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ABSTRACT

The ability of an estimated dynamic model to produce accurate pre-
dictions depends on the method used to estimate the parameters in the
model. This report investigates multiperiod predictions for a first-
order autoregressive process. A Bayes predictor is derived using a
bivariate normal prior distribution over the parameters of the model.
The loss structure used depends on the prediction and the variable to
be predicted; therefore this is a statistical decision theory problem.
The form of the Bayes predictor lends itself to Empirical Bayes proce-
dures. Two Empirical Bayes procedures are presented which bypass the
assessment of a prior distribution. All three procedures are developed
so that the estimates of the model parameters depend on the number of

steps ahead the forecast is desired.



Introduction

Since economic time series data is often analyzed using autore-
gressive models, the methods employed to estimate the parameters of
these models is of paramount importance. Using the estimated model
to predict is often the purpose of observing time series data. The
predictions could be required for one period of time in the future or
for many periods ahead. Estimated models which exhibit certain prop-
erties for predicting one period ahead may not exhibit these same
properties for multiperiod predictions. Therefore, when estimating
the model, it is reasonable to consider the number of periods ahead
for which the forecast is desired. Consequently, this is a statisti-
cal decision theory problem rather than just an exercise in fitting
the data to a model.

The dynamic economic structure considered in this report is
limited to a first-order autoregressive model. This problem of find-
ing multiperiod predictions from an autoregressive process has been
investigated in Klein [3], Chow [1], and Lahiri [4]. The estimator
suggested by Klein [3], and referred to by Fair [2] as the DYN esti-
mator, attempts to account for the unknown values of all lagged
endogeneous variables in multiperiod predictions. A Bayesian analysis
of the problem of estimating an autoregressive model has been reported
by Chow [1], who gives a Bayesian solution for the first-order auto-
regressive process. His analysis assumes that the prior distribution
is diffuse. In section three, a Bayesian solution with respect to a
normal prior distribution is reported. The loss function is the square

of the specific multiperiod prediction error. The use of this loss



structure results in the estimator depending on the number of periods
ahead for which the prediction is desired.

In this report, Empirical Bayes procedures are utilized in esti-
mating a first-order autoregressive process. The Empirical Bayes
methods of estimating the parameters are developed to depend on the
number of periods ahead for which the forecast is required. These
procedures employ the game criterion as Chow [1]. However, the Em-
pirical Bayes procedures do not require the assumption of a specific
prior distribution on the parameters. The Empirical Bayes estimators
presented below use the form of the derived Bayes estimator as given
in section three. The artificial assumption of a known prior distri-
bution is circumvented, however.

In section three the Bayes estimator is given as a function of
the prior distribution. From this form two Empirical Bayes predictors
are presented in section four. The concluding section comments on the
applicability of these predictors and suggests essential further re-

search.
The Model
A first-order autoregressive model can be represented as follows:

(1) Ve T ey +c+ U3 for t =1, 2, ...

n
=
(o]

for which Efu ] =0 and E[u u ]
t ts

Throughout this development it is assumed that the initial value of the

series, vy is fixed and known. In addition, the error term is assumed

o ?

to have a normal distribution with a known precision h = l/O2 . The



unknown parameters are therefore the coefficients a and c.

It is not the purpose of this report toc investigate procedures of
directly estimating a and c¢. The problem of interest in this report
will be predicting Yotk based on the observations Vs Yosreees¥, -

In the next section, Bayes predictors of Y42 and ¥ are reported.

nt3
The following section gives two different forms of the Empirical

Bayes predictor of Yotk

S5ince the Bayesian framework will be utilized for both the Bayes
and Empirical Bayes predictors, an assumption must be made concerning
the realization of the random variables a and ¢. This assumpticn may
be made in two different ways. The augmentation of this assumption to
equation (1) results in two different models. This assumption, denoted
by either A or B, concerns the function of the prior distribution on
a and c.

Assumption A: TFor a specific time series; Yy Y15 YoseeenesYsees
ve..3 (a,c) is a realization from a bivariate prior distribution and

(a,c) is fixed throughout the time series. That is, the value of (a,c)

is the same for each time t =1, 2, ..... slyeverees &
Assumption B: For a specific time series; Vo Y1 YooeeeeesYyen
and for each time t =1, 2,.....,0y44....., @ realization from the

prior distribution of (a,c) is experienced. That is, for a given time
series, the value of (a,c) at time t might be different from the value
of (a,c) at time s # t, even though they are both from the same distri-
bution,

In essence, under Assumption A, the values of (a,c) are fixed from
one step to the next; whereas, under Assumption B, the values of (a,c)

change from step to step. Throughout this report it is assumed that



the prior distribution of a and c are independent. (Comments as to
how the predictors developed should perform under Assumption A or B
will be given in the concluding remarks.) All clagsical developments
of this problem, such as Klein [3], assume that a and ¢ are fixed
throughout the time series, This is consistent with Assumption A
except that classical theory does not assume a prior distribution.,

Under Assumption B, equation (1) should be written:

(2) Ve =a¥gte +u ;3 fort=1,2, ...

The Bayes Predictor

This section will develop the form of the Bayes estimator as well
as the Bayes predictor of Y42 and Yot3 for an assumed normal prior.
The unknown parameters of the model as given by equation (1) are (a,c).
Let p(a,c) denote the prior distribution for these parameters. At

th ~ -
the n— gstage we have observed ¥, = (yl, Yoseennes ,yn), and we want
to predict Yotk - Since the predictor or forecast is a function of §n’
To

we write § »¥,) as the predictor of y

ot = Tk 1 Yooeeene ntk

find the form of §n+k » the criterion is to minimize the Bayes risk

given by

(3) RO) = EE G v’

This implicitly assumes a squared error loss on the value of the vy
we wish to predict. This also will be the loss function assumed in
the development of the Empirical Bayes procedures. The interior expected

value of equation (3) is taken with respect to the conditional distri-



bution of Y s Tgseareensy and Yotk given a and ¢. The other expecta-
tion is taken with respect to the prior density p(a,c) as noted.

Using equation (1) repeatedly we may write,

Vo = akyn + (ak—lc + a2 4 L. +c) + (ak-lun+l + ak—zun+2 + ...+ un+k)
Then,
) B o)
ntk “ntk
E{?n+k—akyn—(ak_lc + ak-zc + o000t ) - (ak—lun+1 + ak_zun+2 + ...+ un+kﬂ'2 =
E{?n+k—akyn—(ak—lc + a2 4 Lt c)}2 +
E{ak“lunﬂ_ + ak—zun+2 + - Un+k}2

The last equality holds since u, with t>n are uncorrelated with §n

Since we want to find the ¢ which minimizes equation (3), and

otk
since the second term on the right hand side of equation (4) does not

contain §n+k’ we have reduced the problem to minimizing

n+k—akyn—(akc + ak—lc + oo+ c)}2 =

5) E_E{§

(5) BV
a k k k-1 2

E{Yn+k—a Yn—(a(c + a c+ ... + )} ‘p(a,c) da dec =

a k k k-1 2 - -
[J{yn+k—a yn-(a c+a ¢+ .... Fc)} p(yn|a,c) p(a,c) dyn da de ,

where p(?nla,c) is the conditional distribution of ?n given (a,c).
The integrals written here, as throughout this entire report, are in-

tegrated over the entire appropriate sample space. Since

p(?nla,C) pla,c) = p(a,c|§n) pGF)



we may rewrite equation (5) as

A k-l 2
(6) EpE{yn+k—akyn— (akc +a ¢+ ... F0)} =

A k k k-1 2 ~ ~ -
fj{yn+k—a yn—(a c+a ¢+ ...+ )} p(a,c[yn) p(yn) dyn da de

For an observed ?n = (yl, yz,....,yn)’, equation (6) is minimized if
we minimize the integrand

A k - 2 o
J{yn+k—akyn—(a c+a¥le+ L+ c)} p(a,c|yn) da de ,

with respect to §n+k . Setting the derivative equal to zero we obtain

N k k“l ~
@) Yo = Ja v, + (akc +a ¢+ ... t+0) p(a,c|yn) da dc

We may write that

P la,c) plasc)

pla,ely ) =
JP(?nla,C) p(a,c) da dc

and therefore the form of the Bayes estimator may be written

R _J{akyn e o e c} p(F |a,c) plase) dade
(8) Ttk T

jp(?n[a,c) p(a,c) da dc

Equation (7) is the form of the Bayes estimator from which the Bayes
predictor for two and three steps ahead will be developed. Equation (8)
is the form which will motivate the Empirical Bayes estimator of Yotk
as given in the next section.

If we assume that (a,c) are bivariate normal with mean vector (ul,uz)’
and variance-covariance matrix 1/f1h 0 ,

0 l/fzh



then
a-jiq f 1 0 a=jy

-h
O p@e = e e, o £] |,

The conditional distribution of the data may be represented by

r _ N _ =)
[yy-ay, - ¢ y;may, - ¢
i Y Yorayy T ¢ Ty T ¢

(10) @ lase) = exp ¢ | : )
Lyn—ayn_l-c _Yn_ayn-l_i

L J.

Using equations (9) and (10) we derive

e - =
L a Ul f1 0 a Hl
p(¥_|a,c) « exp = _ _
n 2 c uz 0 f2 c UZ
- - )
yiay - ¢ F'yl-ayo -c
yz—ayl - C yz—a}fl - C
4 . .
U017 Yn™*p-17¢ )

In order to simplify this conditional density we will use the following

identity as given in Raiffa and Schlaiffer [7; p. 337]:

(y-XB)” (y-XB) + (B-b) V(B-b) =
(B-IXX] L [VbHxy]) ™ (WX'X) (B-[Wx'X] L [Vbx'y])

+ bVb + vy - (VbxTy)” (v+x’X)'l (Vb+X7y) .

Notice that B is contained only in the first term of the right hand



side of this identity., If we set

a H1 £,0
= s b = V= ’
g c Ho ? 0 f2
r—qu r—yo 1—
) i1t
y = : s and X = : . s
L0 [ Va1 Y
then we can find the posterior distribution of (a,c) given ?n . It

is obviously normal with the parameters as given below. All summations

are from i =1 to n. Next, set
-1 _ 2 2
b - (n+f2) (fl + z yi—l) - (Z Yi_l)
The posterior mean of a is
Mg = DAy (i) +Qysysg) = bty +1ypDlyiq)b s
the posterior mean of ¢ 1is
2
me =D L Iyg ) Gpfy #1yp) - Gufy +lyyy plys )
the posterior variance of a is
2 -1
o, = Dh (n+f2) :

the posterior variance of ¢ 1is

2 2

-1
o, = DhT(f; + Lyi.y) ; and

the posterior correlation coefficient of a and ¢ is



0,0 = CLyy /LGN (5, +1 v DT

Using these posterior parameters and equation (7) we can find
the Bayes predictors for two and three steps ahead. 1In order to
accomplish this, we need the following statements: If (X,Y) are

s 2 2
bivariate normal (px, Hos O, Oy, p), then

y

EfY] = UY ’

E[XY] = pogo, + Hety s

254 _ 2 2
E[X"Y] = ZpUnggY + UYOX + uYuX R

347 _ 2 3 2 3
E[X7Y] SprgXoY + 3poX0Y o+ 3uXpYoX + MXPY

Using these identities in equation (7) we find that

~ 2 2
yn+2 = yn(ca + ua) + paccacc + uauc + uc ,

and
A 2322
Vopy = Tp(3u 0, + 1)) + KO, F UM, +20 WO O +p 00

ac aadc ac a ¢

* uauc + uC

Empirical Bayes Predictors

Using the form of the Bayes predictor given in equation (8)
Empirical Bayes procedures will now be investigated. In order to
demonstrate the Empirical Bayes procedures as described in Lemon and

Krutchkoff [5], we will display the data in the following form:
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experience 0 1 2 3 R HE n
YO Yo Yo Yo YO ve Y eaenns y0
7 71 Y1 Y1 7 Y1
) Yo ) ) g
Y3 Y3 Y3 73
4 b A
: 3 :
. Yn
a4 oooooo aj se s an
84 cj cn
32 ...... 82...... 52
J n

If the problem is considered as arrayed above, every new observation
will enable us to consider a new experience. For example, after j
observations we are at the th-experience and have the data Yis yz,....,yj
available. Consider the situation in which we have observed

§n = (y» yz,.....,yn)’ and we wish to predict y_, . We want to

use the form of the Bayes predictor, equation (8); however we do not
have nor do we want to assess a prior distribution. For each experience
after the third stage we have been able to estimate a,c, and 02=h_l
These estimates could have been developed in numerous ways, but
throughout this report we will use the ordinary least squares estimates
and designate them by ﬁj, Ej, and 6? ; for j =4, 5,....,n . If we
give equal weight to each of the estimates of the parameters, i.e.,

let p(a,c) = 1/n-3 for (a,c) = (aj, ﬁj,), then we can rewrite equation (8)

as
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Z[aj v, + (aj e + a; "y + e+ gj)] p(ynlaj, cj)

[pG,l4;, 2))

(11)

I

yn+k

where the summations are taken from j = 4 to n. The quantity

(224
~

+ oo+

Ak Ak"l ”~ Ak—2 ~
a. c., . .
J ] J

a, + (a, c, +
gt Gy E

is a prediction of vy based on the estimates obtained at experience j.

n+k

Therefore, equation (11) is a weighted average of estimates of Yok

The weighting function is given by

A 1 ~ A N2
n j, j j _255 Z (yi_ajyi_l -cj) } ’

with the summation taken from i = 1 to n. The weight is proportional
to the conditional likelihood of the present experience given the esti-
mates of the parameters at the experience to be weighted. In essence
we are welghting the prediction developed from each experience by how
well the estimated parameters explain the current data, in . Notice
that in using this technique we may, without loss of generality, assume
that (a,c) is changing from experience to experience. Also, in using
the Empirical Bayes procedure we have eliminated the assumption of a
known conditional precision, h. Using ordinary least squares methods
we are able to estimate 02 =1/h

At the th experience, the ordinary least squares estimates are

given by

G., 8. = (x) " xs

Y

where
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- = =
Yo 1 ryl
11 P
X. = : . ~. = : 3
1

and

2
POy -85 -8y,
8< = s with the summation taken from

j-2

i=1to j. The decision to start after the third observation insures
that we have enough degrees of freedom to estimate the conditional
variance., The weights assigned to the early experiences are usually,
but not always, smaller than the weights assigned to the later experiences.
The properties of Empirical Bayes procedures, such as equation (11),
have always been investigated using Monte Carlo experiments. The results
of these experiments seem to indicate that the procedure is asymtotically
optimal [5]. That is, the risk of using the proposed estimator approaches
the risk of the Bayes estimator as the number of experiences approach
infinity. Only for some very simple examples have the Empirical Bayes
procedures actually been shown to be asymtotically optimal, using analy-
tic, not Monte Carlo, techniques. In all cases heretofore considered,
an assumption of the model was that the conditional data at experience i
was independent of the conditional data at experience j # i. This is
certainly not the case in our development since the data at experience
j contain all the observations from experience j-1 ,
In order to adjust for the dependence between the experiences, a

fixed number of observations could be assigned to each experience.
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For example, with quarterly data, four observations per experience

might be chosen, That situation could be represented as follows:

experience 0 1 2 ceesn J veeees n
Yo 71 Tg eeees Y453 = V4n-3
Y2 Y6 Y452 Vin-2
73 Y7 Y43-1 Yin-1
V4 78 V43 Yin
al 32 aj an
8, g, ¢, il
2 2 2 2
81 8 6 8:

Since we are assuming an autoregressive model as given by equation (1),
.th . ; . , , 8t .

the j= experience is still not independent of the j-1== experience.

For example Ve is not independent of Y, 3 however, the conditional

distributions of nonadjacent experiences are independent. In this

case the conditioning occurs with respect to the last observation.

The ordinary least squares estimates of a, c, and 02 are given by

S
a,, ¢.)” = (X.X. X.v.
( 2.) ( . J) y

37 73 373
where
V... 17 r N
Y33 Y43-3
V. 1 V.
Xj - 43-1 and yJ _ 43-2
Va2 1 Y45-1
L Y453 1 V45
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Therefore the Empirical Bayes predictor of Yok based on the form

of the Bayes predictor in equation (8), is given by

k—l ~ Ak=2

g X(a y4n a, Cj + 4 g + o0+ c ) p(yn aJ, c )
(A2) y_ 4, =
n+k z G :':la &)
P, |8, ¢
~ % ( -
where yn = Y4n_3s y4n_29 Y4n_ls Y4n)
and
~ %* A A "4 1 A A 2
p(yn l ajs cj) « 6:] exp { '2_65 z (Y[m_i —an4n_i_l —cj) } ’
|

with the summation taken from i=0 to 3.

Concluding Remarks

The Bayes predictor, as given by equation (7), implicity incorpo-
rates Assumption A into its model. BSince the Bayes predictor uses the
entire series ?n as a single entity, it assumes that (a,c) is a
fixed realization from p(a,c) throughout the series. The Bayes pre-
dictor also has the difficult requirement of assessing a prior distri-
bution on (a,c). Even though the mean vector of (a,c) might be easy
to assess, it is unlikely that the variance of (a,c) could be assessed
accurately.

The Empirical Bayes predictor, §E+k , Dermits Assumption B to be
part of the model. However, the advantage of a more flexible model is
probably offset by the disadvantage of strong dependence between ex-

periences. The Empirical Bayes predictor, , Implicitly allows

K
yn+-k

the assumption that (a,c) changes after every fourth observation. For

quarterly data, this would be consistent with an annual revision of
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model parameters. Also, this Empirical Bayes procedure has the advan-
tage of conditional independence of experiences as explained in the
last section.

In order to test the worth of these proposed methods of predic-
tion, a Monte Carlo study, similar to that reported by Orcutt and
Winokur [6] and Lahiri [4], should be executed. The study should in-

clude observations generated from both models (1) and (2).
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