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Intreduction and Problem Statement

Many business and industrial transactions are decided
through the use of sealed competitive bidding. This is common in
contract bidding--e.g., construction jobs, defense contracts, plumbing
and heating--in which the low-dollar bidder wins the contract and is
entitled to perform the required services. It is also the case in
acquiring property rights, for example, purchasing or leasing acreage
for mineral or oil rights. In this case the high-dollar bidder wins
the rights to the property. !

Since Friedman's article [5] in 1954, much has been written
about analyzing a competitive bidding situation. Most of what has
been written is concerned with proposing a strategy for a bidder (see
Arps [2], Brown [3], Friedman [5], and LaValle [7]). Notable exceptions
are Crawford [4] and Pelto [10], who analyze bids without proposing
a strategy. Stark [11] gives a comprehensive bibliography on competi-
tive bidding.

Herein, the concern is with the analysis of a lease auction.
Specifically, this report gives a procedure for estimaﬁing the bid-
worth of a tract of land (or off-shore continental shelf) which will
be used for oil and/or gas rights. Empirical Bayes as well as Bayes
methods are employed and therefore other experiences of similar bidding
situations are required. In the second section, a Bayes estimator with
the associated Bayes risk is derived based on a multiplicative model
for the bid worth of a lease. In section three, an Empirical Bayes

estimator is proposed on the assumption that other experiences of
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similar bidding situations exist. The mean squared error (M.S.E.) of
the Empirical Bayes estimator is compared with the M.S.E. of the
maximum likelihood estimator and with the Bayes risk. Section three
also investigates a case in which the prior distribution is assessed
incorrectly. Since the Empirical Bayes procedure does not depend on
an assessment ofrthe prior distribution, we see that the Empirical
Bayes estimator's M.S.E. is smaller than the risk that was realized
using a Bayes procedure in conjunction with an incorrectly assessed
prior distribution. In the concluding section data from the bid
tabulations of U.S. offshore sales is analyzed and a strategy is sug-
gested based on the sequence of Empirical Bayes estimators.

The development of this report first considers the following
problem: There is a group of k tracts which will be let for bids.
The bid worth of a tract is denoted by Gj; for j = 1,2, ....k. We
have the bids for all k tracts, where each bid is denoted by Xij,the

iEh bid on the jEE tract. Therefore, the problem is structured as

%
~1s33i=1,2, oo k
X,
j
with
- '
Xy = Epp Xy ...ﬁxnjj) .

In the second section we establish the distribution of the
bids and find a connection between the parameters of the distribution

of X,, and the bid worth 6 The geometric mean of i

1§ 3 3 designated by
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is sufficient for\ej; therefore the problem is reduced to

(1.1) %
B SR R

b

Using Empirical Bayes methods we estimate 6 8

l 2, 3, e e o0
the bid worth of all the tracts. Enroute to the Empirical Bayes

k’

solution a Bayes‘solution is given which enables us to evaluate the

accuracy of the Empirical Bayes précedure using Monte Carlo studies.
One of the benefits in solving the problem as stated

above is that it leads to the next step, a bidding strategy. Through-

out this report it is assumed that some of the ij's have an element,

denoted by XOJ’ which is the bid of the individual company or bidding

combine which is attempting to assess e k+r’ the bid

k+1’ k+2’ e

worth of the next r tracts. Using the Empirical Bayes solution, a

sequence of bids X0 = (XO,k+1’ XO,k+2’ oo XO,k+r) is proposed.

A Bayes Estimator for Bid Worth

Consider the situation in which the bid worth, designated by
0, of an item or lease is formed by the product of mtl different
factors. If Dl’ D2, ooy Dm’ and F represent these factors

then
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p = F;Ei Dt'
/The common factor, F, discounts the actual worth. For
example, using the straight forward method of appraisal of individual
tracts as given in Crawford [4], the discounted gross oil reserves would

be determined by

6 = FD.D,D_D,D.D.D

172737456 7
in which
Dl = number of pays;
ﬁz = average pa&'thickness;
D3 = average length of reservoir;

.D4 = average width of reservoir;

o
[}

5 fraction of pore space occupied by hydrocarbons;
D, = fraction recoevery;
D7 = average Wworth per unit velume of oil produced.

Throughout this report we will be concerned with bid worth,
and we assume that bid worth is a certain percentage of actual worth.
This percentage, designated by F, is assumed the same for all bidders.
The factor F is based on average deferment, interest rates, average
rate of return before taxes, and dry hole risk.

Since a bidder cannot assess ﬁl’ 52’ ""‘Dm exactly, these
.quantities must be estimated by Bl’ 52, cees ﬁm which are assumed to

be unbaised estimators. The resulting bid is

m
!; X‘ﬁFHD.
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If the estimators ﬁl’ DZ’ aees Dm are assumed independent, we have
(2,1) E[X] = 6.
Extensive studies with bids for o0il and mineral rights in-
dicate that for a specific tract the bids are lognormally distributed
[11, [4], [10]. 1If Xl’ XZ’ o Xn are n bids for a specific tract, we
state that this sequence of random variables is independent and identically
distributed lognormally with parameters u.énd éz, and with &2 known.
In practice, EZ can be estimated from the bids on all k tracts.
Using (2.1) we can write that for a given 0
X5 Xps oee X = 1u1id A (106 - .502, 0%,
and therefore
T|8 ~ A (1ns - .502,“62/n).
Since é is formed by a multiplicative process, a lognormal
prier,G(8), is assigned,
6~ A (&,32).

/

We find ;héﬁ the resulting Bayes estimator of 6 ﬁﬁder squared error

loss is

:nBZ -
2. 2 ,
. o +nf| 200240820 2482 0>
eB =T exp D) 2
26 "+2np

with a resulting Bayes risk given by

9 -6262
(2.2) R-(G)=exp(2a+26 }[l—exp{ 5 }]

o] +n82
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(In the next section, this Bayes risk is compared with the M.S.E. of the
proposed Empirical Bayes estimator through the use of Monte Carlo
studies.)

The resulting risk can sometimes be evaluated if the prier
distribution is assessed incorrectly. For example, in using the log-
normal prier, assume that 32 is assessed exactly; however choose &‘+ €
for the first parameter instead of the correct d.’ In this case the

estimator we would use would be

kAl A 2
g% = 6_ exp L )
B B { 02 + nBZ
with the resulting risk- o .
2 & 802-0282 eo’ ;
(2.3) Risk = exp{ 20+28 ) 1- eXP{ g }(2 - exp{-r—"z ]
: 0" +np’ c+ng"j | |’

This risk will be used to demonstrate the worth of the Empirical

Bayes procedure when similar égperiences are available.

An Empirical Bayes Estimator for Bid Worth

In bidding for oil and gas rights,usually a group of tracts is
announced for sale. A collection of companies or censortiums bid fer -
the rights te these tracts. After bids for these k tracts have been
received, the geometric mean of the bids for each tract can be found,
and the problem can be represented as given in (1.1) withl

1,0, - A(lnb, - .502, o?/)s 1 =1,2,...k

The maximum likelihood estimator of ei.adjusted for bias is

ei =T, exp {.502,_ (GZ/Zn) }

i



and

(.1) Ejlef.i A'(lne-i - (62/2n), 02/n).

Since we want to estimate ei, the bid worth of the iEh tract, for

i=1,2,...k, we propose the Empirical Bayes estimator as given in

Krutchkoff [6] and Lemon [8]:

k A I\l:
¥ 6, f(eilej)

(3’2) ’éi = j=1 i H]
k .
) f(ei|ej)
j=1
with
A . ' lné - lﬁé + 02/2n 2
f(eilej) = (VET/oei ¥7m) exp {-1/2 i 5 ;
o/Vn

Notice that in this preﬁlem we can use all the k experiences to
find the Empirical Bayes estimator of the iEh experience, since the bids
for allk tracts are collected at the same time. In this situation we
can find an Empirical Bayes estimator of the first experience, i.e.,

61, which would not be possible if the data were collected'sequentially.

* The Empirical Bayes estimator weights the classical estimators,

~

9.'s, according to how clese the data from the jEE experience is to the

3
data from the iEhkexperience. The weighting used is the conditional

Likelihood of §, given that 0, = o g
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The following two definitions will enable us to comment on

the general small sample properties of 51:
M.S.E. of B,
(3.3) R = ¥SE. of 3, and
var (8,]e,)
Var (ei)

In the sequentially-collected data case, extensive Monte Carlo studies
on (3.2), with a normal and binomial conditional distribution (Lemon
[9]), have shown that the M.S.E. of éi is smaller than the M.S.E. of 61
for k > 2, i.e., if one or more other experiences exist. Furthermore,
these studies have shown that for k increasing to approximately fifteen,
R decreases. That is, the improvement levels off at approximately
fourteen or fifteen other experiences. Figure 1 (see Figure 6 of Lemon
[9]) demonstrates how R decreases as k increases. This plot was made
using a normal conditional distribution. These extensive Monte Carlo
studies also demonstrated that the amount of improvement of the Empirical
Bayes estimator over the classical estimator is dependent on the prior
distribution and the conditional distribution only as they effect Z,‘

the ratio of the conditional variance to the prior variance.
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Fig. 1. Ratio of M.S.E.'s using a normal conditioﬁal distribution.

In further simulation studies, which were executed with a
lognormal prior distribution and a lognormal conditional distribution of
the form (3.1), the above comments held true with two exceptions, The
plot of R versus the number of experiences was not always monotone de-
creasing since the value of the M.S.E. depended on the actual realized
value of 9. Also, for the reduction in M.S.E. to be appreciable, the
value of Z had to be greater than one. The output from a Monte Carlo
simulation with 500 replications is given in Figure 2. For this run

the estimated value of Z is 2.52. Z must be estimated since the
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conditional variance depends on the realized value of 6. Notice the
large value of R at the thirty-eighth experience. This resulted
because the realized value of 6 for this experience was 2.17 standard
deviations from the prior mean. This meant that the actual value of
Z was 1.87. Since the Empirical Bayes estimator weights the other
experiences, this also helps to account for the procedure's relatively
poor showing against values of 8 distant from the prior mean. Similar
comments could be made for experiences five, twenty-nine, and
forty-nine. Notice that the M.S.E. of the Empirical Bayes estimator
»is appreciably smaller than the M.S.E. of the classical estimator for
almest all of the experiences.

Line B in Figure 2 is the ratio of the Bayes risk (2.2) to
the expected mean squared error (E.M.S.E.) of éj’ and line B* is the

ratio of the realized risk of 5; (2.3) to the E.M.S.E. of 6 This

T
realized risk was found by using é;, which is the Bayes estimator for
the prior distribution A (5.4, .004), although the correct prior dis-
tribution should have been A (5.3, .004).

Table 1 gives the ratio B* for some values of ¢, i.e., if
A (5.3, .004) is the correct prior distribution and A (5.3+c, .004)
is used as the prior distribution, the ratio of the realized risk
(2.3) to the E.M.S.E. of éj is B*. Notice that in all but three
experiences the Empirical Bayes M.S.E. is smaller than the realized
risk if € is .10. This indicates that if an error is made in assess-
ing the prior distribution, the Empirical Bayes procedure can be sub-
stantially better than the procedure incorrectly assumed toe be the

Bayes procedure.
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" Fig. 2. Ratio of M.S.E.'s using a lognormal conditional distribution.

TABLE 1

B% = Realized Risk/E.M.S.E. of éj; 6 ~ A (5.3, .004)

.05 .10 .20

€ ‘ "'020 —olo —105 0.0

B*

2,04 .76 41 .28 i 42 .83 2.62
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For k = 15, another Monte Carlo study was executed using
(3.2) in which each éj (3 = 1,2...15) was estimated using the simulated
observations in all fifteen experiences. This is representative of
the outer continental shelf data which will be analyzed in the next
section.

The value of Z for the data analyzed in the next section was
estimated to be 1.49., Therefore, the estimated value of Z for this
study was set at 1.49. For each of the fifteen experiences, Table 2
gives the R values (3.3) and the number of standard deviations that the
realized 6 is from the prior mean, designated by d. The largest value
of R occurred when 8 was 2.74 standard deviations from its mean., The
ratio of the Bayes risk to the E.M.S.E. of the classical estimator was

.387 for this study.

Outer Continental Shelf (0CS) Data with a Proposed Strategy
The Empirical Bayes estimation procedure was employed on

tabulated bids of fifteen tracts [12]. The data is given in Table 3.

For the value of 02 we used

with
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TABLE 2

Reduction in M.S.E.; k = 15, Estimate of Z = 1.49

Experience No. d R
1 -.41 .39
2 -.31 .58
3 .00 51
4 .40 35
5 Sl .51
6 .50 .49
7 2.74 .88
8 -.11 Y
9 -.80 .76

10 1.32 .57
11 -.29 .39
12 -.21 256
13 -.09 o34
14 -.60 72
15 17 52
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For the data in Table 3, 62'= 1.81. Since E[ailéi] = ei we can estimate
the prior variance using [6]

Var@ = Vard -E[Var(8|6)].
For this data the approximate value of Z is 1.49 which indicates that
the Empirical Bayes estimator will show some reduction in mean squared
error but not as great as would have occurred if Z were larger.

Based on the sequence of Empirical Bayes estimates of bid
worth, a strategy is proposed for the next set of tracts that are offered
for sale. Since we have estimates of the g;’s and since it has been
substantiated that the bids, given 6, are lognormally distributed, we
can determine a representative quantile for any bidder. A particular
bidding firm should develop a bid in its usual manner; then, based
on the previous empirical data, the firm should adjust this bid so that
it will estimate the quantile position of the winning bid.

If uq is the quantile of order q from a lognormal distributioen
with parameters (u,éz),and vq is the quantile of order q from the

standard normal [1], then

4,1 = 1+ v o).
(4.1) U exp (n \A )

Consider the bids in Table 3 denoted with an A following each

bid. These bids are from a specific bidding :firm. Since

; L2 2
Xij ~ A(lnej - 050 9 (¢ )’

we can solve for vq’in (4.1) by setting ej = ej and 02 = 1.81. This can

be accomplished for all of firm A's thirteen bids. The mean of these
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thirteen vq's is then used as an indication of the quantile for firm

A and is designated Véa Similarly, the mean of the quantiles of winning
bids can also be found and designated VﬁA'" The A subscript denotes that
we only considered the winning bids on those tracts for which firm A

was bidding, in this case all tracts except numbers 11 and 12,

After all bids for a new sequence of tracts are developed

by firm A, they are multiplied by

explo Gy, - 7))

which adjusts the bid to the average quantile of the winning bids.

As a demonstration of this procedure we will reuse the data
in Table 3 and indicate the results. This is a moest favorable situation
in that we are using the same bids for estimating the parameters and
demonstrating the strategy.

In the case of firm A, v, = .42

A R VhA = 1.17, and

-exp{cCVﬁA - Vk} = 2.75; so the bids firm A would have submitted using

this strategy are:

Tract No. 1 2 3 4 5 (]
A-Bid 1832 3765 12146 3983 3287 1595
7 8 9 0 13
21741 9951 16002 36003 20790
14 5
4909 5005.

This would have resulted in firm A winning the rights to eight tracts.
In addition to the number of winning bids, to indicate how well a

specific firm, say firm C, has bid we define:
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W= Sum of winning bids for firm C

Sum of the an place bids on the tracts that C won
For A's revised bidding strategy, W = 1.94.
This same procedure was applied to the fifteen bids from

firm B (see Table 3) with the resulting bids being:

Tract No. 1 2 3 4 5 6
T B-Bid 764 764 5739 23338 2673 1530
z 8 9 10 11
11068 3059 42093 7648 2673
12 13 14 15

1530 12622 4207  15676.
These bids show that firm B would have won the rights to seven more
tracts using this strategy. The value of W for B increased only slightly
from 1.28 to 1.30 with the addition of these seven winning bids. The
ratio of the sum of all fifteen winning bids to the sum of all the

second place bids was 1.75.

Concluding Remarks

For a specific firm, there is usually a fixed total amount
of capital that is available for a group of tracfs {2}, say Y dollars.
Theréfore, it is suggested that the initial bids be formulated under
the restriction that Yfexp{GCVA - VhA)} be the total amount exposed.

Then the resulting bids will total Y dollars.
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Since the success of this entire procedure depends heavily
on afcurate estimates of the 6j's, this report has emphasized that the
M.S.E. of the Empirical Bayes eStimator,’g; is smaller than the M.S.E.
of the classical estimator. Simulation studies have shown that the

M.S.E. of 6 will be smaller if Z is larger. Therefore, this procedure

will yield better results for larger values of Z.
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