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On the Use of Structural Equation Models in Experimental Designs:

Two Extensions

Abstract
Bagozzi and Yi (1989) recently introduced new procedures for using structural equation models in
experimental designs with LISREL. We extend their research by showing that the structural
equation analysis of experimental designs can be accomplished via Wold's Partial Least Squares
(PLS), which can be used without many of the assumptions necessary for maximum likelihood
estimation in LISREL. We show that PLS is applicable not only to the basic design, but also to
other complex designs. We also identify two restrictive assumptions implicit in Bagozzi and Yi's
step-down analysis procedures, and describe a more general approach that can be used even when
these assumptions are not met. The proposed procedures are illustrated with Bagozzi and Yi's

data, and the conditions suitable for alternative procedures are discussed.






INTRODUCTION

Bagozzi and Yi (1989) recently introduced new procedures for the analysis of experimental
data especially in MANOVA designs (see also Kiihnel 1988). They described the analytic
procedures for various experimental designs with the widely used computer program LISREL
J 6re§kog and Sérbom 1986). Given the frequent use of experimental designs and the popularity
of LISREL in marketing, their procedures can be potentially useful to marketing researchers.

Although Bagozzi and Yi's (1989) procedures provide a powerful means for analyzing
experimental data, the use of their procedures might be limited for several reasons. First,
experimental data often do not satisfy the requirements of maximum likelihood estimation in
LISREL such as multivariate normality, interval scaling, and large sample sizes. Also, improper
or nonconvergent solutions sometimes occur in LISREL analyses, which will reduce the
interpretability of estimates (e.g., Gerbing and Anderson 1987). It would be desirable to have an
alternative procedure for analyzing such data to which LISREL is not well suited. Second,
Bagozzi and Yi's procedures for the step-down analysis, one particular type of MANOVA, make
two implicit assumptions: (1) variances and covariances of dependent variables are equal across
groups, and (2) causal paths among dependent variables are invariant across groups. When these
assumptions are violated, their step-down analysis procedures are not appropriate. In fact, as
shown later in this paper, the first assumption is invalid for Bagozzi and Yi's data. Thus, we need
more general procedures which do not rely upon such restrictive assumptions.

The purpose of the present paper is to extend Bagozzi and Yi's (1989) research in these two
respects. First, we demonstrate that the structural equation analysis of MANOVA designs can be
accomplished via Wold's (1985) partial least squares (PLS) approach, which avoids many of the

‘assumptions and chances that improper solutions will occur in LISREL analyses. We show that
PLS is applicable not only to the basic design, but also to other MANOVA designs (e.g., latent

variable MANOVA, step-down analysis). Second, we suggest an alternative procedure for step-
down analyses which does not require the two restrictive assumptions implicitly made in Bagozzi

and Yi's procedures. We close with a discussion of the conditions when one procedure might be



preferred over the other. Throughout the paper, the proposed procedures are illustrated with the
data used in Bagozzi and Yi's (1989) original article.

MANOVA WITH PLS
LISREL F ion
To demonstrate the use of structural equation models for the analysis of experimental data, we
use MANOVA designs with three dependent variables (Y to Y3) and two groups (experimental
and control groups). Figure 1A illustrates the LISREL specification for this design (see Bagozzi
and Yi 1989, p. 273). There are two parts in the specification: measurement and structural models.
A. Measurement Model
Dummy =§;
One=¢&;
Yi=ni fori=1to3
where Dummy = 0 (control group) or 1 (experimental group).
B. Structural Model
Ni =781+ %382+ G fori=1t03

Figure 1 about here

Note that the dummy variable is an exogenous latent variable (€) that represents two groups:
control and experimental groups. There is a single indicator with a fixed loading of unity and no
corresponding residual. Note also that a pseudo-variable (i.e., "one") is used as another
exogenous latent variable (€2) to capture the means or locations of dependent variables. Because
the dummy variable is O for the control group and 1 for the experimental group, the paths (i.e., Y4,
Ys, ¥6) from the "one" latent variable to dependent variables correspond to the means of dependent
variables for the control group, and the paths (i.e., 11, 12, ¥3) from the dummy variable to
dependent variables reflect the differences in their means across the two groups. For example, the
means of Y are Y4 and (y;+Ys) for the control and experimental groups, respectively, and thus i

is the mean difference in Y between the two groups. The significance of the mean differences can



be tested either individually with the critical ratios (t-values) for the parameters or globally with the
chi-square difference tests of the zero restrictions for these parameters (Bagozz and Yi 1989).
General PLS Mode]

Before we present the PLS formulation of MANOVA, we present a brief overview of the
general PLS model, including specification and estimation. The Discussion section considers the
assumptions made in the PLS model and compares it with LISREL. For more details, see Wold
(1982, 1985).

Specification. Relations among latent variables are expressed in the following system of
equations:

(1 mn=PBo+Pn+v

where 1 is a vector of latent variables, Py is a location parameter vector, P is a matrix of
coefficients relating s among themselves, and v is a vector of residuals for the ns. Equation (1) is
sometimes referred to as the theoretical relations or the structural equation model. Latent variables
are connected to observations through the following system of equations:

2) y=Ilg+IIn+e

where y is a vector of manifest variables, I is a location parameter vector, ITis a matrix of
loading coefficients (analogous to factor loadings), and € is a vector of residuals for the ys.
Equation (2) is usually referred to as the measurement model. It is assumed that the cov (v, €) = 0.

The covariance matrix for the ns is written as
3 P=d-pyl¥a-pH!
where I is an identity matrix and ‘¥ is the cov (v). For the ys, the covariance matrix is
4 Z=IIPII'+6
where 0 = cov (€)

Estimation. To facilitate the discussion of estimation, the following equation is added to
Equations (1) and (2):

(5) mM=Qy+d
where Q is a matrix of coefficients making latent variables dependent upon manifest variables and

d is a vector of residuals. Estimation under the PLS algorithm then proceeds in three steps. In the



first, iterative estimations of the Q are performed. This consists of a sequence of ordinary least
squares (OLS) regressions, linear operations, and square root extractions. In the second step, the
Bs and 7s are estimated noniteratively using the latent variables estimated in the first step. This is
done assuming that the location parameters are zero. Finally, in the third step, the location
parameters and generative relations are estimated. This is done noniteratively with OLS
regressions.

More intuitively, the PLS program proceeds iteratively by first estimating each latent variable
from its observed indicators and then refining it by relating each latent variable to other latent
variables' indicators. Once the latent variables have been estimated, they are then correlated, and
the structural parameters of the model are estimated via path analysis using OLS regression. The
resulting coefficients are interpreted as standardized partial regression coefficients.

PLS Formulation of MANOVA

We propose that MANOVA designs can also be analyzed with PLS. Figure 1B shows the
specification of the PLS model that is equivalent to the LISREL model in Figure 1A. Like the
LISREL model, the PLS model has two parts:

. A. Measurement Model

Dummy =14 §)

Yi=mini fori=1t03
B. Structural Model

ni=L+y & +§' fori=1to03.

where ; is the intercept that reflects the location of the dependent variable (1;). To make
the comparisons of our LISREL and PLS formulations of MANOVA as simple as possible, we
have made several redefinitions of variables and parameters found in Wold's (1982, 1985) original
exposition. Namely, Boi = Ii, B1i = B2i = P3i = 0, B4i = 11", N4 = §1, and v; = {;*.
We can note two differences between PLS and LISREL specifications. First, the pseudo-
variable of one is not used in the PLS specification, whereas it is necessary in the LISREL
specification. This is because PLS estimates the location parameters as intercepts without the need

for introducing such a pseudo-variable. Second, the loadings relating latent variables to observed



measures are set free and estimated in the PLS formulation, whereas they are fixed to unity in the
LISREL formulation. For example, the loadings (i.e., 7j) for endogenous variables are free for
PLS but fixed to 1.0 for LISREL. The path coefficients (i.e., ¥1*,12*, ¥3*) from the dummy latent
variable to endogenous variables can be examined in order to test whether the means are
significantly different across groups.

We will now show‘ the equivalence of the LISREL and PLS models by combining the
measurement and structural parts of each model. This will permit us to compare the parameters of
one model with those of the other.

LISREL Mode]
Yi="i
=1 &1+ Y3 82t Gi since i =i §1 + i3 §2+ G
= Yi+3 +¥i Dummy + §; since €1 = Dummy, &= 1.0
PLS Model
Yi=mini
=m G+ &1+ i) sinceni =L +%" &1 + ¢
=7 Ij + . 11" (1/nq) Dummy + m;{;* since &1 = (1/ng) Dummy

Then, we have the following equations:

i3 = Wi I

Y= (U/ng) ¥i" 7

Ci =mii* fori=11to3.
Note that all the parameters in the LISREL model are functions of the parameters of the PLS
model. For example, 7;, the mean difference parameter for Yj in the LISREL model, can be
calculated by (1/rg) ¥i* ; from the PLS solutions. That is, the models are equivalent in terms of
specification. However, important differences exist with respect to estimation, the properties of
estimators, test statistics, and related issues which dictate the choice of the model. These issues are

discussed later in the paper.



An Tllustration

Bagozzi and Yi's (1989) data are used to illustrate the equivalence of results using the PLS
analysis and results from the LISREL anahysis. Specifically, the three behavior measures are used
as the dependent variables in MANOVA designs with two groups (see Bagozzi and Yi 1989, Table
1 and Figure 1). Table 1 reports the means, standard deviations, and correlations for the input
data. The LISREL solutions are obtained by using the LISREL VI program (Jéreskog and
Sorbom 1986). The PLS model is estimated with the LVPLS 1.6 program (Lohméller 1984), and
critical ratios for the PLS estimates are calculated by the jackknifing of parameter estimates (Efron
and Gong 1983). Specifically, LVPLX was employed because we needed to estimate location
parameters, and option 4 was selected for the data metric. Appendix provides the specification for
the PLS model in Figure 1. Standard errors of parameters were estimated by using the jackknife
procedures which were developed by Barclay (1983) (e.g., Fenwick 1979; Cooil, Winer, and
Rados 1987). Table 2 summarizes the key results from the LISREL and PLS analyses.

The full LISREL model specified in Figure 1A, which allows for the differences in means, is
exactly identified and gives a perfect fit to the data: %2 (0) = 0.00, p = 1.00. The restricted model
with the zero constraints for the mean difference parameters (i.e., y1 =2 =3 =0) gives the
following results: %2 (3) = 48.21, p <.001. An omnibus test of mean difference can be conducted
by comparing the fit of these two models. The significant chi-square difference (x2q (3) = 48.21,
p <.001) suggests that the means on at least one dependent variable are significantly different
across groups. The estimates for individual mean difference parameters are examined to test
whether each dependent variable is different across groups. The mean differences, denoted as ;s
in the LISREL analysis, are 3.84 (t=5.2), 1.42 (t = 6.7), and 3.54 (¢ = 7.2), respectively. They
are all significant, suggesting that the means of all dependent variables are significantly different

across groups for these particular data.

Tables 1 & 2 about here

On the other hand, the PLS model m Figure 1B gives the following results: y;* = 0.424 (t =
10.3), »2* =0.481 (¢ =9.0), 13* = 0.508 i(t = 8.5). These results suggest the same conclusion:



the means of the three dependent variables are significantly different between the two groups. In
fact, the solutions for the LISREL analysis can be calculated from the solutions from the PLS
analysis. For example, the mean difference for Y1 can be computed as: (1/xg) 11* 71 = (2.00)
(0.42) (4.53) = 3.84. Note that this value is identical to the estimate of ¥; in the LISREL model.
Similarly, v, and Y3 can be calculated from the PLS solutions. Also, Y4-Ys can be obtained from
the PLS solutions: ¥4+3 = wj I;. For example, the mean (Ys) of Y for the control group can be
obtained by =1 I1 = (4.53) (0.045) = 0.20.

PLS MODELS FOR VARIOUS MANOVA DESIGNS

We have shown that PLS can be used to analyze experimental data with an example of the basic
MANOVA design. However, PLS is applicable not only to the basic design, but also to other
MANOVA designs (e.g., latent variable MANOVA, step-ddwn analysis, MANCOVA) which were
discussed by Bagozzi and Yi (1989). In this section, we will examine some of these MANOVA
designs and illustrate the application of PLS models. Because these extensions are rather
straightforward, they are discussed briefly in this paper. However, the full results and
corresponding specifications are available from the authors.

tent Variabl VA

Bagozzi and Yi (1989) extended the structural equation approach to MANOV As on latent
variables, whereas the traditional MANOVA analysis is conducted only at the level of manifest
variables (observed measures). This extension is motivated by several considerations (Bagozzi
and Yi 1989, pp. 273-274). First, if individual measures of the variables show excessive random
error, the traditional tests may be lacking in statistical power to detect valid experimental effects.
Second, certain variables might be inherently unobservable constructs such that they can be
measured only indirectly with multiple indicators. Third, one might be concerned more with
explanation and understanding of latent variables or constructs than with prediction or description
of observed variables or measures per se.

Figure 2A presents the LISREL specification for a latent variable MANOVA design appropriate

to the data in Table 1. Note here that three behavioral measures are used as multiple indicators of a



single latent variable. We wish to test whether the experimental manipulation affects the mean of
the theoretical construct as measured by three indicators. The path (y;) from the dummy variable
(&1) to the latent dependent variable (1) reflects the difference in the means of the behavioral
construct. When the LISREL model is fit to the data in Table 1, the estimate of y; is 3.21 with t =
6.43. These results show that the means of 1 are significantly different across the two groups.

Figure 2B provides a diagram of the corresponding PLS model for the same data.] We can
note that the PLS specification is quite similar to the LISREL specification. One difference
concerns the pseudo-variable of "one." In the LISREL model, the psecudo-variable of "one" is
introduced to estimate the means for the control group. In contrast, introducing such a pseudo-
variable is not necessary in the PLS model where location parameters can be estimated directly.
When the PLS model in Figure 2B is fit, the estimate of y1* is 0.51 with ¢ = 11.0, suggesting the
rejection of the nuli hypothesis of equal means for the two groups. Thus, both LISREL and PLS
give the same conclusion in the latent variable MANOVA.
Step-Down Analysis

Bagozzi and Yi (1989, pp. 274-276) describe and illustrate step-down analyses with structural
equation models. When there is a causal order among the dependent variables, step-down analyses
provide useful information as to whether the mean difference in a certain variable is due to the
direct effect of the experimental manipulation or its dependence on other variables (Roy and
Bargmann 1958). The first stage of a step-down analysis begins witha MANOVA test performed
on all dependent variables. If the omnibus test points to a rejection of equal means, then the next
step consists of testing the final variable in the hypothesized causal chain while partialling out all
remaining dependent variables as covariates. A significant omnibus test would indicate that the
final variable differs even after controlling for its dependence on previous variables. In contrast, a
nonsignificant test suggests that the difference in the final criterion is wholly due to the causal
relation between the final variable and other variables.

Figure 3 shows the step-down analysis procedures for the MANOVA design with two latent
dependent variables (i.e., decision and behavior), which has been illustrated by Bagozzi and Yi

(1989). In Step One, the mean differences in decision (D) and behavior (B) are tested while their



covariation is unexplained. In the next step, the difference in B is tested while controlling for the
causal path from D to B. This procedure is called the dummy variable approach, because an

indicator variable is used to test the mean difference across groups.

Figures 2 & 3 about here

PLS can also be applied to step-down analysis. The LISREL specifications for step-down
analysis for the data, which were originally illustrated by Bagozzi and Yi (1989), are presented in
Figure 3. Table 3 reports the means, standard deviations, and within-group correlations for the
input data. The corresponding PLS specifications can be easily obtained by dropping the pseudo-
variable of "one" and the latent variable associated with it. See Figures 1 and 2 for examples. In
Step One, MANOVA s are conducted on the two latent variables (D and B) which are measured
with several indicators. The LISREL model gives the following results: y; = 0.86 (t=3.8), 2 =
3.20 (¢ = 6.4). The PLS model gives the following results: y1* =0.29 (t=3.4), " =0.51 (¢ =
11.0). Thus, both LISREL and PLS results suggest that the mean differences for D and B are

statistically significant.

Table 3 about here

In Step Two, MANOVAS are conducted while controlling for the causal relation () between D
and B so that the effect of D on B can be partialled out. The LISREL model gives the following
results: ¥ = 0.86 (£ =3.8), Y2 =2.74 (¢ = 5.6), p = 0.54 (t = 3.21). The PLS model gives the
following results: y1* =0.29 (¢ = 3.4), 1,* = 0.44 (£ = 9.5), P* = 0.23 (¢ = 4.3). The results
show that D has a significant effect on B, as hypothesized. The results also show that the two
groups differ significantly in B even after controlling for its dependence on D. In sum, both
LISREL and PLS can be applied to step-down analysis, and they give the same conclusions.
Homogenei Multiple- A h

In the previous example of step-down analysis, we have employed the dummy variable
approach in both LISREL and PLS analyses. However, the dummy variable approach assumes
that variances and covariances of dependent variables are equal across groups. This assumption is

imposed because the covariance matrices among dependent variables are collapsed into one (i.e.,
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the submatrix of the covariance matrix after dropping the dummy variable column) under the
dummy variable approach. The homogeneity assumption is made implicitly under the dummy
variable approach, whether one employs LISREL or PLS.

When the homogeneity assumption is violated, the multiple group approach can be used
instead.2 As we will see in the next section of this paper, for instance, LISREL can be used for the
multiple group approach to step-down analysis . Then, a natural question would arise: Can PLS
be applied to the multiple group approach (e.g., for step-down analysis)? Unfortunately, multiple
group (simultaneous) analysis, which is needed for the multiple group approach to MANOVAs, is
not available at this time for PLS.3 Thus, although PLS can be applied to various MANOVA
designs such as manifest variable MANOVA, latent variable MANOV A, and step-down analysis, it
cannot be applied to the multiple group approach.

MULTIPLE GROUP APPROACH TO STEP-DOWN ANALYSIS

Figure 3 shows the step-down analysis procedures for the MANOVA design with two latent
dependent variables, which has been illustrated by Bagozzi and Yi (1989). This procedure is
called the dummy variable approach, because an indicator variable is used to test the mean
difference across groups.

The dummy variable approach to step-down analysis, however, makes two implicit
assumptions. First, it assumes that the variances and covariances of dependent variables are equal |
across groups. This is also a standard assumption in traditional MANOVA analyses (e.g., BMDP,
SAS, SPSSX). Second, the causal relations among dependent variables are assumed to be
invariant across groups. That is, the effects of one variable on other variables are assumed to be
identical for all groups. This assumption is also implicitly made in traditional analyses (e.g.,
SPSSX). It is not likely that these assumptions are valid for all MANOVA designs. To the extent
that these assumptions are violated, the procedures suggested by Bagozzi and Yi (1989) could be
misleading.# It seems desirable to consider an alternative procedure which does not make such
restrictive assumptions. At least, it is necessary to make such assumptions explicit and test

whether they are valid or not in any particular application.
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In this regard, we suggest a multiple group approach to step-down analyses. Figure 4 shows
the general procedure. In Step One, ¥; and y; correspond to the means of latent variables D and B,
respectively. Thus, the equality of means can be tested by comparing these parameters (i.e., y; (1)
vs. 1i @) across groups. This can be accomplished via a simultaneous analysis of both groups. In
Step Two, ¥2 would correspond to the portion of the mean for B that is not due to the effect of D.
Thus, a comparison of y; across groups indicates whether the means of B differ between the

groups when the effect of D on B is partialled out.

Figure 4 about here

One advantage of this approach is that it allows one to test the aforementioned assumptions:
i.e., (1) homogeneity of variances and covariances and (2) invariance of causal paths.
Specifically, before conducting the first step of the analysis noted in Figure 3, one can test the
homogeneity assumption in the multiple group approach. Then, in Step One the differences in D
and B can be tested under either homogeneity or heterogeneity assumptions. One can also test the
invariance of causal paths (i.e., B(1) = B(?) across groups. If this test is significant, a subsequent
step would be to test for the significance of the mean difference while allowing for different causal
paths across groups. Thus, another advantage of the multiple group approach is that it allows for
step-down analyses even when these assumptions are violated.

An Tllystration

The suggested procedures for step-down analyses are illustrated with the example used by
Bagozzi and Yi (1989). There are two latent variables: decision (D) and behavior (B), which are
measured with two (dy, d2) and three indicators (by, bz, b3), respectively. See Tables 4 and 5 for
a summary of the results from Bagozzi and Yi's (1989) procedures and the suggested procedures,

respectively.

Tables 4-5 about here

Results from the dummy variable approach are examined first. In Step One, the mean

differences are 0.86 (t = 3.8) and 3.20 (t = 6.4) for D and B, respectively. The chi-square
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difference test also indicates that the mean differences are statistically significant; 24 (2) = 45.97,
p <.001. In Step Two, one can test the mean difference in B after considering the causal order
between D and B. The chi-square difference test indicates that the the mean difference in the final
dependent variable (i.e., B) is significant; %24 (1) = 31.69, p < .001. Thus, the two groups still
differ significantly in B even after considering its dependence on D.

Next, the multiple group approach is used. We begin by testing the homogeneity of variance
and covariances across groups. This test is conducted by comparing the model with free
covariance matrices and the model with equal covariance matrices for residuals. The results
indicate that the homogeneity assumption should be rejected for the data; %24 (15) = 351.96, p <
.001. Thus, the subsequent analyses are conducted while allowing for different variances and
covariances for the two groups.

When the mean parameters (Y;'s) are allowed to differ across groups, the model gives
satisfactory results: %2 (14) = 7.89, p > .89. The estimates of mean parameters for both groups
are 4.03 and 4.90 for D, and 0.19 and 4.01 for B, respectively. When the mean parameters are
fixed to be invariant across groups, the model fit is not satisfactory; %2 (16) = 66.08, p < .001.
The chi-square difference is 58.19 with 2 degrees of freedom, which is significant at the .001
level. Thus, the equality constraints (i.e., ¥; () =y @ for i = 1 to 2) produce a significant increase
in the chi-square values, suggesting the rejection of the null hypothesis that means are equal across
groups.

Before moving to the second stage, the invariance of the causal path (i.e., B(1) = B(2)) is tested
by comparing the full model without the equality constraint and the restricted model with the
constraint. The full model without the constraint gives the following results: %2 (14) = 7.89, p >
.89. The restricted model with the constraint yields the following results: %2 (15) = 9.35, p > .85.
The chi-square difference is 1.46 with 1 degree of freedom, which is not significant at the .10
level. One cannot reject the hypothesis that the causal path between D and B is invariant across
groups. That is, the assumption of invariant causal paths is plausible for this data set. Subsequent

analyses are thus conducted using the invariant causal path in the model.
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The next step examines the equality of means in B while controlling for the effect of D (see
Step Two in Figure 3). The model allowing for different means of D shows satisfactory results:
x2 (15) =9.35, p > .85, whereas the restricted model hypothesizing equal means for D reveals
unsatisfactory results: %2 (16) = 60.58, p < .001. The chi-square difference is 51.23 with 1
degree of freedom, which is significant at the .001 level. These findings suggest that the
hypothesis of equal means for behavior be rejected even after controlling for the effect of decision.

Note that this chi-square difference test (32 (1) = 51.23) is different from that (x24 (1) =
31.69) in the dummy variable approach (see Table 4). This illustrates that the multiple group
approach and the dummy variable approach differ in handling the two assumptions. In this
example, since we found that the homogeneity assumption is not valid, the multiple group
approach is conducted while allowing for heterogeneous variances and covariances. In contrast,
the dummy variable approach analyzes the data as if the variances and covariances were equal
across the groups when in fact they are not. Thus, the two approaches can yield different results.
Although the final conclusions happen to be the same in this particular case, the two approaches

could suggest different conclusions in other cases.

DISCUSSION

We have seen that both LISREL and PLS models can be used to analyze experimental data.
The question arises: Under what conditions should one model be preferred to the other? A
comparison of estimation methods between the two models would be useful in this regard (Fornell
and Bookstein 1982; Joreskog and Wold 1982). PLS, which uses fixed point estimation (e.g.,
Wold 1965), differs from LISREL which uses maximum likelihood (ML) estimation in its basic
assumptions and principles. The ML estimation in LISREL maximizes the probability of
observing the data given the hypothesized model assuming interval scales and multivariate
normality of variables. However, PLS uses a series of interdependent OLS regressions to
minimize residual variances without making any assumptions with respect to the population or
scales of measurement. Hence, no distributional assumptions are required. The PLS procedure is

also applicable even when the sample size is small. Wold (1986) reports an analysis with a sample
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of 10, and Fornell and Bookstein (1982) use PLS on a sample of 24. In the former study, 28
manifest variables were included in the model. Analyses of such data sets by maximum likelihood
procedures are often not feasible (Wold 1989). Sampling errors or too many parameters to
estimate can yield nonconvergent and improper solutions in LISREL analyses, which make it
difficult to interpret the solutions (e.g., Gerbing and Anderson 1987). In contrast, PLS does not
suffer from nonconvergent or improper solutions (Fornell and Bookstein 1982).

An examination of the preceding assumptions suggests that the use of PLS is preferred over
LISREL when (1) the multivariate normality assumption is violated, (2) the sample size is small,
and (3) nonconvergent or improper solutions are likely to occur (e.g., a complex model with many
parameters). A reviewer noted that the second situation (small sample size) is the most important
one in experimental designs. The assumption of multivariate normality can be relaxed with
elliptical estimation or asymptotic distribution-free estimation (e.g., Browne 1984), but this
requires a large sample size (typically, the sample size must be 200 or more, depending on the
number of variables in the model). Also, nonconvergent or improper solutions are less likely to
occur for large sample sizes (e.g., Anderson and Gerbing 1984). Nevertheless, obtaining a large
sample size might be difficult in typical experimental designs.

Some problems of the PLS approach also need to be mentioned. First, PLS tends to
overestimate loadings and underestimate path coefficients (Dijkstra 1983). In fact, as the proposed
methodology is primarily concerned with path coefficients (which are underestimated), the
significant results in a PLS analysis can be given more credence, because the test would be more
conservative.> Another problem with PLS concemns the interpretation of parameter estimates.
The substantive interpretation of LISREL estimates is clear. In Figure 1A, for example, y1-y3
correspond to the mean differences of dependent variables across the control and experimental
groups, whereas y4-Ye reflect the means of dependent variables for the control group. In contrast,
the parameter estimates in the PLS specification do not have such direct interpretations. Rather,
they are multiplicative components of the means or mean differences, as shown earlier. Still
another problem with PLS applications is that jackknife or bootstrap procedures are needed to

obtain estimates for the standard errors of the parameter estimates, which are potentially subject to
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biases (Dijkstra 1983; Efron and Gong 1983). Furthermore, because it is a limited-information
estimation method, PLS parameter estimates are not as efficient as full-information estimates
(Fornell and Bookstein 1982). Finally, PLS does not provide formal statistical tests or multiple
sample analysis procedures, which are available for LISREL.

We have also shown that the dummy variable approach to step-down analysis makes two
assumptions: (1) homogeneity of variances and covariances and (2) invariance of causal paths.
The homogeneity assumption is often violated and its violation can have serious consequences
especially when the sample size is unequal across groups (e.g., Bray and Maxwell 1985; Kiihnel
1988). Indeed, we have seen that this assumption is rejected for the data used in Bagozzi and Yi's
(1989) step-down analyses. The second assumption can also be problematic, because
experimental manipulations are often designed to influence causal paths among variables, as well
as their means.

The multiple group approach to step-down analysis, which is proposed in this article, does not
make these restrictive assumptions. Instead, it tests these and provides information regarding how
reasonable the two assumptions are. Further, it allows for step-down analysis even when these
assumptions are violated. However, the multiple group approach has several limitations that
deserve mention. It requires a relatively large sample size, because the sample is divided into
experimental groups. If the sample size is too small for each group, improper solutions and
nonconvergence might occur, a greater chance of making a Type II error exists, and asymptotic
properties of the estimates are not obtained (e.g., Bearden, Sharma, and Teel 1982). Thus, the
multiple group approach seems useful for step-down analysis when (1) variances and sample sizes
are unequal across groups, (2) the experimental manipulation influences the theoretical relations
among the dependent variables, and (3) the sample size is large enough for each group.

In this article, we have extended the use of structural equation models in experimental designs
with respect to estimation methods in general and step-down analysis in particular. The analysis
can be accomplished via PLS, which can be used even when certain assumptions for LISREL do

not hold. We have also proposed a step-down analysis procedure which can be used even when
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the data do not meet the two restrictive assumptions implicit in Bagozzi and Yi's (1989)
procedures. ,

Given the two extensions, a question arises naturally: Can PLS be applied to the multiple
group approach to step-down analysis? Unfortunately, the answer is no at this point in time. A
multiple sample analysis, which is necessary for the multiple group approach, is not available for
PLS. Thus, PLS cannot be used for the multiple group approach to MANOVA designs in general
and step-down analysis in particular. Such procedures should be developed in future research.

Still more extensions need to be made to the structural equation approach to experimental data.
For example, one should investigate more complex design issues such as multiple factors and
levels. Such extensions will provide researchers useful insights for making better applications of

structural equation models in experimental designs.
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Footnotes

1 One can show the equivalence of the LISREL and PLS models as follows:
LISREL
Yi=hin+ei=hi( &+ 1282+ 0 +ei=Aiv2 +Aiy1 Dummy +4; { +¢;
PLS Model
Yi=min+&" =mi (+71" &1 +§") + &= mi I+ 7iy1*(1/ng) Dummy + m; {*+ €°
Then, we have the following equations:
Aip=ml
A1 = (/m) 1*
ME+eg=ml* +¢" fori=1to 3.
Since all the parameters of the LISREL model are functions of the parameters in the PLS model,
the models are equivalent in terms of specification.
2 A reviewer suggested that when the homogeneity assumption is violated, two other
alternative than the multiple group approach can be used. One alternative can be used when
variances are heterogeneous. In such a case, one can identify which variable shows heterogeneous
variance (e.g., via Cochran test) and use transformations to stabilize the variance. When the
relationship between the mean and variance is known, one can find a transformation of the
variable, which makes the variance approximately constant. For example, if the standard deviation
is proportional to the mean, one can use the logarithmic transformation. Or if the variable (e.g., y)
follows the Poisson distribution, one can use y1/2 or y1/2 + (y+1)1/2, The resulting variance will
be constant. See Bartlett (1947) or Kendall and Stuart (1968, pp. 88-92) fbr more details. On the
other hand, when the relationship between the mean and variance is unknown, one can examine the
Box-Cox diagnostic plot to select the appropriate transformation (Box and Cox 1964). See the
BMDP manual (1988, pp. 210-211) for an example.
A second alternative is appropriate when covariances are heterogeneous. One can give all
measurement variables unit variance during the estimation and rescale the loadings afterwards to

the original metric, which is implemented in the PLS program (metric = 3). This results in a
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communality maximization described in Lohmoéller's program. According to the reviewer, this
procedure works well in practice when multivariate normality as well as homogeneity of covariance
matrices are not met.

3 Some effort is currently being made to develop formal PLS procedures for the
simultaneous analysis of multiple sample, but they are not yet available (Fornell, 1990, personal
communication), although it is impossible to say at this time when, or even if, the effort will bear
fruit.

4 It should be acknowledged that Bagozzi and Yi (1989) noted that the dummy variable
approach assumes homogeneity like the traditional MANOVA analyses. They also considered a
multiple group approach to other MANOVA designs which can handle violations of the
homogeneity assumption. However, their procedures did not explicitly address the homogeneity
assumption in step-down analyses. Furthermore, the invariance of causal paths was never
mentioned in Bagozzi and Yi's (1989) paper. As a consequence, there is some potential for
misunderstanding among readers. This paper attempts to clarify these issues by explicitly
pinpointing these implicit assumptions and illustrating the consequences of violating the
assumptions.

5 We thank a reviewer for bringing our attention to this point.

6 We thank a reviewer for pointing out this problem with PLS.



APPENDIX
PLS Specification for Figure 1

Number of blocks = 4

Number of cases = 152

Number of dimensions =0

Output quantity = 3377

Inner weighting scheme = 1

Number of iterations = 100

Estimation accuracy =5

Analyzed data metric =4

*Read Matrix, Unit =0, Rewind = 0, Format = (2A4, 4F2.0)

Block N-MV Deflate Direction Model
ZAIl 1 0 Outwards Exogen.
ETA1 1 0 Outwards Endogen.
ETA2 1 0 Outwards Endogen.
ETA3 1 0 Outwards Endogen.
4 Mode A

Path Design Matrix

ZAIl ETAl ETA2 ETA3
ZAll 0.00 0.00 0.00 0.00
ETA1 1.00 0.00 0.00 0.00
ETA2 1.00 0.00 0.00 0.00
ETA3 1.00 0.00 0.00 0.00

*Read Matrix, Unit = 0, Rewind = 0, Format = (2A4, F5.1, 19X, 3(F5.1, 1X))

*The matrix format is optional, because it is specific to each research design.



REFERENCES

Anderson, J. C. and D. W. Gerbing, 1984. The effect of sampling error on convergence,
improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory
factor analysis. Psychometrika 49, 155-173.

Bagozzi, R. P. and Y. Yi, 1989. On the use of structural equation models in experimental designs.
Journal of Marketing Research 26, 271-284.

Barclay, D. W., 1983. Jackknifing in PLS. Unpublished working paper, The University of
Michigan.

Bartlett, M. S., 1947. The use of transformations. Biometrics 3, 39-52.

Bearden, W. O., S. Sharma, and J. E. Teel, 1982. Sample size effects on chi square and other
statistics used in evaluating causal models. Journal of Marketing Research 19, 425-430.

BMDP Statistical Software Manual, 1988. University of California Press, Berkeley, CA.

Box, G. E. P. and D. R. Cox, 1964. Analysis of transformations. Journal of Royal Statistical
Society, Series B 26, 211-252.

Bray, J. H. and S. E. Maxwell, 1985. Multivariate analysis of variance. Beverly Hills, CA: Sage
Publications, Inc.

Browne, M. W., 1984. Asymptotically distribution-free methods for the analysis of covariance
structures. British Journal of Mathematical and Statistical Psychology 32, 62-83. |

Cooil, B., R. S. Winer, and D. L. Rados, 1987. Cross-validation for prediction. Journal of
Marketing Research 24, 271-279.

Dijkstra, T., 1983. Some comments on maximum likelihood and partial least squares methods.
Journal of Econometrics 22, 67-90.

Efron, B. and G. Gong, 1983. A leisurely look at the bootstrap, the jackknife, and cross-
validation. The American Statistician 34, 36-48.

Fenwick, L., 1979. Techniques in market measurement: The jackknife. Journal of Marketing

Research 16, 410-414.



Fornell, C. and F. L. Bookstein, 1982. Two structural equation models: LISREL and PLS applied
to consumer exit-voice theory. Journal of Marketing Research 19, 440-452.

Gerbing, D. W. and J. C. Anderson, 1987. Improper solutions in the analysis of covariance
structures: Their interpretability and a comparison of alternative respecifications.
Psychometrika 52, 99-111.

Joreskog, K. G. and D. Sérbom, 1986. LISREL VI: Analysis of linear structural relationships by
maximum likelihood, instrument variables, and least squares methods, 4th ed.
Mooresville, IN: Scientific Software. |

Joreskog, K. G. and H. Wold, eds. 1982. Systems under indirect observation: Causality,
structure, prediction. Amsterdam: North Holland.

Kendall, M. G. and A. Stuart, 1968. The advanced theory of statistics, Vol 3. Charles Griffin,
London.

Kiihnel, S. M., 1988. Testing MANOVA designs with LISREL. Sociological Methods &
Research 16, 504-523.

Lohméller, J. B., 1984. LVPLS 1.6 program manual: Latent variables path analysis with partial
least-squares estimation. Koln: Zentralarchiv Fur Empirische Sozialforschung, Universitat
zu Koln, Federal Republic of Germany.

Roy, J. and R. E. Bargmann, 1958. Test of multiple independence and the associated confidence
bounds. Annals of Mathematical Statistics 29, 491-503.

Wold, H., 1965. A fixed-point theorem with econometric background, I-II. Arkiv for Matematik
6, 209-240.

Wold, H., 1982. Systems under indirect observations using PLS. In: C. Fornell (ed.), A second
generation of multivariate analysis, Vol. 2, 325-347. New York: Praeger.

Wold, H., 1985. Partial least squares. In: Encyclopedia of statistical sciences, Vol. 6, 581-591.
New York: Wiley.



Wold, H., 1986. Factors influencing the outcome of economic sanctions. In: P. Ibarrda (ed.),
Sixto Rios Honorary Volume, 325-338. Madrid Conejo Superior de Investigacienes
Cientificas.

Wold, H., 1989. Introduction to the second generation of multivariate analysis. In: H. Wold (ed.),

Theoretical empiricism, VII-XL. New York: Paragon House.



Table 1
DATA FOR LISREL AND PLS MODELS

e ___ - ]

Measure n=152

Behavior 1 1.000

Behavior 2 .689 1.000

Behavior 3 .658 941 1.000

Dummy 424 481 508 1.000
Mean 2.204 1.013 2.388 520

S.D. 4.456 1.483 3.491 501




Table 2
MANOVA RESULTS FOR LISREL AND PLS MODELS

Mean differences v1 =3.84 (5.7) 1* = 0.424 (10.3)
T2 = 1.42 (6.7) 1" = 0.481 (9.0)
13 =3.54(12) 1* = 0.508 (9.2)

Other parameters 14 = 0.20 (0.4) m1 = 4.531 (13.7)
s =0.27 (1.8) m = 1.478 (20.0)
Y6 = 0.55 (1.6) 3 = 3.479 (22.9)

mg = 0.500 (312.7)
I = 0.045
I =0.185
I3 = 0.157

a critical ratios are in parentheses.



Table 3
DATA FOR STEP-DOWN ANALYSES

Measure High impedance group (n =73) Low impedance group (n =79)
Behavior 1 1.000 1.000

Behavior2 .774 1.000 .641 1.000

Behavior3 736 .945 1.000 580 .921 1.000
Decision1  .256 .425 .430 1.000 255 173 .171 1.000

Decision2  .263 .426 .430 .907 1.000 263 205 .181 .882 1.000

Mean 206 274 .548 4.027 3.932 4.050 1.696 4.089 4.899 4.760
S.D. 726 .838 1.633 1.462 1.456 5.686 1.620 3.877 1.446 1.398




Table 4
STEP-DOWN ANALYSIS WITH A DUMMY VARIABLE APPROACH

First Stage
Full Model Restricted Model withy; =12 =0
x2 (10) =7.88 22 (12) = 53.85
p=.64 p =.000
v1 =0.86 (3.76)2 Hence: %24 (2) = 45.97
Y2 = 3.20 (6.42) p = .000
Second Stage
Full model Restricted model with ¥ =0
%2 (10) =7.88 2 (11) = 39.57
p=.64 p =.000
Y2 = 2.74 (5.56) Hence: %24 (1) = 31.69
p =.000

a critical ratios are in parentheses.



Table §
STEP-DOWN ANALYSIS WITH A MULTIPLE GROUP APPROACH

Homogeneity Test
Full model

Restricted model with equal variances

22 (0) = 0.00, p = 1.00

First Stage
Full model

x2 (15) = 351.96, p = .000
Hence: %24 (15) = 351.96, p = .000

2 (14) = 7.89, p = .90
1 =4.03 (0.17)2, v1 =4.90 (0.16)
(D =0.19 (0.07), 1@ =4.01 (0.55)

Invariance of Causal Path Test

Full Model

Restricted model with (1) = ;)
x2 (16) =66.08, p = .000
Hence: %24 (2) = 58.19, p = .000

Restricted Model with B(1) = B(2)

2 (14) = 7.89, p = .90
B = 0.18 (0.05), @ =0.58 (0.32)

Second Stage
Full Model

12 (15) =935, p ~ .86
Hence: %24 (1) = 1.46,p > .10

Restricted Model with (1) = 1(2)

¥2 (15) = 9.35, p = .86
1) =-.58 (0.19), 12 = 3.04 (0.59)

x2 (16) = 60.58, p = .000
Hence: %24 (1) = 51.23, p = .000

a standard errors are in parentheses.



Figure 1
LISREL and PLS models for MANOVA for three dependent variables
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Figure 2
LISREL and PLS models for MANOVA on three measures of a latent variable
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Figure 3
Step-down analysis with two latent variables: Dummy variable approach
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Figure 4 ‘
Step-down analysis with two latent variables: Multiple-group approach
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