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I. The Problem

In order for an auditor to executé the second stan-
dard of field work properlyl there must be an evaluation of
a client's internal control procedures. For this paper we
assume that the internal control procedures to be relied upon
have already been determined and what remains is to test for
a client's compliance to these controls. For the purpose of
this paper, we further assume there is only one attribute
upon which the auditor wishes to rely. Thus we are con-
ducting a test of compliance on that one attribute.

The problem we are addressing has a special nature in
that the internal control procedure we wish to test for is
carried out at more than one site. Because the sites are
geographically separated, a reasonable question that arises
is whether or not an auditor must test all sites in order to
come to a conclusion about compliance with the internal con-
trol procedure. From our experiences we conclude that this
is a common question and to resolve it some auditors still
inspect procedures at all the sites, while others subjectively
choose a few (maybe two or three) at which to evaluate the
internal control procedures. In the latter case, they
usually change the sites they inspect from year to year. For
example, we can paraphrase a typical statement that we have

heard from various auditors as follows, "If the same internal

lAmerican Institute of Certified Public Accountants, State-
ment on Auditing Standards No. 1 (New York: AICPA, 1973),
p. 5.




control procedures are used at different sites, it seems that
if we have inspected a couple sites and found them complying
with their procedures we should be able to make a statistical
statement about all sites as data is obtained sequentially
from site to site.”

In order to be able to make a statistical statement
about all sites, we must develop a model which accounts for
the relationship between the error rates at different sites.
That is, we expect different sites to have different error
rates and our model must reflect this expectation. We do
this in Section III below as well as develop a method of
stating a conclusion about the upper precision limit achieved.
The use of the phrase "upper precision limit" is analogous to
the conventional usage, except that we will use it to refer
to multiple sites rather than one.

We are only considering the evaluation of internal
control, i.e., compliance testing, and are not considering
the substantive test. In order to crystallize this point,
the reader may consider the proposed procedures as being in-
tended for an interim period in which the substantive test
will be accomplished at year-end, and we want an interim
evaluation of the upper precision limit for the error rate
associated with the attribute on which we want to rely. A
situation in which there is only one attribute on which to

rely is not unrealistic. If the internal control procedures



are not stringent the single attribute might simply be the
difference between the audit and book dollar value.

Since we are at interim, however, we will not be con-
sidering the substantive error but only whether or not an
error exists. In Section II we introduce a specific example
problem. In Section III we formulate and apply a method of
solution for the problem; in Section IV we test the validity
of our solution method through a simulation study. Section V

contains a summary and suggestions for further research.

IT. Example Problem

Consider a situation in which an auditor is responsi-
ble for performing a compliance test of the internal control
procedures of a manufacturing company which has six differ-
ent sites. Cash disbursements are being audited and the
auditor has decided that the only attribute on which to rely
is the agreement or disagreement of the voucher register with
the listing of cash disbursements purported to be correct.
It is an interim period and our immediate goal is to make a
statement about internal controls, since substantive tests
will be executed at year end.

The information contained in Table 1 is available to
us. In Table 1, Nj is the number of cash disbursements to
date this year at the given site j, and p; is a subjective
evaluation of the expected error rate at the site. For ex-

ample, p; might simply be the error rate which was observed



Table 1

Information Available for Evaluation of
Compliance with Internal Control Procedure

. *
Site Nj pj
A 1565 .04
B 2313 .03
C 2216 .03
D 1700 .03
E 322 .02
F 312 .02

N. = number of cash disbursements to date
J this year at site j§

subjective evaluation of error rate at
] site j

o
I

the last time site j was audited. However, given additional
information subsequent to the last audit, p; might be the
result of subjectively changing the error rate last observed.
For example, at Site B assume that the actual error rate ob-
served last year was only 1 percent. However, the volume of
inventory at Site B has almost doubled with no additional
manpower resources added, therefore, the auditor expects the
error rate to increase to approximately 3 percent as given in
the table. It follows then that the information content of
p; is the result of a history of experience which an auditor
will accumulate over a number of periods of auditing the
same client. This experience factor is present in most
auditing situations and we include it as an important input

to the solution approach we present in Section III.



II-a. The statistical test

Since the audit objective of the present test is to be
able to make a statement about the reliability of the internal
control procedure we are primarily concerned with two quanti-
ties, the reliability (R) and the upper precision limit (u).
When we are finished with this compliance test we want to be
able to state that with a reliability of .95 we are confident
that no site has an error rate greater than u.

A general description of the strategy of our compli-
ance test is as follows: After we have audited two sites, we
will be able to make a statistical statement about the upper
precision limit for all six sites at a specific reliability
level. 1If this stated upper precision limit and reliability
are within the ranges we wish to accept, then we can stop
without auditing the remaining four sites. Otherwise we will
proceed sequentially to the third site and calculate a new
upper precision limit. It might be necessary to audit all
six sites, especially if the error rates are higher than ex-
pected and above some prescribed level. On the other hand,
if the upper precision limit remains higher than expected
after the inspection of three or four sites, it may be realis-
tic to conclude that the internal control procedure is not
accomplishing its job and therefore should be relied on less,

rather than expending the cost and effort to inspect the re-

maining sites.



II-b. Selection of sequence of site inspections

As will be seen in Section III, the validity of our
solution model does not depend on the order in which sites
are inspected; it only depends on knowing Nj and assessing p§.
Thus, a decision about the order in which sites should be
inspected is not part of our model. This allows an auditor
to make that decision based upon other important factors not
included in our model. For example, an auditor may wish to
consider the total dollar value of transactions at each site,
which would reflect an auditor's ever-present concern about
materiality, or the time span since a site was last inspected
and/or the magnitude of the expected error rate. If a site
has not been inspected for two or more periods and/or is ex-
pected to have a higher than normal error rate, then it should
be a prime candidate for inspection.

These other factors have intuitive appeal and may well
lead to the development of a model for optimal sequencing of
site inspection. 1Indeed, this is a potential area for expan-
sion of the model we present here. 1In this paper, however,
the order of site inspection has no impact on the statistical
validity of our model. For convenience, in our example
problem we select the order of inspection to be the order of

sites found in Table 1.

II-c. Determination of sample size

Since our overall objective is to state an upper pre-

cision limit at a specified reliability for all sites we must



be able to estimate the error rate at each of the sites al-
ready audited. Therefore, an objective at each site inspected
is estimation, and we must require a sample large enough to
accomplish this. The sample size determination at each site
audited will be based on the following four factors: Nj’ the
total number of transactions at each site; pg, the subjectively
evaluated expected error rate; R, the required reliability,
and u, a desired upper precision limit. The setting of a
desired upper precision limit should be understood for its
primary function, which is the establishment of a reasonable
sample size. Once the data has been observed the auditor will
have to decide whether or not the upper precision which is
achieved is acceptable.

The proposed random sample at each site is without re-
placement so we will employ the hypergeometric distribution.
If R = reliability, Nj = the total number of transactions,

p; = the subjectively evaluated expected error rate, and
u = desired upper precision limit, then a reasonable sample

size will be the smallest value of n. such that

-~

J <1 - R. (2.1)

Il 2 5%
J

i

. -
If Nj is large compared to the sample size we can approximate
the hypergeometric distribution with the normal distribution.

That is, in a random sample without replacement of size nj



from a finite population as described above, the random vari-
able Yj’ the number of observed errors at site j, will have
an approximate normal distribution with the following mean

and variance:

Mean = nju

N.-n.

Variance = nju(l—u) N?—lj . (2.2)
]

Our purpose is to find a sample size which would yield
an observed error rate less than p; only (1-R) of the time if
the population error rate were u. This means that, if the
population error rate is u or larger, we would most likely
(R of the time) observe an error rate pg or larger. This
stipulation can be stated using our normal approximation as

follows. Find the smallest nj such that

P[Y. Sn.p¥] =1-R 2.3
[J JpJ] (2.3)
or
~ -
*
Y.-n.u n.p.-n.u
P 1] < 1 J ] =1-R., (2.4)
// Nj-nj // Nj—nj
nju(l—u) N1 nju(l—u) N =1
J J
. -
Therefore,
n.p*-n.u
PJ -y

1-R (2.5)



where Za is the value of the standard normal random variable

with a probability of o in one tail. Solving (2.5) for nj

we have
Z2 u(l-u)N
- 1-R J
nj = 5 " 5 - (2.6)
Zl_Ru(l—u) + (Nj—l)(pj-u)
For the case we are considering with u = .08 and R = .95 we

find the sample sizes for the six sites which are set forth

in Table 2.

Table 2

Sample Sizes for Each Site

Site n.
J

116
78
71
77
48
47

HEOOQW®

In the next section we present a model and procedure

for evaluating the sample data.

III. Formulation of a Solution Procedure

In this section we will first describe a model that
is assumed for the problem described above; then we will de-
rive estimation procedures used to evaluate this model.

This methodology will yield a sequential process which will

give an achieved upper precision limit after each site in-
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spection beginning with the second site inspected. We require
that at least two sites always be inspected so that we will
have some additional evidence as to the variability of the

error rate between sites.

III-a. Model formulation

Let p be the random variable that is the proportion of
errors generated by the accounting procedures being employed
at all sites. We assume a Beta distribution on p with un-

known parameters (a,b). We write the density of p to be

'(a + b) a-1

- b-1
f(p)—r—(m—(-l—)—)-p (1-p) 02pZs1

a, b > 0.

This gives us a rich family of densities for possible distri-
butions on p. It should be noted that the actual proportion
of errgrs, pj, for each of the sites will be a realization
of the random variable p.

Consistené with an earlier definition, we let
p: (j =1, -++, k) be the subjectively evaluated expected
error rate that has been assessed for each site. We assume
that p* is related to p through a function, i.e., p* = h(p).
Since p is a random variable and p* is a function of p, then
p* will be a random variable. We do not assume a specific
form for h(-); however, as part of the model we assume that

h(¢) is of a form such that
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(i) E[p] = E[h(-)]

(ii) Var[h(-)] = Var[p] = ab

(a+b) 2 (a+b+1)

The reason for these assumptions is that we will use
the pg's in the initial estimate of the mean and variance of
p. Assumption (i) implies that using the pg's to estimate
the mean of p will result in a conservative estimate, since
we should get a positively biased estimate and this will lead
to a positively biased upper precision limit.

Assumption (ii) allows us to use the variance of the
pg's as a basis for estimating the variance of p. However,
as we shall see later, the sample data will be allowed to aug-
ment the pg's in making the variance estimate as well as the
estimate of the mean.

After we have sequentially inspected % sites, we will
have a problem structure as given in (3.2). The p;'s and

@j's form the data set which will be used in our estimation

procedures.
Site 1 Site 2 Site & Site ¢ + 1 Site k
) R T ~ - M
Py Pal Py Pot+1 Py
p] R £ N £SO B 34 (3.2)
D P P

The Pyr =ty p, are unknown realizations from the dis-

tribution given in (3.1). The p;’ cee, p; are observed
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Y.
realizations from the distribution p* = h(p) and pj = El
j

(3 =1, -++, &), the sample proportion of errors at site j

for the sites inspected.

Given our data set in (3.2), we want to develop esti-
mates of a and b, the parameters in the distribution of p
(3.1). The following discussion will lead to acceptable
estimators.

Our strategy for estimating the parameters a and b
will be to use our data set in (3.2) to calculate estimates
(ﬁ,82) of the mean and variance of (3.1). Then since we

know that

= m (3.3)

and

o2 = ab , (3.4)

(a+b)2(a+b+1)

we can equate these to i and 32 and solve for a and b yielding

~2 A ~a
5= R (l—u; - Ho (3.5)
0
and
~ A 2 A2 ~
[0

In developing estimators of p and 02 from our data set
we have attempted to model typical auditing logic within our
statistical estimation procedure. That is, in accomplishing

our objective of calculating an upper precision limit u* for
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all k sites after & < k sites have been inspected, we would

rather overstate u* than understate it at our specified reli-

ability level. Another auditing logic characteristic that we
desire in our estimation procedure is that, for a given set
of sites inspected, the larger the observed error rates, the
larger will be u*. For example, if sites 1, 2 and 3 are
inspected with dbserved error rates él = .03, §2 = .04,

§3 = .03, respectively, we want u* to be larger than it

would be if the results would have been ﬁl = .02, ﬁz = .01,
53 = .03. These objectives are incorporated into our esti-

2

mation procedures for u and o¢”.

As an estimator of p we use

" 3 s 0 3 * - o 0 *
N N T Tt T E
This estimator uses the latest data available, the ﬁj's
(j =1, +--, %) for the first & sites inspected (in place of

the first £ p;'s). Since it is a blend of ﬁj's and p;'s it
will tend, on the average, to be‘positively biased (as men-
tioned earlier), because E[p*] > E[p] and E[ﬁ] = E[p]. An
upward biased I may lead to a larger u*. However, as more
sites are inspected, I will have less bias as an estimator
of u because we are using more ﬁj's in place of the pg's.
This is acceptable from an auditing logic point of view as
we are using more currently available déta (the ﬁj's) and
therefore ﬁ should become a better estimate of p. When we
were using more pg's relative to the ﬁj's we preferred to be

conservatively biased (E[p*] > E[p]) rather than otherwise.
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A variance estimator (82) is not as straightforward to
develop as the mean estimator (1). Since Var[p*] = Var[p] =
02, one approach is to use
k

=4\ 2

*_Tk
L (p}-p*)

2 - i=1
p* k

S (3.8)

2
1

(3.5) and (3.6) along with §i to calculate estimators a and b.

Then with o7 = s;* as an estimator of 02, we could use it in
However, sé* does not use any data from the & site inspec-
tions and, therefore, we elect not to use it and to improve

on it using the complete data set. The ﬁj's should be incor-
porated into 82 since they represent the most current data re-
garding the true error rates (pj) being generated.

This leads to another approach which is to consider

Var[ﬁ].
Var[p] = E{Var[p|p]} + Var{E[p]|p]}
- pRR) . N -2 4+ var(pl. (3.9)
= A~y _ neP(l-p) N -n
So, Var[p] = Var[p] E{ - N = l} .

Therefore, another possible estimator of Var[p] would be

p.(l-p.) N. - n.
J J J J (3.10)

NN
I
n
>N
1
Sl

Q>

wn
>IN
1]
b
1.
o~
|_|
o>
L P\ )
_J
|
SR
.
Il o~
I_l
Lo}
J
__J
[\

where
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We also object to using 33

main reason is that, because of the relatively low values of

as an estimate of Var[p]. The

ﬁj with which we are working, it is not unusual for our

sample data to yield a 83 < 0. This, of course, is not a

usable result. Two other objections to 8;

does not make use of any of the prior knowledge embodied in

are (1) that it

the pg's and (2) for small & there may be too few ﬁj's avail-
able for an adequate estimate.

Besides the short-comings of Si and 33 discussed
above, we also desire that our estimator of Var[p] help us
to achieve our auditing objectives mentioned earlier. 1In
brief, these objectives were not to understate an achieved
upper precision limit (u*) and that our calculation of u*
be consistent with the error rates observed at sites in-
spected.

With all of our objectives in mind, we propose the
following estimator of Var{p]

16,-p%)% + J(p¥-p*)?
B J

) j
og = A . (3.11)

where the set A consists of all sites inspected where the
observed éj > pg and [ﬁj - p*| > |p; - p*| and set B consists
of all sites not included in A.

An observed ﬁj will enter the calculation only if

(1) ﬁj is larger than its corresponding p§
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and (2) the distance that ﬁj is from p* is larger than

the distance the corresponding pg is from p*.

We elect to keep p* constant in our calculation of 32

3 (i.e.,
not recalculated using the ﬁj's) so that the value of Gg

will always be at least as large as the estimator based only
on the pg's (3%). Then since we assume Var[p] = Var[p*] and
Gi is an estimate of Var[p*], we are confident that 8% will
be an upward biased (conservative) estimated of Var[p].
This should have a favorable impact on our auditing objec-
tives as well as meet our statistical requirements.

Now that we have determined our estimators p [in
(3.7)] and 8% [in (3.11)] we can use them to calculate esti-
mates of a and b, the parameters of the Beta distribution
which is generating the error rates at the k sites. With a
and b we have an estimate of the distribution of p and,
therefore, can make a statement concerning the probability
that any site will have an error rate above a certain level.
After inspecting % sites, we can state with reliability R
that u* is the achieved upper precision limit for all k sites
if

u* = min{Prob[max pj < u] 2 R}. (3.12)
u

This expression states that the probability that the largest
pj will be less than or equal to u* is greater than or equal

to the specified reliability. The probability calculation
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uses the Beta distribution with the estimated values of a
and b. 1In order to evaluate this procedure, we need to use
an approximation to an incomplete Beta integral. Assuming

independence of the realization of the pj's we have

Prob[max P, X u] = {Prob[p = u]}k

u a A ~
= { f r(a + b) b—ldp}k . (3.13)

@t - p)
0 I'(d) + I'(B)

Setting this probability equal to R, we are left with the

numerical problem of finding the value of u* such that,

1
K

u* ~ N A A
+ - -—
j Laxb &l )Pl - gF (3.14)
0 Tr(a) + r(b)
An algorithm has been given2 which solves this problem and
which we use in our/numerical example. The solution, u*, is
the achieved upper precision for all sites. We next con-

sider calculating u* for the example problem introduced in

Section II.

ITII-b. Numerical results of example problem

In order to demonstrate our suggested procedure, we

will estimate the upper precision limit for all sites after

2K.L. Majumder and G.P. Bhattacharjee, "Inverse of the

Incomplete Beta Function Ratio," Applied Statistics 22,
No. 3 (1973): 411-14.
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the first two sites have been inspected (£ = 2). Recall
that there are six sites in total (k = 6) with population
sizes and p;'s given in Table 1 and sample sizes given in
Table 2. Table 3 below gives a calculation of u* after the
inspection of two sites and for seven possible error out-

comes at each site (number of errors Yj =0, 1, =<+, 6).

Table 3

Upper Precision Limit for All Six Sites
after First Two Sites Inspected
(Reliability = .95)

Site B
(nB = 78)
I 0 1 2 3 4 5 6
ﬁj 0 |.0128 |.0256 |.0385 |.0513 |.0641 |.0769
0o .0372 | .0388 |.0406 |.0462 |.0606 |.0792 |.1000
1 |.0086 | .0383 |.0400 |.0418 |.0474 |.0616 |.0800 |.1007
Site A 2 }.0172 || .0394 [.0412 |.0431 |.0486 |.0627 |.0808 |.1011
(ny = 116) |3 |.0259 ||.0407 |.0425 |.0444 |.0498 |.0637 |.0818 |.1020
4 | .0345 || .0419 | .0437 |.0457 |.0511 [.0649 |.0827 |.1026
5 |.0431 || .0462 | .0480 |.0499 |.0550 |.0680 |.0852 |.1046
6_|.0517 |}.0576 |{.0592 |{.0608 |.0651 |.0764 |.0921 |.1103

Table 3 may be read as follows. If at Site A we observe

Ia

2 errors and at Site B, Y, = 3 errors, we calculate

B

u* .0486 as our achieved upper precision limit. That is,
we believe that with probability .95 none of the six sites
has an error rate (pj) larger than .0486. This limit is cal-

culated, of course, from a specific Beta distribution with
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parameters 4 and b whose values were dependent on our esti-
mators ﬁ and 8%.

Notice that u* increases monotonically as we read
down and to the right across Table 3. This reflects one of
the auditing objectives stated earlier in Section III-a. Our
other primary auditing objective (that u* not be understated)
cannot be demonstrated in Table 3, but we will comment on it
in the report of our simulation runs in Section IV.

To further illustrate the monotonic property, we
calculated the u*'s after three sites had been inspected
(Sites A, B, and C), given that two possible occurrences had
been observed at each of Sites A and B. That is, we assumed
that YA = 2 and YB = 5 at Sites A and B and then calculated

u* for the possible outcomes of Y, =0, 1, ***, 6. We then

C
repeated the calculations assuming YA = 5 and Yy = 5. The

results are given in Tables 4 and 5.

Table 4

Upper Precision Limit for All Six Sites
after First Three Sites Inspected and

YA = 2, YB =5

(Reliability = .95)

Site C

(nC = 77)
Yo 0 1 2 3 4 5 6
p 0 .0130 .0260 .0390 .0519 .0649 .0779
u* .0782 .0791 .0805 .0839 .0933 .1069 .1237
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Table 5

Upper Precision Limit for All Six Sites
after First Three Sites Inspected and

YA =5, YB =5
(Reliability = .95)
Site C
(nC = 77)
Yo 0 1 2 3 4 5 6
ﬁC 0 .0130 .0260 .0390 .0519 .0649 .0779
u* .0821 .0834 .0848 .0882 .0973 .1105 .1269

When only two sites were inspected with YA = 2 and YB = 5,

u* was .0808 (see Table 3). Then in Table 4, we see that
with zero errors observed at site C, u* decreases to .0782.
This is not surprising since our new data from Site C is an
improvement over the error rates observed at Sites A and B.
However, we see that u* increases monotonically as the

error rate increases at Site C and for ﬁc = .0390, u* = .0839,
which is larger than it was at the end of inspection of Site
B.

In the other case when only two sites were inspected
with YA = 5 and YB = 5, u* was .0852 (see Table 3). Again,
observing ﬁc = 0 reduces u* to .0821, but then u* increases
as more errors are observed, and at ﬁc = .0390, u* = ,0882,

which is greater than it was at the end of inspection of

Site B.
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Thus, our calculation of u* is responsive to variation
in error rates observed between sites inspected. Also, u*
is consistent for a given site since it increases monotonically
as the observed error rate (ﬁj) increases.

In Tables 6 and 7 below, we compare our results for
the example problem with the calculation of the upper preci-
sion limit by traditional methods. In Table 6 we consider
the case of inspecting Sites A and B. ©Notice in Table 6 that
upper precision limits for Sites A and B are calculated in-
dependently of each other by the traditional method. Then
the decision to inspect more sites would depend on, among
other things, a subjective evaluation of the error rates at
the remaining sites. Our proposed u* is an upper precision
limit for all sites, whether or not inspected. There may
be other criteria that will influence an auditor's decision
about whether or not to inspect more sites. However, in u*
he does have a statistically derived error rate which applies
to all sites and which can be used to help make his decision.

In Table 7 consider the case where Sites A and B have
been inspected with two different outcomes for each and then
consider seven possible outcomes for Site C. 1In the top part
of Table 7 we have error rates of p, = .0172 and ﬁB = ,0641
and‘seven different error rates for Site C. Again, all of
the traditional upper precision limits are calculated inde-

pendently of each other while each of our proposed upper
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Table 6

Upper Precision Limit (U.P.L.) Comparisons
Two Sites Inspected
(Reliability = .95)

Sites
A B C D E F
Sample Size 116 78 _—— ———— —_— —_——
Observed Errors 2 5 ———— _— —_— _—
Error Rate .0172 | .0641 _—— —_—— —— —_———
Traditional U.P.L.*| .0600 | .1400 —— ——— ——— ———
Proposed U.P.L. .0808 | .0808 | .0808 | .0808 | .0808 |.0808
Sites
A B C D E F
Sample Size 116/] 78 | m=—= | e | e [ e
Observed Errors 5 5 ———— —— ——— ———
Error Rate .0431 | .0641 ——— ——— ——— ———
Traditional U.P.L.* | .0900 |.1400 | =—== | ~===| ===~ | =——=
Proposed U.P.L. .0852 | .0852 |.0852 |.0852 | .0852 |.0852

*Sampling for Attributes (Supplementary Section), AICPA,

1967, page S-21, Table 2-B.
n = 80 and 120 are used since the source table does not

include n

78 and 116.

Upper precision limits for
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Table 7

Upper Precision Limit Comparisons
Three Sites Inspected
(Reliability = .95)

Sites
A B C
Sample Size 116 78 77 77 77 [ 77 77 77 77
Observed Errors 2 5 0 1 2 3 4 5 6
Error Rate .0172 |.0641 |.0000 {.0130 {.0260 |.0390 |{.0519 [.0649 |.0779
Traditional ,
U.P.L.% .0600 |.1400 |.0400 |.0600 |.0800 [.1000 |.1200 |.1400 | .1500%%
Proposed U.P.L. ‘
(for all sites) | ———- | -——- }.0782 |.0791 .0805 1.0839 }.0933 [.1069 | .1237
Sites
A B I
Sample Size 116 78 77 77 77 77 77 77 77
Observed Errors 5 5 0 1 2 3 4 5 6
Error Rate .0431 | .0641 | .0000 |.0130 |.0260 |.0390 {.0519 |.0649 | .0779
Traditional
U.P.L.% .0900 | .1400 | .0400 | .0600 | .0800 |.1000 |.1200 |.1400| .1500%*
Proposed U.P.L.
(for all sites) | --—-| ----{.0821 |.0834 |.0848 |.0882 |.0973 |.1105]| .1269
*Sampling for Attributes (Supplementary Section), AICPA, 1967, page

S-21, Table 2-B.

since source table does not include n = 77, 78 and 116,

%% Interpolated since no table value given for 6 errors.

Upper precision limits for n = 80 and 120 are used
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precision limits is dependent on the outcomes at all three
sites and pertain to all six sites.
In the next section we use a simulation study to test

the validity of our approach.

IV. Simulation Study

The main purpose of this simulation study will be to
demonstrate the validity of the procedures described in the
last section. In the last section we reported procedures for
calculating an upper precision limit u* at a specified reli-
ability R. Using simulation we will show that u* actually
has that reliability. Because of the complex nature of the
estimation procedure an analytic proof is intractable;

therefore stochastic simulation methods will be employed.

IV-a. Simulation design

We have designed a simulation experiment which per-
forms 600 replications of the specific problem discussed in
Section III. In order to investigate this specific problem
we have fixed: (1) the number of sites at six, (2) the
population sizes and the subjectively evaluated error rates
as given in Table 1, and (3) the sample sizes as given in
Table 2. We could use other values for these quantities;
however a favorable conclusion about the reliability for
this particular problem will give credence to the statistical

validity of the procedure.
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Each replication can be considered as a compliance
test for a company with six sites. It still holds that
there is only one attribute on which we have decided to re-
ly. Since the procedures for arriving at an upper precision
limit, as given in the last section, will be applied to each
application the reliability levels will be stated as a per-
centage of the 600 outcomes.

The first random element of each replication is a
Beta distribution which generates the actual error rates at
each site. We decided to set the mean and variance of the
generating distribution at the mean and variance of the six
p*'s. Since the mean and variance of the p*'s are .028333333
and .000047222 respectively, the resulting parameters of the
Beta distribution are a = 16.49 and b = 565.51. Therefore
for this simulation study we are generating the pj‘s from a
distribution for which E[p] is equal to the sample mean of
the p*'s and the Var[p] is set at the sample variance of the
p*'s. In our model we assumed that Var[p] = Var[p*];
therefore, for simulation purposes it is only reasonable that
our initial study should set the generating variance at the
sample variance of the p*'s.

If we wanted the simulation study to conform explicitly
with our model assumptions, then we should set the mean of
the generating distribution at a value smaller than the mean
of the p*'s. Since the difference between E[p] and E[p*]

was not specified in the model, we set the generating mean
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equal to the average of the p*'s. A sensitivity analysis,
not reported here, which investigates different parameter
settings for the generating distribution is underway.

The second random element of each replication is a
sample taken without replacement at each site. Based on
these samples and using the procedures given in Section III,
an upper precision limit is calculated after the 2nd, 3rd, 4th,
5th and 6th sites. Since we know the actual error rates we
can determine the percentage of times that our stated upper
precision limit exceeded the error rates at all of the sites.
These percentages are an estimate of the reliability of our

procedure.

IV-b. Simulation results

Throughout this study we used R = .95. Table 8 gives
the proportion of times that none of the six actual error
rates exceeded our u* for ¢ = 2, 3, 4, 5, 6, where ¢ is the

number of the sites inspected.

Table 8

Simulation Study
Achieved Reliability

Proportion of Times
None of Actual
Number of Error Rates
Sites Inspected Exceeded u¥*

.94
.94
. 945
.962
.978

YOl W N
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These values indicate that our procedure has a reli-
ability of approximately .95. Notice the increase in reli-
ability as the number of sites inspected increases. This is
due to the fact that the estimate of the variance of the
generating distribution can only increase as %, the number
of sites inspected, increases. However, the importance of
these results is that u* will be reported at approximately a
.95 reliability. This can be further emphasized by con-
sidering the following. For each of the 600 replications a
u* was reported after the 2nd site was inspected. Of the
600 u*'s only 36 (.06) failed to exceed the error rates of
all six sites. With this data we would accept the hypothesis

that the reliability is .95.

V. Conclusions and Further Research

We have modeled the situation in which the same internal
control processes are being applied to several different sites.
On the basis of our model we have developed a method of
stating an upper precision limit (u*) for all the sites at a
specified reliability (R). The interpretation of this
(u*,R) pair should be that we are R confident that no site
has an error rate which exceeds u*. The estimation procedure
was developed on the basis of logical auditing properties and
was not developed with any particular statistical property in
mind. However, we were able to show the statistical validity

of our reliability statement by using simulation. The
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simulation study indicated that when we set R = .95, our
procedure gave an upper precision limit that exceeded all
error rates approximately .95 of the time.

We have developed a procedure for stating an upper
precision limit for a single attribute when there are
multiple sites. This same procedure could be used indepen-
dently on more than one attribute; however, we believe that
there should be more research in the multiple attributes
case. In fact, very little work has been done for the

multiple attributes case when there is only one site.



