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ON THE ANALYSIS OF MULTITRAIT-MULTIMETHOD MATRICES
IN CONSUMER RESEARCH

ABSTRACT

This paper examines alternative procedures for analyzing multitrait-multimethod matrices: the
Campbell-Fiske procedure, confirmatory factor analysis, and the direct product model. The implicit
assumptions, as well as strengths and weaknesses, of each approach are presented and the implications
discussed. It is proposed that one should carefully examine model assumptions, individual parameters,
various diagnostic indicators, as well as overall model fits. The implications of these recommendations
are illustrated through reanalyses of data from earlier studies of consumer behavior. Potentially
misleading conclusions in these studies are corrected in demonstrating the procedures. The results
show that methods often have multiplicative effects, supporting the direct product model which has not
been used in consumer research before. The use of multiple-method, multiple-measure approaches is
 also advocated by highlighting the limitations of single-method, single-measure approaches in theory

testing.
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Any measure often reflects not only a construct of interest but also measurement error.
Measurement error occurs commonly in practice and is recognized as a serious problem throughout the
social sciences (e.g., Fiske 1982; Peter 1981). The problem of measurement error is especially serious
in consumer research "because the majority of measures used are based upon constructs that are
abstract and difficult to measure” (Cote and Buckley 1988, p. 579). Cote and Buckley (1987) have
indeed shown that abstract constructs are more difficult to measure and more prone to measurement
error than concrete constructs; for example, measurement error accounted for 70 percent of variance in
attitude measures. Therefore, it is important to understand the implications of measurement error in
consumer research.

Measurement error can be partitioned irito random error and systematic error such as method
variance. Method variance refers to variance attributable to the measurement method rather than to the
construct of interest. The term "method," which refers to the form of the measurement, is used in a
broad sense that encompasses potential influences at different levels of abstraction such as the content
of specific items, scale type, response format, and the general context (Fiske 1982, pp. 81-84). For
example, methods can be specific to an item (e.g., item wording), similar to specific or unique factors
in classical test score theory but different from common method factors (e.g., scale types). Ata more
abstract level, method effects might be interpreted in terms of response biases such as halo effects,
social desirability, acquiescence, leniency effects, or yea-nay saying.

Each of the two measurement error components can have serious confounding influences on
empirical results and yield potentially misleading conclusions (e.g., Campbell and Fiske 1959). Cote
and Buckley (1988) discuss such effects of measurement errors in the context of consumer research.
Random error tends to attenuate the observed relationships among variables in statistical analyses.
Consequently, errors in inference, especially Type II errors, are likely to occur in the presence of
random error. In statistical analyses with simultaneous equations, random error can result in Type I as
well as Type II errors (Bagozzi 1990).

Method variance may also bias results by inflating or deflating the correlations among
constructs. More specifically, method effects inflate the relationship between two measures when the
correlation between the methods is higher than the observed correlation between the measures with

method effects removed. This fact suggests that the use of similar or highly correlated methods tends
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to inflate the correlation between constructs. Especially when the same method is used to measure
different constructs, shared method variance would always inflate the observed correlation because the
correlation between the methods is 1.0 (which will be higher than any possible correlation between the
measures). In contrast, method factors will attenuate the observed relationship when the correlation
between the methods is lower than the observed correlation between the measures with method effects
removed. However, the observed relationship will not be affected by methods when the correlation
between the methods is the same as the observed correlation between the measures (see Cote and
Buckley 1988 for more details). In sum, the observed relationship between measures is contaminated
by measurement errors (i.e., random error and method factors) that are irrelevant to the construct but
inevitable in most measurement situations.

Since contamination due to random error and method factors provides potential threats to the
validity of research findings, it is important to validate measures and disentangle the distorting
influences of these errors before testing theory. This can be achieved by using multiple measures and
multiple methods in measurement (Campbell and Fiske 1959). The triangulation so produced permits a
decomposition of information into that due to a theoretical phenomenon of interest, method effects, and
random error. Using a single measure does not permit one to take measurement error into account in
analyses. Likewise, with a single method one cannot distinguish trait (i.e., substantive) variance from
unwanted method variance, because each attempt to measure a trait is contaminated by irrelevant aspects
of the method employed.

Given multiple measures obtained with multiple methods, construct validity can be assessed
with the multitrait-multimethod (MTMM) matrix, the correlation matrix for different concepts (traits)
when each of the concepts is measured by different methods. That is, the MTMM matrix allows
researchers to assess the extent of true relationship among traits in the presence of both method variance
and random error. Typically construct validity is defined broadly as the extent to which an
operationalization measures the concept that it is supposed to measure (Peter 1981). Campbell and
Fiske (1959) proposed that two aspects of construct validity should be assessed in the analysis of
MTMM data: convergent and discriminant validity. Convergent validity is the degree to which multiple
attempts to measure the same concept are in agreement. Discriminant validity is the degree to which

measures of different concepts are distinct. Without determining construct validity with multiple
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measures and multiple methods, one cannot estimate and correct for the confounding effects of random
error and method variance, and the results of theory testing may be ambiguous.

Despite the importance of construct validation, the MTMM design has been used infrequently in
consumer research. Only a few studies could be found in the Journal of Consumer Research since its
inception 17 years ago (e.g., Foxman, Tansuhaj, and Ekstrom 1989; Seymour and Lessne 1984).
Also, very few related consumer research studies can be found in the Journal of Marketing Research
over the 26 years of its life (e.g., Arora 1982; Menezes and Elbert 1979).

What accounts for the dearth of application of MTMM designs in consumer research?
Undoubtedly one explanation is the difficulty in obtaining multiple measures of each concept in one's
theory and using different methods to do so. A second reason might be that consumer researchers do
not fully appreciate the consequences of failing to use multiple measures or multiple methods (i.e.,
attenuation due to unreliability or confounding due to method variance). Or they might believe that the
amount of method and error variance is minimal in typical research settings so that these consequences
will be negligible.

However, such a position is not justified according to empirical evidence. In the confirmatory
factor analysis of 70 published data sets from various disciplines, Cote and Buckley (1987) found that
measurement error is a serious problem in many research settings. On average, measures contained
41.7% trait variance, 26.3% method variance and 32% random error. That is, more than 50 percent of
the variance in measures was due to measurement error. Furthermore, significant method variance was
found for all but three of the studies examined. The results indicate that measurement errors are not
only prevalent but also relatively large. Similarly, in the confirmatory factor analysis of 11 data sets
from the organizational psychology literature, Williams, Cote and Buckley (1987) found that method
variance accounted for approximately 25% of the variation in measures. These findings raise serious
questions about the assumption of minimal measurement error.

Another reason for so little use of MTMM designs in consumer research, and the one primarily
addressed in this paper, is the absence of clear standards for analyzing and interpreting MTMM data.
The original criteria offered by Campbell and Fiske are both imprecise and overly restrictive. For
example, they fail to provide a quantitative estimate of the degree to which the requirements are met,

and assume that all measures have equal reliabilities. Other procedures such as confirmatory factor



4
analysis (CFA) and the direct product model (DPM) have not been systematically used or discussed in

an integrative way in consumer research. The result is that researchers know little about how and when
to apply these methodologies for analyzing MTMM data.

One purpose of the present paper is to provide consumer researchers with better insights as to
how to model and estimate the confounding influences of measurement error in substantive research by
introducing, comparing, and contrasting these procedures. For this purpose, we identify the implicit
assumptions and restrictions associated with each procedure, examine the extent to which they can be
met, explicate strengths and weaknesses, and discuss the implications for when one approach would be
more appropriate than the others. A second is to illustrate these procédures so that researchers can
understand how to apply them. In this regard, we demonstrate the procedures by reanalyzing data from
consumer behavior studies and correct potentially misleading conclusions in these studies.
Furthermore, we provide a detailed description of how to apply the methods (e.g., input specification
for the DPM). Another purpose is to show that the analysis of MTMM data is a complex process
involving a number of criteria and that numerous pitfalls need to be recognized. It is proposed that one
should carefully examine model assumptions, individual parameters, various diagnostic indicators as
well as overall model fits. Finally, we advocate the use of multi-method multi-measure approaches in
consumer research to overcome the limitations of single-method single-measure approaches by
highlighting the consequences of neglecting or not properly modeling measurement error in theory
testing.

THE CAMPBELL AND FISKE PROCEDURE

Campbell and Fiske (1959) specify four criteria for evaluating any MTMM. First, convergent
validity is achieved when the (monotrait-heteromethod) correlations between attempts to measure the
same concept with different methods are "significantly different from zero and sufficiently large"
(Campbell and Fiske 1959, p. 82). The next three criteria are necessary conditions for the
establishment of discriminant validity. Namely, discriminant validity is achieved when a) the
(monotrait-heteromethod) correlations between attempts to measure the same concept with different
methods are greater than the (heterotrait-heteromethod) correlations between attempts to measure
different concepts with different methods, b) the (monotrait-heteromethod) correlations between

attempts to measure the same concept with different methods are greater than the (heterotrait-



5

monomethod) correlations between different concepts measured with common methods, and ¢) similar
patterns of correlations result within each of the matrices formed by correlating measures of different
concepts obtained by the same methods and by correlating measures of different concepts obtained by
different methods. See Browne (1984) for a discussion on the implications of these criteria for
modelling trait and method effects.

A number of problems can be identified with Campbell and Fiske's criteria (e.g., Peter 1981;
Widaman 1985). First, no precise standards are provided for ascertaining when any particular criterion
is met. Instead, only rules of thumb are offered which depend on a qualitative assessment of the
number of confirming and disconfirming incidents in the MTMM. Second, it is not possible to assess
the separate amounts of trait, method, and random error in the data. Rather these are all confounded by
examining only the raw correlations. Third, the following assumptions are implicitly made: "there are
no correlations between trait and method factors; all traits are equally influenced by method factors; and
...method factors are uncorrelated” (Schmitt and Stults 1986, p. 2). The latter two assumptions are
frequently violated, and even the first may not hold under particular conditions discussed later in the
paper. Each of these problems limits the usefulness of Campbell and Fiske's procedures for assessing
construct validity. We turn now to a method that overcomes the first two problems and the last two
parts of the third.

CONFIRMATORY FACTOR ANALYSIS
The general form for the CFA model applied to the MTMM can be expressed through two sets

of equations (e.g., Werts, Joreskog, and Linn 1972):

r
e 1+ 0

L=Apthr+ ..M,.M~M+e @
where y is a vector of r x s measures for r traits by s methods, A and Ay are factor loading matrices

for traits and methods, respectively (defined below), T and 1y are vectors of r traits and s method
factors, respectively, € is a vector of residuals for Y, § is the implied covariance matrix for Ys ‘I:T and
‘I:M are intercorrelation matrices for traits and methods, respectively, 9 is the vector of unique variances
for €, 1}1' = [_‘}1' {_\2, s ./_\',]', éi is a diagonal matrix with factor loadings corresponding to the

measures of the i-th trait, and



1>
p—

=]
1o

)
>
[\ 8]

1O

0

000 ]
where é. is a vector of factor loadings corresponding to the measures obtained by the j-th method.
Application of the CFA model to MTMM data permits one to test for, and partition variance into, trait,
method, and random error. These reside, respectively, in the squared factor loadings for I}T and 1}M
and in 9

Following Widaman (1985; see also Cote and Buckley 1987), four CFA models can be tested

and compared to yield meaningful tests of hypotheses:

Model 1: the model hypothesizing that only unique variances are free (termed the null model).
This model implies that variation in measures is explained only by random error (no
trait or method factors).
Model2: the model hypothesizing that variation in measures can be explained completely by
traits plus random error (termed the trait-only model).
Model 3: the model hypothesizing that variation in measures can be explained completely by
methods plus random error (termed the method-only model)
Model 4: the model hypothesizing that variation in measures can be explained completely by
traits, methods, and random error (termed the trait-method model).
Model 4 is, in fact, the hypothesis implied by Equations 1 and 2. This model implies that both trait and
method factors are needed to explain the variance in the measures. Models 1-3 are special cases formed
by constraining certain parameters of Model 4. The null model is nested in both the method-only and
trait-only models, whereas the method-only and trait-only models are nested in the trait-method model.
Consequently, chi-square difference tests can be used to test whether trait, method, or trait and method
variance are present. Specifically, a test of trait variance is provided by comparing chi-square tests
between Models 1 and 2 and between Models 3 and 4. Similarly, a test of method variance is provided
by comparing Models 1 and 3 as well as Models 2 and 4. Only the trait-only and trait-method models
have a substantive interpretation. The null and method-only models are used simply for statistical

comparison purposes in tests of hypotheses.



7

The advantages of the CFA approach over Campbell and Fiske's criteria are a) measures of the
overall degree of fit are provided in any particular application (e.g., the chi-square goodness-of-fit test,
adjusted goodness-of-fit index, root mean square residual, and standardized residuals), b) useful
information is supplied as to if and how well convergent and discriminant validity are achieved (i.e.,
through chi-square difference tests for hierarchically nested models, the size of factor loadings for
traits, and the estimates for trait correlations), and c) explicit results are available for partitioning
variance into trait, method, and error (assuming that traits and methods are independent following the
convention in previous research). Thus, the CFA approach provides more diagnostic information
about reliability and validity, compared with Campbell and Fiske's criteria.

One key aspect of the CFA approach can be identified that potentially limits its usefulness. This
limitation stems from the assumed structure of the model. The CFA model hypothesizes that variation
in measures will be a linear combination of traits, methods, and error. That is, traits, methods and
error are presumed to have additive effects on measures in the CFA model. This assumption may be a
reasonable one such as when the effects of sharing a method do not vary with trait factors. In certain
contexts, however, traits and methods may interact in the determination of measure variation. Let us
examine the processes that can produce the interaction between methods and traits.

One process is called differential augmentation (Campbell and O'Connell 1967, 1982).
According to this view, the multiplicative relation occurs such that “the higher the basic relationship
between two traits, the more that relationship is increased when the same method is shared” (Campbell
and O'Connell 1982, p. 95). A conventional position is that method factors add irrelevant systematic
(method-specific, trait-irrelevant) variance to the observed relationships. That is, sharing a method is
expected to increase the correlations between two measures above the true relationship (e.g., halo
effects and response sets). However, not all relationships are exaggerated by sharing the method, but
only relationships that are large enough to get noticed are likely to be exaggerated. Suppose, for
example, that ratings are used as methods (Campbell and O'Connell 1967). Each rater might have an
implicit theory about the co-occurrence of certain traits, which will lead to a rater-specific bias. In such
cases, the stronger the "true" associations are between traits, the more likely they are to be noticed and

exaggerated, thus producing the multiplicative method effect pattern.
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Another possible process underlying the multiplicative method effects is differential attenuation
(Campbell and O'Connell 1967, 1982). Campbell and O'Connell (1982) pointed out that "not sharing
the same method dilutes or attenuates the true relationship, so that it appears to be less than it should
be" (p. 95). That is, methods are seen as diluting trait relationships rather than adding irrelevant
systematic variance. This view asserts that not sharing a method attenuates the observed correlations
differently, depending on the level of true trait relationships. Campbell and O'Connell 1982 (pp. 100-
106) provided an example of such effects where multiple occasions are used as methods. It is often
found in longitudinal studies that correlations are lower for longer time lapses than shorter lapses,
following a so-called autoregressive process. Accordingly, a high correlation between two traits will
be more attenuated over time than a low correlation. In contrast, a correlation of zero can erode no
further, and it remains zero when computed across methods (here occasions).

The above discussion suggests that methods may interact with traits in some circumstances.
Campbell and O'Connell (1967) went so far as to suggest that such an interaction is "quite general in
nature” (p. 421). If so, the CFA model will be inappropriate. An important question then arises:
Which model should be used to investigate such interaction effects? In the next section, we will
describe the direct product model (DPM) which is designed to represent the interaction between traits
and methods (e.g., Browne 1984).1

THE DIRECT PRODUCT MODEL

Swain (1975) proposed the direct product model (DPM) to represent the multiplicative
interaction of traits and methods in the MTMM:

DAL ®
where 2 is the covariance matrix of the observed variables, Zy and 2t are method and trait covariance
matrices, respectively, and ® indicates a right direct (Kronecker) product. This model expresses the
covariance matrix of measurements as the direct product of a covariance matrix of methods ahd a
covariance matrix of traits. However, it does not allow for measurement errors or different scales for
different variables, which can limit the applicability of the model in many MTMM studies. Browne
(1984, 1989) thus extended the DPM to incorporate unique variances and scale factors:

Z=Z(@By @Pr+E)Z @



9

where Z is a nonnegative definite diagonal matrix of scale constants some of which are set equal to
unity to achieve identification, Py and Pr are the nonnegative definite matrices of method and trait
correlations, whose elements are particular multiplicative components of common score correlations
(i.e., correlations corrected for attenuation), and ~E2 is a diagonal matrix indicating the amount of unique
variances. Thus, this is a multiplicative model for true scores or common scores in the factor analysis
sense. Browne (1985) has developed a program, MUTMUM, to estimate the parameters in Equation
4, compute standard errors, and provide chi-square goodness-of-fit tests. Under Equation 4 the
correlation matrix corrected for attenuation will have a direct product structure:

Po=By ®Py )
where Pc is the disattenuated correlation matrix for the common scores. Note that this equation
assumes a multiplicative structure for common scores, rather than for observed scores.

Campbell and Fiske's (1959) oﬁginal criteria for convergent and discriminant validity have the
following interpretations in the DPM (Browne 1984). Evidence for convergent validity is achieved
when the correlations among methods in%M are positive and large. The first criterion for discriminant
validity is met when the correlations among traits ini‘f are less than unity. The second criterion for
discriminant validity is attained when the method correlations inB,{ are greater than the trait correlations
in ?p The final discriminant validity criterion is satisfied whenever the DPM holds. It can be shown
that these interpretations result from the DPM specification.

| Let p(Tj Mk, Tj MJ) denote the correlation (corrected for attenuation) between the i-th trait
measured with the k-th method and the j-th trait measured with the I-th method. From Equation 4 it can
be seen that p(Tj Mk, T; M)) = p(Tj, Tj) p(Mk, M)). The criterion for convergent validity is that the
monotrait-heteromethod correlation should be substantially greater than zero. When we look at the
monotrait-heteromethod correlation, we see that p(Tj Mk, Tj M]) = p(Mk, M}). Thus, convergent
validity is achieved when method correlations are large and positive. The first criterion for discriminant
validity i§ that the monotrait-heteromethod correlations, p(Tj M, Tj M}), should be greater than the
corresponding heterotrait-heteromethod correlations, p(Tj Mk, TjM)) and p(Tj Mk, Ti M)), fori#j.
Because p(Tj M, Tj MD/p(Ti M, Ti M) = p(Tj Mk, Ti MD)/p(Ti Mk, Ti M) = p(Tj, Tj), this
criterion is met when trait correlations are less than unity. The second criterion for discriminant validity

is that the monotrait-heteromethod correlations, p(Tj Mk, Ti M}), should be higher than the
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corresponding heterotrait-monomethod correlations, p(Tj M, Tj M) and p(Tj My, Tj M. Since p(Tj
Mk, Tj M)/p(Ti Mk, Ti MD = p(Ti M1, Tj MD/p(Ti Mk, Ti M)) = p(Tj, Tj) / p(Mk, M)), this criterion
is met when the method correlations are greater than the trait correlations. The final criterion is that all
matrices of intertrait correlations should have the same pattern whichever methods are used. This
criterion is met whenever the DPM holds, since the ratio p(Tj Mk, Tj MD/ p(Tm Mk, Tn M) = p(Tj,
Tj)/p(Tm, Tn) has the same value for any Mg and M].

The CFA model and DPM hypothesize different functional forms for trait and method effects:
the former additive, the latter multiplicative. Thus, in principle, the models constitute alternative
explanations for MTMM data. If one employs an additive (multiplicative) model when in fact a
multiplicative (additive) model is correct, the model will be misspecified. The specification error will
yields biased estimates for method and trait effects, and induce misleading conclusions about the
construct validity of the measures. It is therefore important to decide which specification should be
used. Although Campbell and O'Connell (1967, 1982) imply that trait and method interactions are the
rule rather than the exception, it might be useful in any specific case to test both additive and
multiplicative models to discover which process is at work.

METHOD
Data

Four data sets were selected to illustrate the range of results, problems, and anomalies typical of
any determination of construct validity through the analysis of MTMMs. They were gathered from
published sources of consumer behavior studies in the literature. Brief descriptions of the data sets
follow. Our descriptions of the studies hereafter present the results that the authors found. Later, in
our reanalysis, we point out the shortcomings in their analyses and/or interpretations as we go along.

Arora (1982). Subjects (96 undergraduate business students) were asked to express their
attitudes toward their university on three methods: semantic differential, Likert, and stapel scales. The
three traits were situational, enduring, and response involvement. Arora (1982) performed a CFA and
found that three oblique traits and three orthogonal methods satisfactorily explained the MTMM data.
Trait variance was generally high, whereas method and error variance were relatively low.

Foxman et al. (1989). One hundred and sixty-one family triads consisting of a father, mother,

and adolescent child were asked to rate the general influence on purchasing by the child. The father,
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mother, and child were treated as methods. The child's general influence was assessed in each of 7
broad categories treated as traits: suggesting a price range, going shopping with parents when looking
for a product for family use, suggesting products, paying attention to new products, and learning the
best buy. In our study, the first three traits are used for illustrative purposes. Foxman et al. performed
a partial application of Campbell and Fiske's (1959) original criteria to their MTMM data. They
claimed mixed support for convergent validity, although the magnitude of validity diagonal correlations
were low (range: .04 to .35). No attempt was made to address discriminant validity.

Menezes and Elbert (1979). Likert, semantic differential, and stapel scales were used to rate
retail store image on appearance, products, and prices. A fourth trait, service, was not included in our
analyses because of its low reliability scores on the three methods (i.e., the reliabilities for service items
were found to be .57, .54, and .53, respectively). Subjects were 250 evening business school
students. Although Menezes and Elbert (1979) performed a CFA on their data, they did not present
findings permitting one to assess convergent or discriminant validity. Further, because they allowed all
traits and methods to freely intercorrelate, their model is not identified. As a consequence,
interpretations of their results, even if they had been presented, would be misleading (see Widaman
1985, p. 7).

Seymour and Lessne (1984). In an effort to develop a spousal conflict arousal scale, Seymour
and Lessne asked 90 "married persons" to respond to 20 issues, each measured by three methods:
Likert items, mixed standard scales, and graphic rating scales. Four different traits were formed as
suggested by an earlier factor analysis of Likert items answered by a different sample of respondents.
The traits were interpersonal need, utility, involvement, and power. Seymour and Lessne (1984)
applied a portion of Campbell and Fiske's (1959) classic criteria for assessing MTMMs and concluded
that, although convergent validity was in evidence for all four traits, utility and involvement lacked
discriminant validity because their average correlation was .78. In our reanalyses, we will focus on
involvement, power, and interpersonal need for illustrative purposes.

Analytical Procedures
The LISREL 7 program was used to perform all analyses because of its wide availability and

previous use by consumer researchers (Jreskog and Sérbom 1988). The application of LISREL for
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the CFA is straightforward and will not be elaborated on herein. The use of LISREL to operationalize

the DPM is not straightforward and therefore will be briefly described.
Wothke and Browne (1990) show that the DPM can be reformulated as a linear model and
programmed within the LISREL context. Specifically, Equation 4 can be written as a second-order

confirmatory factor model as follows:

Z=ALoT"A ©6)
where é = g , E is the partitioned matrix

[=(Cy8LIL )= ™
CM is a square, lower triangular matrix chosen such that Pm=Cum Cwm, It and Iy are identity matrices,
and

IMm®Pi O 9; 0
o= 5 | =7 | = ; (8)
) 3 D)

The DPM can be easily restricted to suitable submodels. One version of the model is defined by

the additional restriction

By OF; ®

with Ep and Er diagonal. By using the fact that any symmetric, nonnegative definite matrix can be

expressed as the product of a square matrix and its transpose (e.g., Searle 1982), this restriction can be
rewritten as follows:

EP=Ey2®N (I ®E)E, 2®1) = I; ¢TI, (10)

Wothke and Browne (1990) discuss identification and estimation and provide an illustration.

For identification of scale factor estimates, one equality constraint per method is required. For
instance, one may select a trait and set all its scale factors in Zequal to unity. Alternatively, all diagonal

elements of CM can be constrained to unity. The two types of restriction may be suitably combined.
Another restriction is required in order to fix the scale of the error components, since (a Ep) ® (b Er) =
Em ® Er for any a = 1/b. This may be achieved by constraining one element in either EmorErto
unity. Pris directly estimated in the model, and standard errors of its elements will be available from

the LISREL solution. However, the estimate of Py is obtained by rescaling gw @M into a correlation

matrix, and standard errors are not available from the LISREL output.
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Because the causal diagram for the LISREL operationalization is quite cumbersome (e.g., there
are 27 latent variables for the smallest model with three traits and three methods), we have not provided
a figure. However, Appendix I contains a sample input specification for the DPM analysis on LISREL
7.

RESULTS

To provide as thorough and informative a presentation of findings as possible, we have chosen
to discuss the results for each approach in sequence. The full extent of the ambiguities and trade-offs
between the approaches will not become apparent until we compare the findings across approaches at
the end of this section and in the Discussion.

Confirmatory Factor Analyses

Table 1 presents the results of the four models discussed earlier for examining trait and method
effects and the corresponding nested tests.2 The first thing to notice is that the CFA model with traits
and methods fits all data sets well. This is shown in the Trait-Method cells in Table 1. Therefore in 4
of 4 data sets, the CFA model explains the MTMM data quite well. We stress that this conclusion is
based on an interpretation of the chi-square goodness-of-fit tests alone. Later we will scrutinize
additional goodness-of-fit measures and other diagnostic criteria.

Notice next that the introduction of either trait or method factors significantly drops the chi-
square value in each data set, indicating that meaningful improvements over the null model are achieved
(see chi-square difference tests at ends of first row and first column for each data set presented in Table
1). Also, the inclusion of both trait and method effects significantly improves the fits of models over
the trait-only and method-only models, pointing to a need for both trait and method factors (see chi-
square difference tests at ends of second row and second column in each data set). Although the
magnitude of the chi-square difference tests suggests that traits explain more variance than methods in
all cases, except for the data of Foxman et al. (1989), both traits and methods are needed in the final
analyses.

In his critique of the CFA approach to MTMM analyses, Browne (1984, p. 5) asserts that "(n)o
information is provided as to whether or not the Campbell-Fiske requirements are met." Although we
disagree with this assessment with respect to discriminant validity, as discussed shortly, we concur that

the CFA approach gives ambiguous information with regard to convergent validity. Nevertheless,
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some information is provided that goes beyond the Campbell and Fiske criterion for convergent
validity.

We feel that the decomposition of variance into trait, method, and error supplies useful
information for assessing the degree of convergent validity. The extent of trait variation reflects the
magnitude of shared variation for two or more measures of a common trait factor. Within the context
of CFA, this variation has method and error variance removed from it. Because convergent validity is
defined as the agreement among measures of the same trait assessed by different methods, variation
uniquely explained by traits yields a quantitative indicator of the degree of convergent validity (Marsh
and Hocevar 1988; Widaman 1985).

The ambiguity arises when one must decide how much variance is sufficient for the attainment
of convergent validity. We propose that two levels of construct validity can be assessed. Weak
convergent validity results when the factor loading on a measure of interest is statistically significant.
Strong convergent validity is achieved when at least half of the total variation is trait variance (i.e., A2
>.5). Note that these assessments are made against the backdrop of the general evaluation of overall
model fit. A satisfactory goodness-of-fit measure(s) implies that the hypothesis of underlying trait and
method factors explains the data except for random fluctuations. Each of these rules is admittedly an
arbitrary heuristic. Yet each goes further than Campbell and Fiske's (1959) criterion for convergent
validity in that a quantitative measure is provided that partials out method and error variance and an
overall goodness-of-fit measure is supplied. According to these rules of thumb, convergence (i.e.,
significant trait variance) is achieved for all measures in Arora (1982) and Seymour and Lessne (1984),
but for only six of nine measures in Foxman et al. (1989) and seven of nine measures in Menezes and
Elbert (1979).

The amount of variance due to traits ranges from .36 to .80, .23 t0 .92, .00 to 44, and .10 to
.60, for the data of Arora (1982), Seymour and Lessne (1984), Foxman et al. (1989), and Menezes
and Elbert (1979), respectively. Error variance ranges from .00 to .38, .00 to .25, .13 to .68, and .03
to .30 for these respective data sets. In terms of method variance, five of nine, four of nine, eight of
nine, and nine of nine method factor loadings are significant in the data of Arora (1982), Seymour and
Lessne (1984), Foxman et al. (1989), and Menezes and Elbert (1979), respectively. The amount of

variance due to methods ranges from .01 to .30, .00 to .25, .01 to .79, and .16 to .74 for these
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respective data sets. The full results for the partitioning of trait, method, and error variance for all
measures are available on request from the authors.

We assessed discriminant validity by examining correlations among traits (¥'r) and methods
(M. A perfect correlation between traits would indicate that the traits are not discriminable.
Discriminant validity among traits is achieved when the trait correlation differs significantly from 1.00
or when the chi-square difference test indicates that the two traits are not perfectly correlated (e.g.,
Schmitt and Stults 1986; Widaman 1985). Discriminant validity is attained for all the traits in Arora
(1982) as well as Seymour and Lessne (1984). In contrast, all three traits in Foxman et al. (1989) lack
discriminant validity. The first and second traits in Menezes and Elbert (1979) fall short of discriminant
validity, but the third trait is distinct from the first two. The findings for the discrimination among
methods show that the methods are distinct in Arora (1982) and Foxman et al. (1989). The confidence
intervals for the three methods in Menezes and Elbert (1979) nearly reach 1.00. The first and third
methods in Seymour and Lessne (1984) are not distinct.

In sum, a fairly detailed and seemingly clear picture of construct validity is provided for each
data set by the CFA approach. However, we believe that the standard analysis--which relies upon the
chi-square goodness-of-fit test, chi-share difference tests, a partitioning of variation into trait, method,
and error, and an examination of trait correlations--can be misleading. To see this better, consider
Table 2 which summarizes a number of additional diagnostics for each data set. The chi-square test,
adjusted goodness-of-fit index (AGFI), and root mean squared residual (RMR) are overall measures of
fit in the sense of expressing the discrepancy between the covariance matrix implied by the
hypothesized model and the observed covariance matrix. Although these measures seem to suggest
satisfactory solutions (in fact, all three indices suggest that each of the four data sets can be explained
satisfactorily by the CFA specification), it is still possible that they might be contaminated by
methodological artifacts. For example, the chi-square test could point to a satisfactory fit only because
th¢ test lacks statistical power. Likewise, wﬁen many trait and method factors are introduced into a
model, as must be done to implement a structural equation model of the MTMM, the danger exists that
satisfactory chi-square, AGFI, and RMR values may arise as a result of over-fitting.

[Tables 1 & 2 about here]
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For these reasons, we recommend that two additional procedures be followed in any evaluation
of MTMM results. First, the standardized residuals should be examined in any analysis. The
standardized residuals are formed by taking the residuals from the observed and implied covariance
matrices and dividing these residuals by their asymptotic standard errors. "Each standardized residual
can be interpreted as a standard normal deviate and considered 'large’ if it exceeds the value 2.58 in
absolute value" (Joreskog and Sérbom 1988, p. 32). One or more large standardized residuals indicate
that a significant amount of variance remains unexplained and that the model may be misspecified.
Standardized residuals can be printed out as an option on LISREL 7.

A second procedure that we advocate is an examination of each parameter for the presence of
either improper or incongruous solutions. An improper solution is one that is either illogical or outside
the range of conventional acceptability. Negative error variances, correlations greater than 1.00, and
standardized factor loadings greater than 1.00 are examples. An incongruous solution is a parameter
estimate that is highly unlikely, contradicts what would be expected on the basis of theoretical or
methodological reasoning, or is in some way inexplicable. For instance, the presence of nonsignificant
error terms often suggests over-fitting or misspecification biases because one normally anticipates at
least a small amount of residual variance in social science data (e.g., Maxwell 1977, p. 58). Similarly,
factor loadings for method effects and correlations among methods are sometimes inconsistent in the
sense of yielding both positive and negative loadings on the same factor or producing contradictory
associations among factors. These findings are typically uninterpretable. Browne (1984, p. 7) terms
these "wastebasket parameters” to indicate that they are introduced to achieve a satisfactory goodness-
of-fit but do not have a substantive interpretation (see also Kenny 1979, p. 154).

Applying the above criteria to our analyses, we obtain the summary of results shown in Table
2. Notice first that the Arora (1982), Menezes and Elbert (1979), and Seymour and Lessne (1984)
analyses reveal 5, 1, and 1 large standardized residuals, respectively. An improper solution was found
for the correlation between the first and second traits in Foxman et al. (1989), and the Arora (1982),
Foxman et al. (1989), Menezes and Elbert (1979), and Seymour and Lessne (1984) solutions yield 3,
1, 1, and 3 nonsignificant estimates of 8;, respectively.3 Two additional incongruous (i.e.,
"wastebasket'") parameter estimates were discovered for method factors in the Seymour and Lessne

(1984) analyses.
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Based on these findings with respect to the standardized residuals, improper solutions, and
wastebasket parameters, we have reason to reject the CFA solutions for all the data sets. Thus, we
reject the hypothesis of linear, additive effects for trait, method, and error for these data sets.

Direct Product Model Analyses

Table 3 presents a summary of the findings for the DPM applied to each data set. On the basis
of the standard goodness-of-fit indicators, the DPM appears to fit the data of Foxman et al. (1989) and
Menezes and Elbert (1979). The DPM fits poorly to the data of Arora (1982) and Seymour and Lessne
(1984), as shown by the high chi-square values and RMR estimates and the relatively low AGFIs. An
inspection of the standardized residuals reveals no large value in all the DPM analyses. Two error
messages arose in the analyses of the Arora (1982) and Seymour and Lessne (1984) data, suggesting
that two parameters were unidentified. Because the parameters in question were in fact theoretically
identified, it is likely that the messages refer to empirical underidentification (Kenny 1979; Rindskopf
1984). Notice that these two data sets showed rather poor goodness-of-fit indicators. In addition,
because the sample sizes are relatively small for these data (n = 96 and n = 90, respectively), it is likely
that the chi-square tests validly point to meaningful discrepancies between the hypothesized DPMs and
the data. Therefore, when all the goodness-of-fit indicators and diagnostics are taken into account, the
evidence supports the DPM for Foxman et al. (1989) and Menezes and Elbert (1979).

With this as background, let us examine the specific criteria for assessing convergent and
discriminant validity in the DPM. These are displayed in Table 4. Because the method correlations are
relatively large, convergent validity is achieved for Arora (1982), Menezes and Elbert (1979), and
Seymour and Lessne (1984). With two of three low method correlations and one moderate correlation
in Foxman et al. (1989), we reject convergent validity therein.

[Tables 3 & 4 about here]

All three criteria for discriminant validity are met in Arora (1982), Menezes and Elbert (1979),
and Seymour and Lessne (1984). The second criterion fails for Foxman et al. (1989). Note that
standard errors of parameter estimates are available for ¢r but not ¢y, given that the correlations are
formed as products of coefficients.4 The three method correlations in Menezes and Elbert (1979) and
one in Seymour and Lessne (1984) are rather large, implying that the corresponding methods are

similar.
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In sum, the DPM model is consistent with the data of Foxman et al. (1989) and Menezes and

Elbert (1979). In the latter case, convergent and discriminant validity are established. The poor fits
and the accompanying small sample sizes for the data in Arora (1982) and Seymour and Lessne (1984)
make interpretations of convergent and discriminant validity problematic therein. In the next section we
will attempt to reconcile the discrepancies between the CFA and DPM analyses and point out

complementarities as well.

DISCUSSION
We have examined the nature of method éffects (i.e., additive or multiplicative) for the four data
sets by comparing two alternative models: CFA and DPM. To bring the presentation into perspective,
we summarize the conclusions implied by the CFA and DPM analyses in Table 5. The conclusions in
the table are based on a full interpretation of goodness-of-fit measures, parameter estimates, and the
other diagnostics mentioned earlier. Let us first examine the conclusions about model fit. The DPM,
but not the CFA model, fits the data of Foxman et al. (1989) and Menezes and Elbert (1979). Hence,
the results tend to support the premise that variation in MTMM data can be explained by either additive
or multiplicative method effects.
[Table 5 about here]

It can also be noted that both CFA and DPM were rejected for Arora (1982) and Seymour and
Lessne (1984). Hence, any conclusions drawn here with respect to convergent and discriminant
validity must be qualified with the foreknowledge that the models are misspecified. Although we have
tested the possibility that methods and traits combine in an additive or multiplicative way, these results
suggest that they might combine in still other ways. For instance, method and trait factors may interact
inversely; that is, the higher the trait correlations are, the lower the method effects are (Campbell and
O'Connell 1982). In the future, it will be useful to develop models that can represent such alternative
processes.

If we were to have based our conclusions about model fit solely on the chi-square goodness-of-
fit tests (see Tables 2 and 3), the CFA model would be accepted for 4 of 4 data sets, whereas the DPM
would be accepted for 2 of 4 data sets. The CFA and DPM are at odds with respect to the data of Arora
(1982) and Seymour and Lessne (1984) in that the former points to acceptance and the latter rejection.

For the remaining two data sets, both the CFA and DPM fit well when we scrutinize only the chi-



19

square tests. Aside from overlooking the anomalies noted in the Results section, the use of only the
chi-square goodness-of-fit test thus leads to ambiguous and contradictory results for many data sets.
We again see the need for a deeper evaluation of individual parameter estimates, standardized residuals,
and the additional diagnostics noted earlier.

If we examine the evidence for convergent and discriminant validity, we see that the CFA and
DPM conclusions are generally in agreement (see Table 5). The one exception occurs for the analyses
of the data in Menezes and Elbert (1979). Here the CFA points to mixed achievement of convergent
and discriminant validity, whereas the DPM leads to a conclusion of satisfactory convergent and
discriminant validity. Which conclusion should be accepted? Recall that the DPM gave a satisfactory
fit to the data, whereas the CFA was rejected. From this perspective, more credence should be given to
the conclusion from the DPM analysis. This result suggests that one should investigate the nature of
method effects (i.e., additive or multiplicative) before assessing construct validity. Assessment of
construct validity via an inappropriate model can produce misleading conclusions. For instance, if
methods do interact with traits, as in the data of Menezes and Elbert (1979), the use of CFA models
(which are misspecified) will yield biased estimates and misleading conclusions.

The choice between the CFA and DPM depends on the way that method and trait factors
influence the variation in measures. The CFA model is appropriate when the effects of methods and
traits are additive. In contrast, the DPM is appropriate when one has substantive reason for expecting
interactive effects of methods and traits. For example, Jackson (1969) cites the case where
acquiescence (a method) has a stronger effect when knowledge (a trait) is low than high. To date, most
MTMM analyses have assumed the additive effects of methods and traits. As Campbell and O'Connell
(1969, p. 424) argued, additive models of factor analysis have been untested by using factor analysis
as the criterion to which the data should fit. However, the analysis procedures should be chosen based
upon the fit of the models (e.g., CFA vs. DPM) to the data. Our analyses revealed that the
multiplicative effects are plausible at least for 2 of 4 data sets examined, suggesting that more attention
should be given to the DPM in MTMM analyses (cf. Lastovicka, Murry, and Joachimsthaler 1990).

We should mention one limitation of the DPM that may or may not be an issue, depending on
the particular data at hand. The DPM criterion for convergent validity requires that the method

correlations be substantial. Notice that this is a composite indicator which implicitly takes into account
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the convergence among multiple measures for each trait. The CFA criterion for convergent validity is
based on the amount of trait variance for each measure. When all measures tend to converge to the
same degree, the CFA and DPM findings should agree. But when some measures converge to a
significantly greater degree than others for a common trait, the CFA procedure retains this information
better than the DPM. The suggested CFA criterion based on the trait factor loading provides diagnostic
information as to which of the measures achieve convergent validity. Such diagnostic results can aid in
item selection and point to candidates for inclusion and exclusion in future research. It thus appears
that the DPM is less informative than the CFA with respect to convergent validity.

Some caveats of this study are in order. First, the multiple methods used in most data sets
under investigation were fairly similar. Except for the Foxman et al. (1989) study, all methods were
paper and pencil self-report forms filled out by the same respondents. In fact, the method correlations
in Table 4 suggest that the methods were quite similar in all studies except Foxman et al. (1989). The
results should be interpreted in light of this caveat. On the one hand, the most stringent tests of
convergent validity require maximally dissimilar methods (Campbell and Fiske 1959). On the other
hand, the most stringent tests of discriminant validity require maximally similar methods. Ideally, then,
a construct validity study should employ both maximally similar and dissimilar methods. This, of
course, multiplies the number of measures required.

The findings of this investigation might be limited in their generalizability, because they are
based on four empirical data sets. The critical issue pertains to using the proper specification for trait
and method effects. If trait anq method factors interact, the use of CFA yields a misspecified model.
The consequences and implications of such misspecifications would be better understood with
simulations. It should also be mentioned that the rules suggested for evaluating convergent and
discriminant validity are merely heuristics, and that these criteria will be affected by the model fit and
the presence of wastebasket parameters. Further, it should be acknowledged that we faced difficulties
in estimating the MTMM models: we had to choose starting values judiciously in order to obtain
convergent solutions. This estimation problem, often experienced by researchers in this area (Schmitt
and Stults 1986), might be serious when the MTMM design becomes complex.

Finally, we wish to stress that the conclusions drawn in this paper are based on commonly

accepted statistical criteria. An important issue to consider is the practical relevance of the findings.
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For each of the data sets, we computed the normed fit index for the trait-only CFA model compared
with the null model (e.g., Bentler and Bonett 1980; Mulaik et al. 1989). The index gives the
proportion of total information accounted for by the trait-only model from a practical standpoint. For
our computations of the normed fit indices, we subtracted the appropriate degrees of freedom from their
respective chi-square values to yield noncentralized estimates and thus remove the bias in small samples
of the ordinary index (e.g., McDonald and Marsh 1990).

The noncentralized normed fit indices (NCNFIs) are .84, .63, .97, and .92, respectively, for
the trait-only models of the data of Arora (1982), Foxman et al. (1989), Menezes and Elbert (1979),
and Seymour and Lessne (1984). It has been suggested that values of the index greater than or equal to
.90 indicate that the hypothesized model accounts for a sufficient amount of information from a
practical perspective (e.g., Bentler and Bonett 1980). Thus, on this basis, the trait-only model is not
sufficient for the data of Arora and Foxman et al. but is satisfactory for the data df Menezes and Elbert,
and Seymour and Lessne. The introduction of method factors makes sense for the first two data sets
but could be considered overfitting for the latter two. We stress that this conclusion is based on the
interpretation of the NCNFI as a measure of practical relevance. Our analyses based on statistical
criteria described above indicate that the trait-only model must be rejected for all data sets.

As a final interpretation of the four data sets previously analyzed in the consumer behavior
literature, we note that our analyses result in markedly different conclusions from those stated by the
original authors. Two of the data sets (Arora 1982; Seymour and Lessne 1984) showed poor model
fits by both the CFA and DPM approaches. Thus, contrary to conclusions made in the original studies,
no firm basis exists for interpreting convergent and discriminant validity. In the third data set (Foxman
et al. 1989), the CFA model was rejected and the DPM described the data satisfactorily. However,
both convergent and discriminant validity must be rejected based on the findings, and thus the
substantive conclusions made in the original study rest on questionable assumptions. Finally, for the
fourth study (Menezes and Elbert 1979), our analyses show that the procedure originally used was both
performed and interpreted improperly. The proper conclusion is that the CFA model must be rejected.
Significantly, we found that the DPM adequately describes the data, and that convergent and

discriminant validity are achieved.
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CONCLUSIONS

We suggest that single-method, single-measure approaches be replaced with mutiple-method,
multiple-measure approaches in consumer research. Use of a single measure requires an assumption
that variables are perfectly measured without error, which is quite unlikely in most situations. Failure
to model explicitly such random measurement errors, where they are present, will attenuate the
relationships among the variables in any test of a theory. Similarly, use of a single method does not
allow for a rigorous assessment of construct validity, because trait variation is confounded with
variation due to methods. Failure to model such systematic errors in measurement, where they are
present, can lead to biased and inconsistent estimates of the key parameters. Therefore, consumer
researchers should try harder to obtain multiple measures of constructs with multiple methods and
model random error as well as systematic error before testing substantive hypotheses. Although such
an attempt might be costly and time-consuming, it is necessary for disentangling the confounding
influences of method variance and random error on research findings.

Given multiple measures and multiple methods, one can assess the validity and reliability of
measurement by analyzing MTMM data. We have considered a procedure infrequently used and
introduced a new procedure for analyzing MTMM data in consumer research (i.e., CFA and DPM).
We have considered several assumptions that are made implicitly or explicitly under each approach. In
analyzing MTMM data a researcher should explicitly consider the nature of the assumptions underlying
each procedure, examine the plausibility of these assumptions, choose the most appropriate one, and
communicate these assumptions clearly to the readers. We have found that method effects are
sometimes multiplicative rather than additive, so that the usual CFA is inappropriate. This suggests that
one should consider and test alternative models against data, rather than merely assuming that a model
(e.g., CFA) is appropriate. We have also tried to show that the interpretation of findings from such
procedures is a complex process involving a number of criteria. The dearth of work in the area--both in
consumer research and psychometrics--precludes us from making broad generalizations. Yet, we feel
that our presentation at least presents the major alternatives and suggests interpretive guidelines for

future research.
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Appendix I

The following is a sample LISREL 7 program specification of the direct product model for the
MTMM data with three traits and three methods.

Title Direct Product Model

DA NI=9 NO=161 MA=KM
[Data]

MO NY=9 NE=9 NK=18 LY=DI, FR GA=FU, FR PH=SY, FR PS=ZE BE=ZE TE=ZE
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FOOTNOTES

1 Another limitation of the CFA model is that it confounds specific and error variance in
measures. The error term in the CFA model is a combination of two components: (1) measurement
error analogous to random error in classical test score theory and (2) the unique component of true
score that is different from traits and methods. That is, it is impossible to separate random
measurement error (random error variance) from uniqueness (specific variance) due to weak trait and
method effects.

The hierarchical confirmatory factor analysis (HCFA) overcomes this limitation (Anderson
1985; Marsh and Hocevar 1988). However, the HCFA model requires rather stringent assumptions
and constriants (see Kumar and Dillon 1990 for a detailed discussion of constraints). We feel they are
too restrictive to be met in typical consumer research settings, limiting the usefulness of the model.
Also, none of the data sets examined herein permits a full illustration of the HCFA model, because it
requires at least two measures for each trait-method combination. Given these considerations, the
HCFA approach is not included in this paper.
2 Convergence failures are common when method factors are added to trait factors and were
found on occasion for these data sets. Nevertheless, by judicious choices of starting values, we were
able to achieve complete solutions in all instances. Note that problems of convergence sometimes arise
because of overfitting. See discussion of practical relevance and tests thereof in the Discussion where it
is suggested that overfitting occurs in two data sets for the CFA analyses.
3 We count as improper solutions only those that are outside the normal range and statistically
significant. A number of offending estimates were found in the analyses, consisting of parameter
estimates outside the ranges of acceptability. For example, Arora's (1982) data yielded two negative
error variances. But because these were statistically nonsignificant they are not counted as improper
solutions in Table 2. Instead, they are termed incongruous solutions herein. In either case the results
suggested that the model is misspecified or unidentified. We tried one practical way of handling
negative error variances, setting error variance estimates to zero (e.g., Dillon, Kumar, and Mulani
1987). This analysis gave quite similar goodness-of-fit results: 2 (14) = 16.64, p < .28. No
offending estimates occurred, but one incongruous estimate (nonsignificant 6;) was present, raising
questions about the adequacy of the model. In sum, the conclusion remained the same; the CFA model
was rejected for the Arora data.
4 No standard errors are available for trait correlations in Arora (1982) and Seymour and Lessne
(1984) because of the empirical underidentification problem. It should be noted, however, that the
DPM s fit poorly in these two data sets.
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SUMMARY OF NESTED CONFIRMATORY FACTOR ANALYSIS TESTS

TABLE 1

FOR TRAIT AND METHOD EFFECTS
Arora (1982) Foxman, Tansuhaj, & Ekstrom (1989)
Null Method-Only Null Method-Only
xBo =510 [xa=man [xJ12=30050 |x%ey=33260 |x%26)=101.04 XJ12) = 23156
p = .00 p = .00 p < .001 p < .001 p < .001 p < .001
Trait-Only Trait-Method Trait-Only Trait-Method
xo=10762  [xU12)= 1541 [Kp=221  |xba=139 [xX12)=1328 XJ12) = 120,68
p = .00 p = 22 p < .001 p < .001 p =.35 p < .001
XJi2)=46408  x]12)=25579 XJ12)= 19864 X]12)=87.76
p < .001 p < 001 p < .001 p < .001
Menzes and Elbert (1979) Seymour and Lessne (1984)
Null Method-Only Null Method-Only
xB6)=16945 [xT4)=59141 |X[12=110804  |x%36)=650.16 xP4)=27014  [X]12)=380.02
P < 001 P < 001 P < .001 p < 001 p < 001 P < .001
Trait-Only Trait-Method Trait-Only Trait-Method
xhay=6666  |x712)=9.04 xq9=5162  |xPay=759  [x%12)=9.99 X]12) = 66.00
p < .001 p 2.7 p < .001 p < .001 p=.6 p < .001
XJ12)=163279  X}12)= 582.37 Xq9)=5717  x]12)=260.5
p < .001 p < .001 p < .001 p < 001




TABLE 2
SUMMARY OF GOODNESS OF FIT TESTS FOR CONFIRMATORY FACTOR ANALYSES

Study x2(df) P AGFI RMR  Numberof Other

Large

Standardized

Residuals
Arora
(1982) 15.41(12) .22 .87 .06 5 3 nonsignificant 0s
Foxman,
Tansuhaj,
and ,
Ekstrom 13.28(12) .35 94 .03 0 ¥r1 = 1.14(.51)a
(1989) 1 nonsignificant 6
Menezes
and
Elbert
(1979) 9.04(12) .70 97 .02 1 1 nonsignificant 6
Seymour
and As5 = —.26(.07)
Lessne 9.99(12) .62 92 .04 s = —41(.18)

(1984)

3 nonsignificant 6s

3Standard error in parentheses



TABLE 3
SUMMARY OF GOODNESS-OF-FIT TESTS FOR THE DIRECT PRODUCT MODEL

Goodness-of-fit Diagnostics

Study +2dff) p  AGFI RMR Other

Arora (1982) 52.12(25) .00 .82 15 "I'g,13 may not be identified"

Foxman,

Tansuhaj,

and Ekstrom

(1989) 30.04(25) .22 .93 .06 none

Menezes and
Elbert (1979) 26.49(25) .38 .96 .02 none

Seymour and
Lessne (1984) 80.96(25) .00 75 .19 "¢74 may not be identified"




TABLE 4

SUMMARY OF CONVERGENT AND DISCRIMINANT VALIDITY FINDINGS FOR DIRECT

PRODUCT MODEL

E

Arora (1982) Foxman, Tansuhaj, and Ekstrom (1989)
1.00 1.00
or= 31 1.00 or= .63(.10) 1.00
.48 .38 1.00 63(.10) .79(.10) 1.00
1.00 1.00
o= .68 1.00 M= 30 1.00
79 .73 1.00 18 .54 1.00
Menezes and Elbert (1979) Seymour and Lessne (1984)
1.00 1.00
or= J17(.03) 1.00 or= -.06 1.00
.45(.05) .49(.05) 1.00 78 .30 1.00
1.00 1.00
= 91 1.00 M= .83 1.00
90 .91 1.00 99 .80 1.00




TABLE $§
SUMMARY OF FINDINGS ACROSS STUDIES

Foxman, Menezes Seymour
Tansuhaj, and and
Arora and Ekstrom Elbert Lessne
Method/Criterion (1982) (1989) (1979) (1984)
nfirmatory Factor Analysi
Model Fit Reject Reject Reject Reject
Convergent Validity Pass Mixed(3/9 Fail) Mixed(2/9 Fail) Pass
Discriminant Validity Pass Fail Mixed(1/3 Fail) Pass
Direct Product Model
Model Fit Reject Accept Accept Reject
Convergent Validity Pass Mixed(2/3 Fail)  Pass Pass
Discriminant Validity Pass* Fail Pass Pass*

NOTE.— The first of three discriminant validity criteria could not be examined for Seymour
and Lessne (1984) because standard errors were not available.



