjt! (number of containers ), 1<t<T.
Fj:=Fji ! (fraction of item j container left empty), 1<t<T.
j<--j+l
If j <N then go to Step 1 else terminate.
We can easily show that the total reduced demand for a given item, i djt , does not
t=1
exceed T containers. Therefore the computational effort needed to solve each single item

problem is O(T%), as discussed in section 4. The total effort needed for this procedure is
O(NT%), plus O(NlogN) for ranking the items.

The BINLOT heuristic

Let us summarize the steps of the heuristic suggested in this section :
Step 1. Lot-sizing
(1a) Express the data in truckloads and reformulate the problem as MIJR-VS .

(1b) Solve the problem obtained by the BY algorithm
(1c) Let Yjt' be the solution to MIJR-VS, expressed in truckloads. A

portion, Yjt° (= Lth'/VjJ) , of the total delivery quantity is fixed at this step .
Step2. Bin-packing
(2a) Rank the items in decreasing order of their container volumes
(2b) For each period t , use a FFD rule to load the Yjt° containers in an attempt to
minimize the number of trucks.
(2¢) Determine the capacity slack for each partially loaded truck.
Step 3. Lot-size adjustment
(3a) Rank the items in decreasing order of inventory cost per truckload.

(3b) For each item, starting with the highest ranked item
- Compute the remaining demand to be satisfied, djt .

- Compute the number of FOC containers, Q;t°.

- Solve the single-item problem optimally by the DP algorithm in section 4.
Let Yjt, thlbe the solution obtained.

(3¢c) Update the delivery quantities:
Yjt:= thl-i-tho
Fjﬁ:thl.

Terminate.
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The solution procedure is composed of several heuristics, one for each subproblem. Each
of these heuristics can be altered without affecting the others. For example, the FFD rule in
step 2 can be replaced by another one- dimensional BP heuristic without modifying steps 1 or
3. Similarly, if the containers do not fit well together, or if both volume and weight are
constraining, the FFD heuristic can be replaced by an n-dimensional BP heuristic. The
ranking rules in steps 1 and 3 also can be modified. Several variants of the basic heuristic
can be developed by modifying the solution procedure at one or more steps, while keeping the
same decision framework: lot-sizing, bin-packing and adjustment of lot-sizes.

We investigate a group of heuristics based on this decomposition concept. The heuristics
differ one from one another in the importance of the relaxed problem solution (Step 1) in

determining the final solution. The two extreme cases can be described as follows:

1. Round up the lot sizes obtained at Step 1 to the next container, but ship only the given lot
sizes. The solution obtained is feasible to the original problem. Assign these containers to
trucks as in Step 2. All the demand is satisfied, therefore there is no need to perform Step 3.
This heuristic is referred to as BINLOT - o .

2. Solve a sequence of single-item problems with modified transportation costs. The lot-
sizing and bin-packing decisions for the entire demand are made at step 3. Steps 1 and 2 are
disregarded. We refer to this heuristic as BINLOT-0, or alternatively as SEQLOT.

Several other variants of BINLOT lie between these two extreme cases. We let BINLOT-
k, 0 <k <1, denote the version of BINLOT with the following change: the delivery quantities
decided at Step 1 correspond to a fraction k of the lot sizes obtained from the relaxed
problem, that is, Y;¢°= L ijt'/Vj_l. Notice that for k=1, we obtain the basic heuristic BINLOT,
and for k=0, we obtain SEQLOT. Additionally, we consider two variants of SEQLOT:
SEQLOT/VOL, where the item ranking is based on the container volumes, and
SEQLOT/INV, where the ranking is based on the inventory cost per truck.

In our computational experiments, these heuristics are compared to one another and to a
lower bound. A lower bound is provided, with no additional effort, by the solution to the
relaxed problem in Step 1. Another way to test the effectiveness of these heuristics is to

compare them to simpler rule-of-thumb heuristics. We consider two simple rules:
JIT delivery :
No inventory is held. We ship exactly the quantity required in each period. This rule is

just-in-time in its classical definition.
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Adjusted JIT (AJIT) delivery :
In each period, we ship the demand for the period, minus the inventory remaining from
deliveries in earlier periods (if any), all rounded up to the next container. The remaining

empty space in the trucks is filled up with the least expensive items whose demand is not yet

satisfied. The containers are full in all periods, except possibly in the last period of delivery.

Clearly, the first rule will perform well when the inventory holding costs are very high
and the transportation cost insignificant. On the other hand, the second heuristic
emphasizes filling both the containers and the trucks, and therefore is expected to perform
well when the transportation costs are high in comparison to the inventory costs.

Next, we empirically investigate the effectiveness of the heuristics. First, we will show
that, when the solution is not trivial, i.e., when there is a tradeoff between inventory costs
and transportation costs, BINLOT outperforms the rule-of-thumb heuristics. In another test,
we show that for many instances of the problem, BINLOT gives better solutions than its
variants, BINLOT-k. We also comment on the deviation of BINLOT from optimality.

6. Computational Experience

We perform a series of experiments to test the effectiveness of the different heuristics
discussed in the previous section. CPU times are all given for a workstation with an 80386
processor running at 16 MHz, excluding the input and output operations. The computer

codes are written in Turbo Pascal version 5.0.
Experimental setting :

We consider three control variables: the average number of trucks per period, TR, the
maximum container volume, Vmax, and the transportation to inventory cost parameter, a,

which is explained later. First, we generate the container volume (fraction of a truckload),
Vj, from U[0.01,Vmax]. The demand matrix is then obtained by the following scheme: for

item j, the average demand in truckloads in a given period is generated from the uniform
distribution U[0,2TR/N], then divided by Vj to convert it to container units. Let pj, be the

average demand obtained. The demand in period t, Djt, is generated from U[1,2y].

The inventory holding cost of item j, Hj, is obtained from the inventory cost of item j+1,

Hj41, by the recurrence relation H; = Hj41(1+incr), where HYy is set at an arbitrary value
and incr ~ U[0,incrmax]. The value of incrmax is given by the equality (1+incrmax)N = B,

which implies that the inventory cost of item 1 is at most j times the inventory cost of item
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N. The geometric progression of the inventory costs reflects the fact that in most situations,
there are many nexpensive items and a relatively few expensive items. We set B = 10.

Once the demands and the inventory costs are generated, the transportation cost per

T
truck, TC, is obtained from the following formula : TC = o II\I—I:II,XR, where INV = ) i H; Djn
h—‘-l J:l

T N
is the cost of holding the total demand in inventory for one period and NTR=[ Y ¥ Djh]
h=1 j=1

is a lower bound on the number of trucks shipped. Consequently o is a measure of the
importance of the transportation cost relative to the inventory cost (at an aggregate level). It
has a direct effect on the best number of regeneration points in the planning horizon, and is
analogous to the time between orders (TBO) factor commonly used in computational

experiments related to lot-sizing problems.

Experiment 1 mparison of BINLOT her Heuristi

(1a) BINLOT vs, Rule of Thumb Heuristics: We compare BINLOT to JIT and AJIT. We set
the control variables as follows: N =20, T= 12, Vipax = 5% of a truck, and TR=1 truck per

period. For various values of o between 0.1 and 4, we randomly generate ten problems.

Table 7.1 shows the average deviation of JIT and AJIT solutions from the solution obtained
by BINLOT. Figure 7.1 indicates the number of times each heuristic is the best.

o ratio JIT Heuristic AJIT Heuristic

(0.1,0.5] 5.4 % 59.3 %
(0.5,1] 19.5 % 32.3 %
(1,1.5] 17.6 % 21.5%
[1.5,2] 25.9 % 16.1 %
(2,2.5] 23.3% 10.3 %
[2.5,3] 30.8 % 1.7 %
(3,3.5] 28.5 % 2.8 %
[3.5,4] 32.0 % 3.5 %

Table 7.1 : Average deviation of the cost of JIT and AJIT solutions from that of BINLOT
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7

Best Heuristic

Figure 7.1 : Best heuristic for different values of the Transportation to inventory cost
ratio

The results indicate that BINLOT outperforms these rule of thumb heuristics when there
is a trade-off between inventory costs and transportation costs. However, in the extreme
cases, the simpler heuristics sometimes prevail. Since JIT and AJIT require little
computational effort, we can use them along with BINLOT to find a good solution to the
problem for any value of a. We note that in most of the cases where BINLOT is not the best
heuristic, a variant of BINLOT gives a solution close to the best solution obtained by the rule
of thumb heuristics. For example, when the inventory costs are very high, BINLOT-e gives

the same solution as JIT.

(1b) BINLOT vs. BINLOT-k: We compare BINLOT to its variants, SEQLOT and BINLOT-k
(0 < k <1), both in terms of computation time and solution quality. We consider two versions
of SEQLOT, one based on a ranking of the items according to the inventory holding costs,
and a second one where the items are ranked by container volumes. We set the control
variables as follows: N =20, T = 12, Vimax ~ Ul2,10], TR=1, and o ~U[0.5,3], and randomly
generate 50 test problems. Results are summarized in Table 7.2.

The myopic SEQLOT heuristics are significantly outperformed by BINLOT, which
considers the items simultaneously. BINLOT-~ is, on the average, about 30% worse than
BINLOT. We note, however, that in some special settings where the inventory costs are very
high, BINLOT-« gives a better solution than BINLOT. In these cases the solutions were
similar to the ones obtained by the JIT heuristic. A comparison of BINLOT with BINLOT-k
(k=0.5, 0.25, 0) indicates that BINLOT provides the best solution in 78% of the cases. As k
decreases, the chances of getting the best solution by BINLOT-k also decreases. In some
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marginal cases, BINLOT-k is better than BINLOT, but even here, BINLOT is at most 6%

worse than the best heuristic.

% of time best Average Deviation

Heuristic heuristic from BINLOT CPU times (secs.)
Below Above Mean Std. Dev

BINLOT 78 % - - 12.7 2.10

BINLOT - - - 27.7% 1.1 0.05

BINLOT-0.50 18 % 33% 95%| 232 8.90

BINLOT-0.25 4% 5.0 % 10.7%| 25.3 11.40

SEQLOT -INV - - 365%| 64.9 39.40

SEQLOT-VOL - - 375%| 63.6 40.80

Table 7.2 : Comparison of BINLOT to its variants

Computation times also favor BINLOT. Except for BINLOT-, BINLOT is 2 to 5 times
faster than its variants. Also, the computational times for BINLOT are more predictable.
Step 3 consumes most of the computation time. The amount of computation required is
O(NLT3), where L is an upper bound on the delivery quantities remaining to be scheduled in
Step 3. Except for BINLOT, where L is known to be bounded by T, the computational effort
needed for the variants of BINLOT depends on L, and is not polynomial . This explains the
high variability of the CPU times.

riment 2: i i

We report the computation time of the basic heuristic BINLOT, not including the
input/output and ranking operations. As explained in section 5, the amount of computation
needed by BINLOT is O(NTS) for step 1 (if a heuristic is used to solve the relaxed problem),
O(NlogN) for step 2, and O(NT4) for step 3. Therefore the total computational effort is
expected to grow linearly with the number of items and polynomially with the number of
periods. The number of items is set to 5, 25 and 50 and the number of periods is set to 6, 9
and 12. The other control variables take the following values: Vipax = 5% of a truck, TR=1
truck per period, and «~U[0.5,4]. For each (T,N) combination we randomly generate ten
problems. Summary statistics appear in Table 7.3.

The heuristic remains computationally tractable for very large problems. The

computation time for a problem with 50 items and 12 periods does not exceed 40 seconds.
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Such a problem, if solved as a MIP, has more than 600 integer variables. In a few tests, we
found that general IP software with bounds obtained from linear programming relaxations
requires hours of computation time and generates thousands of nodes in a Branch-and-

Bound tree to find a solution close to the heuristic solution.

CPU times

N T Mean | Std. Dev.
0.56 0.09
5 9 1.76 0.32
12 441 0.82
6 2.49 0.16
25 9 6.73 0.66
12 15.41 1.73
5.24 0.29
50 9 13.32 0.91
12 31.19 4.11

Table 7.3 : Computation times as a function of N and T

Experiment 3: Effi ] he Lower B

A lower bound on the optimal solution is obtained in step 1 of the heuristic, where we
relax the container constraints. We investigate the effect of both the container sizes and the
demand level on the deviation of the cost of the solution from BINLOT from the lower bound

solution.

Effect of Vmax: We set Vmax to 2, 5 and 15 %. For each value of Vmax, we randomly
generate 10 problems. The control variables are set as follows : N =20, T = 12, a=1, and

TR= 3 trucks per period.

Effect of the Demand Level : we set the average number of trucks, TR, to 1, 5 and 10 trucks

per period. For each value of TR, we generate ten problems. The control variables are set as
follows: N=20, T=12, a=1, and Vpax = 5% of a truck.

Before discussing the computational results, let us first comment on the values of the
control variables. We set the average (total) demand in experiments 1 and 2 to one truck per
period. Note that any reasonable strategy is expected to have one or two trucks more than
the minimum possible number. This might be insignificant for suppliers with large delivery
quantities, say 3 or 4 trucks per period, but is certainly important for a supplier with smaller

demands. The maximum size of a container rarely exceeds 10% of a truckload in practice.
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The number of periods and the number of items are set to 12 and 20, respectively. The
heuristic can handle larger problems as well. Preliminary experiments showed that provided
the problem is of a realistic size (more than 5 items and 6 periods), the quality of the
heuristic solution is not influenced by the problem size.

It is virtually impossible to solve problems of realistic size to optimality using a general
IP code. A problem with N items, T periods and an upper bound on the number of trucks, M,
has NHM integer variables, HM 0-1 variables, and more than (2N+M)H constraints.
Therefore, we will compare the cost obtained by BINLOT, not to the optimal objective value,
but to the lower bound obtained by relaxing the container constraints. Unfortunately, such a
bound is not a good indication of how far BINLOT is from the optimal solution. It is similar
to a bound obtained for a bin packing problem by solving its continuous version. This
similarity is confirmed in the following experimental tests. Table 7.4 reports deviations

from the lower bound, as a function of the container volume and the demar_xd level.

Deviation from Lower Bound

Average Std. Dev.

Average Number of Trucks per Period

1 22.87% 5.65 %
5 6.00 % 1.40 %
10 3.02 % 0.83 %
15 2.65 % 0.69 %
Maximum Container Volume (% of a truck
2 3.93 % 2.26 %
5 9.30 % 2.65 %
15 22.14 % 2.04 %

Table 7.4 : Deviation of BINLOT from the lower bound

The deviation drastically increases as the maximum container volume increases. A major
part of the increase is the "integrality” gap between the integer solution and the "continuous"
solution. The standard deviation, however, remains of the same magnitude, which suggests
that the performance of the heuristic is consistent. Note that in realistic applications Vmax
would not exceed 5 to 10%.

The lower bound becomes tighter as the demand (in number of trucks) increases. In a BP
problem, the number of bins in the continuous solution is usually one bin less than the

optimal number of bins in the integer solution, especially if all the bins are full in the
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continuous solution. A similar phenomenon seems to hold in our context. The relaxed
solution has full trucks in all the non-regeneration periods. Thus, wer might expect the gap
to be approximately one truck per non-regeneration period. We observed that the difference
in the number of trucks between the relaxed and heuristic solutions was 1 to 2 trucks for a 5
period problem and 3 to 4 trucks for a 12 period problem. Thus, the solutions from the
heuristic are probably very close to the optimal solutions. It is difficult, unfortunately, to

find good bounds for such problems.

8. Conclusions

In this paper, we addressed a multi-item dynamic lot-sizing problem, in which some
logistical aspects were considered. The transportation cost is assumed to be proportional to
the number of trucks operated in each period. The items are packed into containers, which
then are loaded onto the trucks. As a result, the lot-sizing problem is complicated by bin-
packing considerations. The problem is NP-hard and is difficult to solve optimally. We
present a heuristic based on a solution to a relaxation in which the container constraints are
ignored. Experimental results show that the solution to the "continuous" version of the
problem results in a good solution to the original problem, if it is intelligently converted into
container units. Among the decisions involved in the conversion scheme is when to ship
partially loaded containers. These decisions are made sequentially, item by item, by solving
a single-item version of the problem where only a portion of the demand is considered and
where the transportation cost is appropriately modified to account for uncommitted space in
the trucks. This modified single-item problem is analyzed and an optimal algorithm for it is
presented.

The computational results show that our heuristic performs well especially when there is
an opportunity to trade off transportation and inventory costs. Our heuristic was compared
to some of its variants, as well as rule of thumb heuristics. However, we have not been able
to compare it to the optimal solution. A problem of realistic size would have hundreds of
integer variables, and therefore cannot be solved in reasonable time by any existing general
MIP software. Also the problem is highly integral, and therefore it is difficult to find any
good lower bounds. Nevertheless, the results suggest that the heuristic is able to find very

good solutions in a short period of time.
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Appendix

Theorems and proofs

Theorem 1:  Let Y be an optimal solution to SIVS. ThenI; 1 Fy=0, Vt.

Proof : Let Y be an optimal schedule to SIVS, and suppose there exists a period t for which
we have Ftlt.1 > 0. Let u be the most recent period before t with a positive delivery quantity.

Let e =Min (It.;, Fy, 1-Fy } (>0). We define the schedule Y' to be the same as schedule Y,

except in periods u and t, where:

Ft '= Fy-¢,
. [ Fute if Fy+e <1
Fy'= { 0 otherwise ; and
7. Yy if Fy+e <1
U= y,-l otherwise.

We can easily verify the feasibility of Y. Next we show that schedule Y' has a lower cost
than schedule Y. Let us first consider the transportation cost. The shipment sizes in Y and
Y' are identical in all periods, except in period u where the shipment size in Y' may be
decreased by one container. Therefore the transportation cost of schedule Y' is less than or

equal to the transportation cost of Y. The inventory, however, is decreased by at least He (>
0). Thus, a solution with FiI;.; > 0 cannot be optimal.

Theorem 2: Let Y be an optimal schedule to SIVS. Then;<Q, Vt.

Proof : Let Y be an optimal schedule and suppose there exists a period t for which It > Q, i.e.,

more than a truckload of inventory is held. Let u be the most recent period before t +1 with a
positive delivery quantity. Let m=Min { Yy, Q) (> 0 and integer). We define the schedule Y’

to be the same as schedule Y, except in periods u and t+1, where

Yy=Yy-m, and
Y't+1=Yt41+m.

We can easily verify the feasibility of Y'. Next we show that schedule Y' has a lower cost
than schedule Y. The inventory level decreases by m units in periods u,..,t, resulting in a

positive decrease in inventory costs. The only changes in the delivery quantities occur in
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period u and t+1. The transportation cost of schedule Y' is no greater than the

transportation cost of schedule Y, since :

(i) if m=Y,(<Q), then the total number of trucks shipped in period u and t is equal to
[(Yy+Yt,+1)/Q], which is less than [ Yt,1/Q1 + 1, and therefore is less than [Y:,1/Q1 + 1Y /Q],

which is the total number of trucks shipped in period u and t+1 in schedule Y, and

(ii) if m=Q, then the total number of trucks shipped in period t+1 increases by one, while the
number of trucks shipped in period u decreases by one, which implies that the transportation

cost is the same for both schedules.

We therefore conclude that Y is better than Y, which contradicts the optimality of Y.

Theorem 3:  Let Y be an optimal schedule to SIVS. Then I;.1 (Yt Mod Q) =0, V t.

Proof: Let Y be an optimal schedule and suppose that there exists a period u > 1, for which
It.1 > 0 and (k-1)Q < Yt < kQ for some integer k. Let u be that most recent period before t
with a positive delivery quantity. Let e=Min { 1-Fy, I;.1) (>0). We define the schedule Y' to

be that same as schedule Y, except in periods u and t, where:

Yi=Y¢+1, Fy = 1-g,

' Fy+e if Fy+e <1
Fy = { 0 otherwise ’ and
v Yu if Fy+e <1

U= Yy,-1 otherwise.

In Y', the delivery of € units is delayed from period u to period t, since they are not needed
before then. We can easily verify the feasibility of Y. Next we show that schedule Y' has a
lower cost than schedule Y. The inventory cost is decreased by at least H € (> 0). The only
changes in the transportation cost occur in periods u and t. In Y', the number of containers
delivered in period u is less than or equal to the number of containers delivered in the same
period in Y. The number of containers delivered in period t increases by one. However, since
(k-1)Q < Yi < kQ, we have [(Y;+1)/Q1=[Yy/Q]1 = k, and therefore the number of trucks

remains the same in both schedules. Hence, the total transportation cost resulting from Y is

less than or equal to the transportation cost resulting from Y.

We therefore conclude that Y' is better than Y, which contradicts the optimality of Y.
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Theorem 4:  Let Y be an optimal solution to SIVTS. Then Yy > Qi°==>1;<Q, V't .

Proof : Let Y be an optimal schedule and suppose there exists a period t for which Y; > Q;°

and I; > Q, i.e., more than a truckload of inventory is held. Let m=Min { Y;-Q:°,Q} (> 0 and
integer). We define the delivery schedule Y’ to be the same as schedule Y, except in periods u

and t, where

Y:=Yi-m and
Yt+1=Yt41+m.

We can easily verify the feasibility of Y'. Next we show that schedule Y' has a lower cost
than schedule Y. The inventory level decreases by m units in period t, resulting in a positive
decrease in inventory costs. The only changes in the delivery quantities occur in period t and
t+1. The transportation cost of schedule Y' is no greater than the transportation cost of

schedule Y, since :
(i) if m=Y;-Q°, then
CelYt]+ Ce1l¥t417 = CilQ1%) + Cpy1[Ye41+m]
<0+ K+ Cy1[Yis1]  (since m< Q, and Clu+Q] < Clul+K for u >0)

= C¢[Y¢] + Ci41[Yi+1] (since Q% < Yy < Q1%+ Q ), or

(ii) if m=Q, then
CelYt] + Cey1[Ye41T = ClY-Ql + Cp41[Yt41+Q!
< Cy[Yi] - K+ Ci41[Yi41] + K (since Clu-Q] = Clu] - K for u > Q %)

= Ct[Y¢l + Cea[Y41].

We therefore conclude that Y is better than Y, which contradicts the optimality of Y.

Theorem 5:  Let Y be an optimal solution to SIVTS. Then I;.1 [(Y¢-Qt°) Mod Q] Y¢ = 0,
Vt.

Proof: Let Y be an optimal schedule, and suppose that there exists a period t for which I;_ 1 >
0, and (k-1)Q < Y;-Qt° < kQ for some integer k. Let u be the most recent period before t with
a positive delivery quantity. Let e=Min (1-F,l;.1) (>0). We define the schedule Y to be the

same as schedule Y, except in periods u and t, where :

Yt ‘= Yt+1 y Ft '= 1-€,
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Foe { Fu+e if Fy+e <1 q
L W] otherwise ; an
v Yu if Fy+e <1
U= y,-1 otherwise.

In'Y', the delivery of € units is delayed from period u to period t, since they are not needed
before then. We can easily verify the feasibility of Y. Next we show that schedule Y' has a
lower cost than schedule Y. The inventory cost is decreased by at least H € (> 0). The only
changes in the transportation cost occur in periods u and t. In Y', the number of containers
delivered in period u is less than or equal to the number of containers delivered in the same
period in Y. The number of containers delivered in period t increases by one. However, since
(k-1)Q < Y¢-Qt° < kQ, we have [(Y; - Qi© +1)/Q1=[(Y;-Q:°)/Q] = k, and therefore the

transportation cost is the same in both schedules. Hence, the total transportation cost for Y'

is less than or equal to the transportation cost forY.

We therefore conclude that Y is better than Y, which contradicts the optimality of Y.

Corollary 5.1 : Let (Yy41,..,Yt-1) be a partial solution in the regeneration interval [u,v].
Then there exists at most one integer value k¢, for which

Yt = Qt° + ktQ and (Yy41,..,Yt1,Yt) is a partial solution.

Proof : Let u, v be two consecutive regeneration points. Let (Yy41,..,Yt.1), u+2<t<v, bea

partial solution. Let R¢= 2 Dy, , be the total demand from period u+1 up to and including
h=u+1

period t, let St = i Yh be the total number of containers delivered up to and including
h=u+1

\4
periodt, and let f5 Y Dy1- i Dt be the total number of containers left empty during the
t=u+l t=u+l
regeneration interval. Note that by Theorem 1, the containers are always full except in

period u+1. By Theorem 5, for each period t, u+2 <t < v, the only possible delivery quantity
is given by Yt = Qt° + k¢Q for some integer values k;. Suppose k¢ > 0. Then, by Theorem 4,

the inventory in period t must be less than a truckload, i.e., It = St - f- Rt < Q. Since no
backordering is allowed, the inventory must be non-negative, i.e., St - f- Rt >0. Now, S;=St.
1+Qt°+ktQ. Therefore, we have

0 <(St.1 + Qt° +ktQ) - - Rt < Q, which implies that
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[Re +f-(St.1+Qt0)VQ <kt < 1 + [Re+-(St.1+Qt°))/Q. Since k is integer, the only possible
value that can be assumed by k¢ within these bounds is [ [R¢+f-(St.1+Qt)V/Q]1, if this value is
positive. If it is positive, this implies that (St.1+Qt%)-f-R, which is the amount of inventory

that results from delivering Q;° containers in period t, is negative, and therefore Y; = Q0 is

not feasible.

We conclude that the only possible value of k¢ such that (Yy41,..,Yt) is a partial solution, and
Y:=QO:+kQ, is Max (0, [ [Re+f-(St.1+Q°)1Q]1).
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