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A BAYESIAN APPROACH TO THE AUDIT PROCESS

Abstract

A problem in auditing is to combine qualitative evidence based on observ-—
ing the accounting system with quantitative evidence based on the results of
checking specific items for compliance and for subsequent recorded numerical
accuracy. This paper describes a Bayesian approach to this problem that models
and links the four sources of audit evidence: system evaluation, compliance
testing, substantive tests of details, and analytical review. The model is
developed for application to a single financial statement classification and
assumes low error rate populations. Calculated specific examples indicate the
responsiveness of the model to changes in prior settings and sample

observations.

KEY WORDS: Auditing; Bayesian model; Compliance test; Posterior distribution;

Substant ive test.






1. INTRODUCTION

In an ordinmary external audit of a corporation an independent certified
public accounting firm examines the corporation's financial statements. The
examination provides information on the records and activities of the corpora-
tion which allow the external auditor to express an opinion about the fairness
of the financial statements. Financial statements are made up of various com-—
ponents. For example, the asset side of a balance sheet is a listing of the
amount of cash, accounts receivable, inventory, and other components. We term

each of these components a financial statement classification. In turn, any

single financial statement classification is an aggregate of individual
accounts or line items. For example, the accounts receivable classification
is the sum of the amount owed by all active customers to the corporation being
audited. The objective of this report is to present and analyze a Bayesian
model for the process of auditing such a financial statement classification.

If the auditor determines that the corporatioq's financial records are
fairly stated, and there are no unusual activities that might jeopardize this
situation, the auditor gives an unqualified opinion. There are other cases, of
course, in which the auditor gives a qualified opinion. One possible reason
for this is that one of the financial statement classifications has been found
to be in error by more than what is considered a material amount. It follows
that an unqualif ied opinion implies that none of the financial statement class-
if ications is thought to have a material error. We therefore restrict our
attention to the auditor's decision to render an unqualified or qualified
opinion about the recorded amount in a single financial statement

classification.



In the next section we describe a sequence of procedures used by auditors
to accumulate information concerning a financial statement classification.
These audit procedures are defined so that they can be modelled in a Bayesian
framework. We refer to this sequence of audit procedures as the audit process.
At the end of the second section we discuss briefly other Bayesian approaches
to the audit process that have appeared in the literature.

In section 3 a general Bayesian model for the audit process is presented.
The symbols are defined, the assumptions are stated, and the general relation-
ships of the model are given. The total monetary error of the financial state-
ment classification being audited is defined as a function of (i) the error
rate of the individual line items and (ii) the error amount as a percentage of
the recorded amount, termed the fractional error.

Section 4 provides analyses of the component parts of the general model.
These analyses are within the Bayesian model and are based on the information
collected via the audit process.

This Bayesian model and analysis give a comprehensive description of the
aud it process by incorporating the various sources of information available to
an auditor. By using the model as a framework the auditor can structure the
process by which an opinion is formed and coherently revised, on the basis of
information gathered via the audit process. In the concluding section we

illustrate these consequences by giving two examples of the use of this model.

2. THE AUDIT PROCESS

The second and third standards of fieldwork for auditing (Codification of

Statements on Auditing Standards [1982]) state the following:

(1) There is to be a proper study and evaluation of the existing
internal control as a basis for reliance thereon and for the
determination of the resultant extent of the tests to which
auditing procedures are to be restricted.
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(2) Sufficient competent evidential matter is to be obtained

through inspection, observation, inquiries, and confirmations

to afford a reasonable basis for an opinion regarding the

f inancial statement under examination.
These two standards require that the external auditor employ some procedures
to gather infofmation or evidence on which to base an opinion. The second
standard of fieldwork refers to the system of internal control which generates
the financial quantities and provides checks on the accuracy with which these
numbers are generated. The third standard of fieldwork requires that suffici-
ent competent evidential matter be collected. This is usually interpreted to
mean that some of the monetary values that comprise the financial statement
classification total must be audited.

However, these standards do not specify what procedures should be used.
Various accounting firms and other researchers have specified audit processes
that conform to these standards. Loebbecke (1981) gives a general outline of
an audit process consisting of three phases (planning phase, system testing
phase, and financial statement phase), and lists\the audit activities in each
phase.

The audit process we employ is more specific and was developed in a manner
that makes it compatible with Bayesian modelling. The audit process is
applicable to a single financial statement classification and emphasizes the
use of sampling. However, this process and the resulting Bayesian model also
accommodate nonsampling information and provide linkage between the various
forms of information collected.

Evidence or information extracted from the audit process can be classified
according to whether it impacts the system of internal control or the balance
of the financial statement classification. The evidence is considered direct

if it is either (i) a compliance attribute observed in testing the control
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system or (ii) a monetary amount observed in the substantive test of balances.
Other%ise the evidence is considered indirect. Each of the four procedures
that comprise our audit process will be classified with respect to whether the
evidence it provides is direct or indirect and whether it relates to the system
or balances.

The four audit procedures that comprise the audit process are:

1) system evaluation,

2) compliance testing,

3) substantive test of details, and

4) analytical review.

System evaluation consists of the observation of the internal control
system, the inquiry about the control system, and the auditor's resulting sub-
jective judgment as to the effectiveness of the internal control system in pre-
venting or detecting material errors. As such, the type of evidence it pro-
vides is indirect with respect to both the system and the balance.

Compliance testing is concerned with the application of the internal con-
trol procedures. It consists of specifying key control procedures and then
sampling individual items to see if the control pfocedures were properly
applied. The results of compliance testing give direct information about the
system but indirect information about the details of the monetary balance.

The third audit procedure we consider is the substantive test of details.
This test consists of sampling the line items in a financial classification for
the purpose of noting whether or not the recorded monetary amount is in error
and, if so, by how much. Therefore, the results of this test provide direct
information about the details of the monetary balance.

The last audit procedure we consider is analytical review. Analytical

review consists of comparing financial statement balances with other sources
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of financial data. The other sources may be prior periods, budgeted amounts,
or industry statistics. These comparisons are incorporated into the audit
process for the purpose of providing information about the reasonableness of
the recorded balance. As such, analytical review provides indirect information
about the balances

These four audit procedures comprise our description of the audit process.
In the next section we present a general Bayesian model that incorporates these
procedures into the formation of an audit opinion.

Previous reports in the literature have applied Bayesian decision theory
to some or all of the steps of the audit process. For example, Kinney (1975a)
presenté a Bayesian model for the substantive test of details based on a
hypothesis—-testing structure. The model assumes that the test statistic is
normal and combines a cost function for sampling with constant losses due to
conclusion errors in the hypothesis test. The objective is to specify the
sample size needed for the substantive test of details and to state the conclu-
sion on the basis of the sampled data. Kinney concludes that "the decision-
theory approach provides a more complete consideration of relevant factors in
the auditor's sampling problem than do other dollar-value sampling approaches.”

In a follow-up paper Kinney (1975b) provides a decision theory model which
integrates system evaluation, compliance testing, and substantive test of
details. Therefore, the goals of his work and the work reported in this paper
are similar, but the component models and method of final conclusion are dif-
ferent. Again, Kinney uses a hypothesis-testing structure for the final con-
clusion concerning faif statement. The output from the compliance test phase
is a two-point distribution over the two hypotheses. The compliance test is
modeled using the binomial distribution for the number of observed errors. The

combination of systems evaluation and compliance testing is discussed in



general, but only a simple model is presented in an example. In the example
Kinney assumes the compliance rate to be one of eight values ranging from .86
to 1.0. The probability link to the hypothesis test of details is given by
multiplying an assessed system evaluation reliability times the compliance
rate, posterior to the compliance éesting. He states that the choice of this
model is "difficult to justify” and that it has been used for simplicity of
presentation. The system—evaluation compliance-testing part of our model has
been arrived at by considering the components that cause an error. We also
link the compliance error rate to the substantive error rate.

Felix and Grimlund (1977) use a Bayesian approach to model the substantive
test of details. In order to provide a posterior distribution on the total
monetary error they assume a binomial distribution for the number of errors
observed and a normal distribution for the size of an error conditioned on its
existence. Conjugate priors, beta for the error rate and normal-gamma for the
size, are used. The Felix-Grimlund approach is similar to our model of the
substantive test of details. However, we employ the methodology of Cox and
Snell (1979) which models explicitly for the small error rates typical of many
guditing populations.

In another Bayesian decision theory approach, Scott (1973) considers the
substantive test of details, but his sampling unit is "all transactions proc-
essed in a single day."” This approach to sampling does not seem amenable to
most auditing situations. Neither Felix and Grimlund nor Scott attempt to link
the results of systems evaluation and compliance testing directly with sub-
stantive tests of details. Of course, the prior distributions which they
employ as inputs into the substantive test of details are supposed to contain
in a subjective form the information attained during system evaluation and com-

pliance testing. The model we are proposing provides a direct link.
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3. GENERAL BAYESTIAN MODEL OF THE AUDIT PROCESS

The sources of audit information must be combined to allow the auditor to
form an opinion. In order for the process of combining these sources to be
coherent, the probabilities must be revised according to Bayes' theorem. The
purpose of this section is to describe the general Bayesian model and to define
the symbols and notation. As stated in the introduction, the auditor wishes
to make a statement about the total error in a single financial statement
classification.

The notation and format of presentation used to develop the model for the
total error will follow those used by Cox and Snell (1979) and by Moors (1982).
Consider a finite population of N items in which each item i has a known

N

recorded value Xi > 0. Let TX = z Xi be the total recorded value. The
i=1

th jtem is Xi - Yi’ and therefore the amount of error

audited value of the i

th

in the i*" item is given by Yi. We assume O S-Yi S_Xi. Therefore, this

model is restricted to overstatement errors.

N
Let Ty = X Yi be the total error in the finite population. Define
i=1
di _)1 if Yi £ 0,
0 if Y, = 0.
i
N N
Then T d = Z d .X. is the total of the recorded items in error, and M = z d,
S I | S
is the number of items in error.
We define
Yi
Zi ='}_(_ i=1’ 2, e e 0 N, (3.1)
i

so 0 < Zi's 1, and Zi = 0 if and only if di = (0. For those M items with di =1
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we assume that Zl’ ZZ’ «e+ , 2 is an independent, identically distributed

M
realization from the conditional distribution f(z|d=l) with E[Z|d=1] = U

For all i, we assume that

P[Y, > 0] = P[Y, > olxi] = ¢ (3.2)
That is, the probability that an item is in error (represented by ¢) is con-
stant and is independent of the recorded value Xi' Consistent with most audit

populations we assume that the value of ¢ is small.

These definitions enable us to write the defining equation:

which says that

total error in population = (proportion of recorded monetary value
in error) x

(total fractional error) x
(recorded total).
Since most audit populations have many items (i.e., N is large), we will use
the‘followiné limiting arguments:
Txd Ty
T_H ¢ and T—% I,
X xd
and, therefore,
T, —> $uT_.
We will focus attention on ¢uTx since this parametric representation lends
itself to a Bayesian analysis.

To aid in the presentation of the general model we define:

SE = the evidence obtained from the system evaluation,

CT = the evidence obtained from the compliance test,

ST = the evidence obtained from the substantive test, and
AR = the evidence obtained from the analytical review.



Since the two quantities of interest are ¢ and p, we will construct a joint
posterior distribution of these quantities given the first three sources of
information listed above which we write as f£(¢, uISE, CT, ST).

In this paper we will not explicitly model the information from analytical
review, which is considered to be a source of information available after the
other three sources. This is consistent with the audit process model formu-
lated by Loebeckke (198l). Both the substantive test and the analytical review
pertain to the final monetary values in the financial statement classification;
therefore, the order in which they are executed is a matter of choice and judg-
ment on the part of the auditor. Our formulation is for the convenience of the
model development. In the concluding section we comment briefly on how the
information from analytical review could qualitatively revise the posterior
distribution derived.

In modelling £(¢, u]SE, CT, ST) we link together an error rate model
and the Cox-Snell (1979) model for the substantive test. The error rate model
uses system evaluation (SE) and compliance testing (CT) as sources of informa-
tion and provides as output a distribution on ¢, the error rate. This dis-
tribution on ¢ is then used as part of the prior distribution input to the
Cox-Snell model. The other part of the input is a prior distribution on y,
the mean fractional error. The output from the Cox-Snell model is a posterior
distribution on the product, ¢u.

Figure 1 is a block diagram of our general model. The four sources of
audit evidence are presented in the order in which they become available. 1In
addition, there is a block which represents the error rate submodel. The

specifics of the three inputs to that submodel will be discussd in the next

section.
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Notice that we require that four prior distributions be formed out of the
system evaluation. Three are on components of the error rate and the fourth,
f(u|SE), is a prior on the fractional error. The compliance test provides
updating information on the quantity (a), which represents the percent of
erroneous accounts to which the internal control system was not applied. The
substantive test of details updates both ¢ and p. Finally, the indirect
information available from the analytical review revises the distribution on
duTX.

We now concentrate on the modelling aspects that enable us to find the
posterior distribution f(¢, uISE, CT, ST). We can write

£(¢, n|SE, CT, ST) « £(ST|¢, u, SE, CT) £(CT|¢, u, SE) £(¢, u|SE). (3.3)
To simplify the right-hand side of (3.3) we make three assumptions, all of
which are reasonable in the context of the audit process. First, we assume |
that the prior distribution of ¢ and u are independent conditional on SE,
i.e.,

£(¢, u|SE) = £(¢|SE) £(u[SE). (3.4)

This independence of the error rate and the fractional error is true if we
assume the error rate to be a constant, ¢, as in (3.2).

The compliance test yields information about the error rate and does not
contain monetary information. Therefore, as our second assumption we write

£(CT| ¢, u, SE) = £(CT|¢, SE); \ (3.5)
that is, conditional on ¢ and SE, the compliance test (CT) is independent of
u.

The third assumption is that given ¢ and p the substantive test (ST)
is independent of both the system evaluation (SE) and the compliance test (CT),
that is,

£(ST|¢, u, SE, CT) = £(ST|¢, n). (3.6)
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Using (3.4), (3.5), and (3.6) we can rewrite (3.3) as
£(¢, u|SE, CT, ST) « £(u|SE), £($|SE, CT) £(ST|¢, w). (3.7)
The right-hand side of (3.7) has three components which must be modelled. The

next section presents our model for each component.

4, COMPONENTS OF THE BAYESIAN MODEL

The three terms on the right-hand side of (3.7) will now be modelled to
take into account the source of audit information. Both f(u|SE) and f(ST|¢, u
will be modelled as in Cox and Snell (1979). The term f(¢|SE, CT) will be
modelled by considering three components of error which combine to form the
error rate of interest, ¢, as proposed by Thompson-McLintock (1982). The
importance of our treatment of this problem is not so much the manner in which
we model the components of (3.7) but the way in which these components 1link

together to give the auditors a meaningful posterior distribution.

4.1 Prior Distribution of the Fractional Error Rate: f(uISE)

Cox and Snell (1979) assume an inverse gamma distribution for y,

bg(b=1) uo(b-l)’b—l exp {=(b-1) / u}

£(u[SE) =

b

uz u $ I'(b)

where E[u] = u The support of this distribution is [0,«], but under

0
our model the permissible values for p are [0,1]. However, the parameters
Ho and b can be chosen to make P[u > 1] arbitrarily small.

In an attempt to make the notation of Cox and Snell easier to read, Moors

(1982) defines X = u—l and then assumes that A ~ T'(a,B);

ice., £(A|SE) = g1 LB

/T(a) , for A > 0. (4.1)
This is equivalent to Cox and Snell's distribution assumption on y, with

a=b and B=u0(b—1). The support of (4.1) is [0,«], but the permissible
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values for A are in [l,~]. This will not cause problems if (a,B) are
such that P[A < 1] is small.

It is easier to make a subjective assessment about the values of y,
since it is the fractional error rate, than about A. Since E(p) = Ho»
S.D.(n) = uo/(b—Z)l/z, we require the auditor to specify the values of
the mean and standard deviation of p after assessing system evaluation.
These values determine "y and b and hence o and B.

Since we are now using the inverse of the mean fractional error, A,

instead of p, we will rewrite (3.7) as

£(¢, A|SE, CT, ST) =« £(ST|¢, A) £(¢|SE, CT) £(A|SE). (4.2)
The limiting total error, on which we wish to focus, is then given by %-TX.

4.2 Prior Distribution on Error Rate: f£(¢|SE, CT)

In order to develop this component we will discuss how errors are gener-
ated and how they are detected by the internal control system. We follow the
definitions given by the chartered accounting firm, Thompson-McLintock (1982).

Inherent Error Rate (i). When an account balance for a line item is

generated there is a possibility that it will be generated wrongly. Define

the inherent error rate (i) to be the proportion of items that are generated

in error.

Application Error Rate (a). The population of account balances will be

subjected to the internal control procedures. However, these procedures will
not be applied to all of the accounts. When sampling an account balance line
item, an auditor can tell if the internal control procedures have been applied.
Whether or not these procedures have been applied is an audit definition which
must be specified by the auditor. We define the application error rate to be

the proportion of the accounts which are in error that have not had the
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internal control procedures applied to them. Notice that this definition
includes only those items in error. The significance of this assumption will
be discussed below when we update our knowledge about (a) on the basis of the
compliance test (CT).

Detection Error Rate (d). Even when the internal control procedures are

applied to an account in error, it is not the case that they will neceésarily
detect the error. Consider all the accounts which are in error and to which
the internal control procedures have been applied. Then, the detection error
rate (d) is the proportion of those accounts for which the error is not
detected.

Residual Error Rate (¢). We have been referring to this error rate

without the modifier residual. It is the proportion of accounts that remain in
error, and is therefore the error rate that exists at the time of the substan-
tive test of details. Residual errors can occur in two different ways. (1) An
inherent error can occur in an account to which the internal control procedures
are not applied. The probability of this occurring is given by (ia). (2) An
inherent error cén occur in an account to which the internal control procedures
are applied but the error can go undetected. The probability of this occur-
ring is given by (i(l-a)d). Therefore

) =’ia + i(l-a)d = i(a +d - ad). (4.3)

Figure 2 is a schematic diagram of the methodology we prescribe to deter-
mine f(¢|SE, CT). On the basis of the system evaluation, the auditor must
specify the mean and standard deviation of all three basic error rates: (i),
(a), and (d). These values are des ignated ui, oi, ua, oa, ud, Gd'

As stated earlier, the compliance test (CT) provides information about the

application error rate (a). The compliance test is a sample from all of the
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accounts, not just those in error; therefore, in order to use the sample infor-
mation from CT to update (a) we assume that the probability that the’ internal
control procedures will not be applied to all accounts is the same as the prob-
ability that they will not be applied to erroneous accounts, which is (a).

The application error rate, (a), is assumed to be small, since auditors
would not extend the effort to sample procedures which they did not believe
were highly reliable. Let R be the number of application errors observed in
the compliance test based on a sample of size k. Then we assume R ~ Poisson

(ka), that is,

-k
P[R=r] = e a(ka)r/r!, for r = 0,1,....
We use the conjugate prior for the Poisson so that (a) ~ I'(e,z). Equat-
ing the moments of the gamma distribution to the mean and variance assessed on

(a) we have

2, 2

€ = ualoa ,
2
g = ua/oa-

Then, based on the compliance test, the posterior distribution of (a) given R=r

is
2 =2 -2
F[uaoa +r, uaca + k).

So the posterior mean and variance of (a) are given by

2

2 -2 -
Hyo = (ujo = + r)/(uaoa +k) , and

al
2,2 =2 -2 2
(0,4)" = (uaoa + r)/(uaoa + k)7,

where substituting the value (a') for (a) indicates that it has been updated

via the compliance test.

We now use (4.3) to find p, and o2. Under the assumption that (i),

¢ ¢

(a'), and (d) are independent it can be shown that:

Efi(a’™ d - a'd)] = w;[u, +uy - Wbyl s
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and
2 2 22 2 2
st —at =
Var[i(a'™ d —a'd)] = 630,y g vg ¥ W%y gearg ¥ Mty goard®o
where
2 2 2
ca1+ d-a'd 1(1 ud) + 0 (]- U ) + o a! d'

Therefore, we can set y, = E[i(a'+d - a'd)] and 02 = Var[i(a't d - a'd)].

¢ ¢
Furthermore, we assume that ¢ ~ I'(y,8), with
Y = CH
¢ ¢
and
§ = /0
Yo/ %%

This gamma distribution provides the component f(¢|SE, CT).

4.3 The Likelihood of the Substantive Test f(ST‘¢, u)

This component incorporates the sample information from the substantive
test. We work with A=u—1 and adopt the same assumptions as Cox and Snell
(1979) and Moors (1982).

A sample of n accounts or line items is selected at random from the finan-
cial statement classification being audited. Each selected item is audited for
the correctness of its recorded monetary value. If an item is in error, the

fractional error Zi is noted where Zi is defined by (3.1). Given that an item

is in error, we assume that Zi is exponentially distributed with parameter A,

- _a."AZ
f(zi|di—l, A) =2e 15z, > 0.

Let m be the number of items observed to be in error out of the n sampled.
We assume m is Poisson with mean n¢. Define

m
§ Z

i=1
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If the Zi's are assumed independent, then Z ~ I'(m,A). It then follows that

£(ST|¢, A) = £(m, Z|¢, 1)

£(Z|m, A) £(n|¢)

I'(m,A) x Poisson (n¢).

me-n¢xme—XZ

¢

]

.

4.4 Combining the Components
Based on the modelling of the three components of the right-hand side of
(4.2) we can write

yin-l _=(§tn)¢ jotm-1 ~(BH2))

£(¢, A|SE, CT, ST) « ¢ (4.4)

Since we wish to focus Qn the limiting total error, ¢A_1TX, we define
the total fractional error ¥ ;1¢X . From the posterior distribution (4.4)
we see that ¢ and A have independent gamma distributions; that is, if
£(¢, A|SE, CT, ST) ~ I‘¢(Y+m, §+n) x I (atm, B+Z). It then

follows that

(64n) (atm)
(y+m) (B+Z)

V ~ F[2(ytm), 2(oim)].

As can be seen there are seven constants that define the posterior dis-
tribution of V{, namely a, 8, Y, §, n, m, and Z. In Table 1 the
sources of these seven quantities are summarized. In the next section various

cases are considered and measures of the resulting posterior distributions of

Y are discussed.

5. EXAMPLES AND CONCLUSIONS
In this concluding section we demonstrate the model and comment on the
results. To develop the examples we must set prior parameters and specify the

sample results from both the compliance and substantive tests. We consider
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three cases (A,B,C) for the settings of the prior parameters and two cases
(I,I1) for the sample results. This gives six examples to compare.

Case A represents the situation in which the auditor believes before the
sample is taken that there are few errors in the population. This is the most
typical case because the auditor is often using the sample results to reinforce
the strong belief that the account is fairly stated. Case B gives settings for
prior parameters that indicate a lack of knowledge about the size of the error
rates. In this case the prior means are all set at .5. In Case C the priors
are set to indicate the auditor's belief that the error rates are high.

Sample data I typifies the auditing situation in which no errors are
found. With sample data II we find errors at both the compliance stage and
the substantive stage. Table 2 gives the values of the prior settings, the
sample data, and resulting measures of the posterior distribution of the total
fractional error, .

The values Pu(u=.10,.05,.01) give the probability that no more than a
proportion u of the recorded value of the financial statement classification is
in error. These measures are valuable to the auditor because they will provide
support that a statement is fair if the total error is no more than some per-
centage of the total recorded'value, that being the way materiality is often
def ined.

The other measures reported in Table 2 are the ninetieth, ninety-fifth,
and ninety-ninth percentiles of the posterior distribution of {. These
values give the upper limit of the one-sided posterior credibility intervals
on the total fractional error.

As can be seen from Table 2, a larger proportion of the distribution of
Y is close to zero for sample data I than for II. This is coherent since

sample T showed no errors. Also, going across that table from case A to B to
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C, the mass of the posterior distribution of { moves away from zero. Again,
this is coherent since the prior settings of case A are closest to zero and
those of case C are furthest away from zero.

On the basis of these six examples, as well as other passes through the
model not explicitly reported, we conclude that the model is responsive to
changes in the prior assessments and to alternative data sets. For example,
consider the situation in which an auditor has decided that a 5 percent over-
statement can be tolerated and that he/she is willing to run a 10 percent risk
on this part of the audit. This willingness to have a 10 éercent risk may
result from having run or planning to run other supplementary procedures such
as analytical review. This is consistent with professional standards as given
in the "Statement on Auditing Standards, Number 39" (1981). From Table 2 both
samples under case A would allow the auditor to conclude that the financial
statement classification is fairly stated, since ¢.90 equals .000 and .048.
Under case B the error-free data allows the same conclusion (?.90=.OO6); how-
ever, the sample data II case indicates a fractional error rate of 5.4 percent
at the 90 percent credibility level, which may not be acceptable.

In our model the evidence from analytical review is incorporated after the
substantive test of details (see Figure l1). This evidence consists of compar-
ing the financial statement classification balance with other sources of finan-
cial data. We are suggesting that the analytical review evidence should be
used subjectively to revise the posterior distribution on ¢uTX, the total
monetary error.

The analytical review evidence will either confirm or conflict with the
decision that would result using f(¢uTX|SE,CT,ST). If the evidence is con-

firmatory, it serves to strengthen the final conclusion. On the other hand, if



-1 9_

the analytical review evidence is conflicting, the various sources of evidence
must be judgmentally weighed to reach a final conclusion.

In conclusion, we have developed and demonstrated a Bayesian model which
links the prior assessments, the compliance test, and the substantive test.
The model is responsive to changes in prior settings and to the sample results.
This model incorporates all aspects of evidence gathering in the audit process.
The formal analysis should be a guide to auditors in analyzing sample pro-

cedures on a single financial statement classification.
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Table 1. Summary of the Sources for the Posterior Parameters

Source
Posterior
Parameter System Evaluation Compliance Test Substant ive Test
o Assessed by auditor
B
Y u.,o%,u ,02,u ,02 k = sample size
i i a a da d
8 Assessed by auditor|r = number of errors
n n = sample size
m m = number of errors
z z = sum of the fractional

errors
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Table 2. Examples of the Posterior Distribution of the Total
Fractional Error ()2
Prior Parameters
Case Case Case
A B C
u“=.5 uu=.5 uu=.9
0 =.5 0 =.5 o =.3
M u u
IJi=pa=ud—'1 Hi=Ha ™M™ > L 9
979,79~ 3 947%7%" > 937% 7% 3
P 10 = 1.000 { P 10 = 1.000 { P 10 = .873
P.05 = .999 P.OS = .998 P.OS = L,458
Sample P = 999 | P = ,952 | P = .006
o .01 .01 01 7
I = = =
k=100, r=0 V.90 = 000 | ¥ g5 = 006 ¥4, = .108
n=60, m=0 Vg5 = <000 |y o= 010 f o = .13
Vg9 = 001 |y go= .025| ¢ 5= .187
P 0 = .986 | P 0= 981 | P 10 = .656
Sample P o= .907 | P .= .883|P .= .158
Dara .05 .05 .05
11 Py = 289 | P, = .227|P ., = .000
k=100’ r=5 -01 001 001
n=60, m=2 = = =
/1% Voo = 048 | ¥ gq = 054 [ g = .151
z2=0.8 Vg5 = 064 |y o= 071 |y o = .178
Vg = L1l | ¥ g9 = 121 o= .244

a(Pu = P[y < ul; wp is the pth percentile)



