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Section 1, Introduction

Psychologists are very interested in examining the processes
that govern the body's reaction to stimulus. One theory, developed
by Grice [7], postulates the existence of a growth function which
develops after the onset of stimulus. A response is evoked when
the strength of the stimilus attains a specific level or criterion.
Grice argues that the criterion is random in nature, and in his
"Variable Criterion" theory assumes it to be normally distributed.
In light of this, we consider the growth function to act as a
barrier and we model the criterion by a stochastic process. The
reaction time is viewed as the first passage of the stochastic
process to the barrier, We are interested in estimating the
barrier on the basis of reaction time data.

The following technique is statistically equivalent to a
procedure adopted by Emerson [5]. Assume the criterion X(t), O
< t < o, to be a Brownian Motion process, i.e., a zero mean
separable Gaussian process with P[X(0) = 0] =1 and E[X(tl)X(tz)]
= min (tl’tz)' Let the barrier be a straight line with intercept
-a, a > 0, and slope pu > 0, By the method of images (see Cox
and Miller [3], pp. 220+223), the density of the first passage

time g(tj;a,u) is shown to be the Inverse Gaussian density:

(1.1) g(t;a,n) = a(21rt3)_l/2 exp(—(a—ut)2|2t) >0

0 "otherwise,

The maximum likelihood estimates of a and u are respectively
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The object of this paper is to generalize the estimation
procedure to a continuous piecewise linear barrier while main-
taining the Brownian Motion criterion assumption.

With this generalization, only an integral representation
for the first passage time distribution can be derived. A com-
puter algorithm, which provides maximum likelihood estimates
(mel.e.'s) of the barrier on the basis of first passage times,
is described in Section 3. The likelihood equations are solved
numerically, and conditions to ensure solution are discussed in
Section 4. The asymptotic statistical properties of the
resultant estimators are examined analytically in Section 5. 1In
Section 6 computer experiments are performed to establish the
small and moderate sample size properties of the estimators.
Finally, the estimation procedure is applied to a problem in

psychology which was the initial impetus for the work.
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Section 2, Definition of the Problem

We consider the first passage time distribution of Brownian
Motion to a continuous piecewise linear barrier with intercept
-a, a > 0, and M stages where, at the kth stage between time points
Ty, and T, + the slope of the barrier is W+ For notational

convenience, let

h, =T - T

k k_l, k = l,2,.oc,M—l;

J
C,=-a+ ) wh., J=1,2,...,M-1; and

Theorem 2,1

The density of the first passage time, t time units into the

Jth stage of the barrier, gJ(t;a,H), where p = (ul,uz,...,uM),

is given by

J-1 7-1
(2.1) gy(tia,p) = /GJ(t;yJ_l) kﬂl P (Y r¥Yy_p) dy

for 0 < t < h
and

gl(t;a' E) = Gl(tlyo)

for 0 < £t < h

. J-1 J-1
Notationally, y = (yl,yz,...yJ_l), dy = dyldyz...dyJ_l,

-1 -
[yt >0 = 0L ¥120,7,50, ...y 30},

_ -1/2 _ o 2
P (Y r¥yp_q) = (27h, ) . exp (=(y,_, Y~ hy ) |2hk)'

(1 - exp(-2ykyk-1lhk)),



and

- 2
Y2 exp(=(y;_y-ust) 212e),

_ 3
for k = ]"2""’M’ J = 2’3’.00,M-
Furthermore, we make the restrictions

t >0, Y3 >0, J=1,2,..., M, and Yo = @ throughout.

Proof
First, the result that gl(t;a,g) = Gl(tlyo) is merely a
restatement of equation (1.1). Letting T denote the random

first passage time, we see that
(2.2) PIX(T)) <y;] = PIX(Ty) < yir T > 1]

+ P[X(Tl) < Yy T < Tl]
for any Yi-.

Now, by the strong Markov property for Brownian Motion,

(2.3) 5= PIX(T)) <y l7=t] = (20(2-£)) " Zexp(-(y,-c;) 212 (1-1)),

1

for Yy > Cl.

Also, by the properties of conditional probability,

(2.4)

0
—_— P[X(Tl) < Yir T <t

-
ayl =

9 -
l] . gl(t,a,g) e P[X(Tl) < leT—t]dt.

0 vy

By differentiating (2.2) with respect to Yy using (2.3) and

(2.4), it can be shown with some algebraic manipulation that

9 -

for Yy > 0.

We now have the distribution of X(T1) with T > t.



By stopping the Brownian Motion at Tl and using its Markovian

nature to continue to the second stage of the barrier it is seen

that

— 8

(2.6) g, (t;a,p) = g =0 Gy (Eiy  IF (¥ ry,)dy .

-

The proof of the theorem for the M-stage problem is established

inductively using similar arguments,
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Section 3: The Statistical Estimation Technique and Its
Numerical Implementation

Suppose that the reaction time data has the following form:
Ny observations, tl,l'tl,2""’tl,nl’ time units into stage 1,

n, observations, t2,l’t2,2"°°'t2,n2' time units into stage 2,

and

"M observations, tM,l’tM,Z""'tM,nM’ time units 1into stage M.

We shall assume a is known and seek the m.l.e. ﬁ of 1.

~

A method of estimating a is discussed in Sections 6 and 7. Denote

the log-likelihood of the sample by

n

W

(3.1) LnL(yu) =
"~ iz=1l

i~ =

Ln(gJ(tJ,iJ;a,y))-

J=1

For a maximum of Ln L(yu), the likelihood equations must be

satisfied; i.e.,

BLnL(E) _

0,
Bui

(3.2) for i =1,2,...,M.

Conditions ensuring that a global maximum of Ln L(p) is obtained
are examined in Section 4.

Integral representations for the partial derivatives of the
first passage time density, with respect to |y, are now presented.
This theorem coupled with (3.1l) provides an iptegral representation

for the likelihood equations (3.2).



Theorem 3,1

The notation is that of theorem 2.1.

For Jd = 1,

3Lngl (t;a,n)

- a-yt if i=1
i 0 otherwise,
For J = 2,3,...M,
aLngJ(t;a,E) ) [ Géi)(t;yJ_l) :Ei F]ii)(yk,yk_l)dzJ"l|gJ(t;a,B
e (y?7150] ifio<J
0 otherwise,
where
Féi)(yk,yk_l) = V(Y ryp ) if 1 +#k
(Y Yy~ mhy P (Yyry ) if i =k
k=1,2,...3-1
and
6{M (tiy, ;) = Gy(tiys ;) if i#J
(Yg_3-ust) Gy(tiys_q) if i =4,
Proof

For J = 1, the proof follows by elementary differentiation of
gl(t;a,g). For J = 2,3,...M, the dominated convergence theorem
is applied to allow differentiation through the integral. Examina-
J-1
tion of the derivative of the lntegrand, GJ(t,yJ_l) kgl Fk(yk’yk-l)'

yields the proof of the theorem.

The above representation permits the development of a computer

algorithm to generate the likelihood equations. The algorithm



proceeds to solve the likelihood equations numerically to produce
the m.l.e.'s. A listing of the Fortran program used to implement
the algorithm is available from the author. The basic
procedures followed are outlined below.

The partial derivatives of Ln L(p) involve the sum of ratios
of multiple integrals, which creates a potentially difficult
problem computationally. Fortunately, the Markovian nature of

Brownian Motion ensures that each kernel factor, Fk and G in the

37
multiple integral contains at most two variables of integration.
Consequently, the multiple integrals, expressed iteratively, can
be effectively computed as a sum of double integrals. The num-
erical integration procedure adopted is a repeated Simpson's rule.
The likelihood equations are nonlinear, and so a multivariate
Newton-Raphson scheme is implemented to solve the system
numerically.

In order to apply this technique, the mixed partial derivatives
of Ln L(p) must be computed. A theorem giving the exact repre-
sentation is stated below. Its proof is omitted since it is similar

to that of theorem 3.1.

Theorem 3.2

The notation is that of theorem 3.1.

For J = 1,
2 c e s
) Lngl(t;a,g) {—t if i=s=1
auiaus 0 otherwise,

For J = 2,3,...,M

2
9 Ing (tia, u)

3uiaus




e

wh

an

0

ere

d

3LngJ(t;a, E)

Bui

otherwise,

F]({ils)

G(ils)

(YkrYk_

(t;yJ_l) =

1) =

\.

Py
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i,s)

3Lng (t;a, )

aus

2
[(Yk—Yk_l—ukhk) —hk] .

[(v7_y-uyt)*=t].

if i<J, s«J,

(1)
P Yy _p)

(s)
Fk (Yk ka_l)
Fk (Yk lYk_l )

Fk(yk,yk_l)

With both real and simulated data the algorithm has

very successful,

J-1
(YkrYk_l)dz |9J(t;a,g)

if i = k,
if s = k,
if i =k =
otherwise
if 1 = 3,
if s = J,
if i =g =

otherwise.

proven

Convergence of the numerical procedure is very

fast and usually takes place within three iterations, as

illustrated in Sections 6 and 7.

will be

i+ s

i+ s

S

i# s

i# s

J
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Section 4: Sufficient Conditions for a Maximum of the
Log-Likelihood Function

Let Ht(E) be an MxM matrix whose i--jth element is given
by

32Lng(t;a,g)

Buiauj

subscript is determined by the time value t, measured from 0.

Ht(E)ij =  where the omitted stage

Observe that

oLnL(u) ) o
———— = ) H (... Now, since definiteness of
OU: . £t ~"13
17 all
data
points
t

matrices is closed under addition, the following conjecture would

ensure a global maximum of InL(y) at ﬁ.

Conjecture

Ht(E) is negative definite for all y and for all data
points t.

From the computer algorithm the eigenvalues of Ht(E) could
easily be computed. In every case examined, the eigenvalues
were all found to be negative, implying negative definiteness of
the Ht(E)' Despite this strong numerical evidence, no general
mathematical verification of the conjecture has been obtained;
however, some partial results have been derived. For the one-stage
problem, the conjecture is easily verified by elementary calculus.,
We will now address the problem in the two-stage case. We must

show that
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- -
2 2
o) 9-Lng, (t;a, y) 9"Lng, (t;a, u)
t 3u§ Bulauz
2 2
9 Lng, (t;a, ) 9"Lng, (tia, )
au23”1 aug
1

is positive definite.

As a corollary to theorem 2.1, the joint density of Y,, Y

17 =27

""YJ-l’ and T—TJ_l (where Yi is the level of the Brownian Motion

above the barrier at time Ti' i=1,2,...,J-1, and T is the first
passage time at the Jth stage) is given by

J-1

k=1
Consequently, for J = 2,3,...,M, the joint conditional density of

Yl’Yz""’YJ-l’ given T—TJ_l = t,

J-1
Letting Zi = Yi—l - Yi - uihi for i =1,2,...,J-1 and 2. = Y

theorem 3.2 implies

) Covt[ZiZS] if i # s
d LngJ(t;a,u) C e .
T = Var, [Z.] - h. ifi=s,1#+4
Vart[ZJ] - t if i =g =7,

where the variances and covariances are taken with respect to

=t).

the same conditional density f (XJ_lIT—T
yI-1 J-1

~
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For the two-stage problem, Zl + 22 = -a + ulhl + u2t, SO
V = Vart[Zi] = —Covt[ZlZ2]. Therefore,
hl -V \Y
—Ht(y’) = .
\'4 t -V
This matrix is positive definite if and only if V < (t-l + hIl)_l.

To find V, we need an expression for gz(t;a,g). Algebraically re-
formulating the representation for gz(t;a,g) from theorem 2.1 by
completing the square inside the exponential and collecting terms,

we obtain

(4.1)

¢ -1 1,2 2 2
g, (tia,p) = kyloy- exp(((t “+h;")y” + 2y (uy=uy) + upt + (uy-alhy)™hy)1-2)
.(exp(aylhl) - exp(—aylhl)). dy

where K is a constant.

2

Letting k(y) = exp((ugt + (ul-alhl) hl)|—2) and expressing a

difference of exponentials by an integral with respect to a new
variable, we may rewrite (4.1) as

+1 o

(4.2) 9, (tia,p) = k(p) . w=ll ylo Ye aY|hl-

-1,.-1, 2
exp((t +hll)y + 2y(ul—u2-awlhl))l—2) dydw.

By the change of variables, z = y|s and m = —(ul-uz—awlhl)ls

where s = (t_l+ hIl)-l/2

i and setting my = —(ul—u2+a]hl)s and

m, = -(ul—uz—alhl)s, we have



-13-

722 2
(4.3) g, (tia,p) = k(p) / [ 27 exp((z“-2zm)|-2) dzdm

m=m, z=0

Define
e n 2
(4.4) I (m) = [ z exp((z“-2zm)|-2) dz.
z=0

Expressing V in terms of gz(t;a,g) and using (4.3) and definition

1 1,-1

+h:7)"" if and only if

(4.4), we see that V < (t™ +h]

(4.5)

(I3(my)=T3(m)) (Iy(my)=I) (m)))=(I,(m,)=T,(m;))2=(I, (my)-1, (my)) %0,
For notational convenience let [In] = In(m+x) - In(x), where

m,Xx eR and m > 0. Inequality (4.5) may be expressed as
(4.6) p(m,x) = - [I.1[I,]1 + [1.1% + [I.]1% > 0
g LIty 37 2 1 :

We shall have positive definiteness of _Ht(B) for all pand t

if (4.6) holds on the half-plane m > 0, x e R, It is possible

to show p(m,x) > 0 for x > ¥2 and also for m > 3|x|(x2-l)l(x2—3)

when x < -/3. The region of positivity of p was extended

using a computer grid. For details of these results, see Ball [1].
Unfortunately, it could not be shown mathematically that

p(m,x) > 0 for m > 0 and for all x. 1In the following theoren,

however, it is shown that p(m,x) is positive in a neighborhood of

the x-axis.

Theorem 4.1

For arbitrary x and for m sufficiently close to zZero, we

have p(m,x) > 0.
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Proof

. a _ . .
First note that an In(m) = In+1(m). Using this fact

together with (4.6) and the mean value theorem, p(m,x) will be
positive for arbitrary x provided m is sufficiently close to

zero 1if

(4.7) g(x) = -I,(x)I,(x) + I5(x) + I5(x) > 0 for all x R.

X2 X —t2|2
Define ¢(x) = e [ e dt. Observe that

Io(x) = ¢(x), Il(x) = x¢(x) + 1, and by repeated differentiation
In(x) can be expressed in terms of ¢(x) for all integers n. We

may therefore algebraically reexpress (4.7) as

(4.8) g(x) = (x°-1) 62(x) + 3x ¢(x) + 2 > 0 for all x R.

Since $-g(x) = 2x> ¢*(x) + (5x°+1) ¢(x) + 3x > 0

for x » 0 and g(0) = 2-“/2 > 0, then g(x) > 0 for all x > 0.

Now, since g is a continuous function with g(0) > 0, a sufficient

condition for establishing the theorem will be
g(x) #0 for any x < 0.

We see from (4.8) that

g(x) = 0 only when ¢(x) = (-3x + /x>+8)]2(x>-1).

In fact, it is sufficient to show

o(x) < (-3x - /x°+8)]2(x*-1) for x < 0. This result, which
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is proved in Ball [1], is equivalent to a conjecture of Birnbaum
[2]. A partial verification was constructed by Murty [9] and
the whole conjecture was independently established by Sampford

[11].

Except for numerical evidence, little progress was made for

the general M-stage problem.
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Section 5: Statistical Properties of the Estimators

The question of sufficiency cannot be conveniently addressed
in the present context since the density can only be expressed as
an integral representation. According to Kendall and Stuart [8],
without sufficiency the most important properties of the m.l.e.'s
are the asymptotic ones; consequently, we study them. It is
well known that under fairly general conditions the likelihood
equations admit a consistent estimator of the true parameter; for
example, see Cramer [4]. For the present context, we state without
proof the optimal asymptotic properties of the m.l.e.'s and list
the reqularity assumptions which were required. The proof is a
multivariate generalization of the work of Cramer [4] and Rao [10].

For details, see Ball [1].

Regularity Assumptions

Let £ = f(y;p) be a univariate density in y depending on the

multivariate parameter p = (ul,uz,...,um).

oLnf, 32Lnf and 83Lnf

Al, For all vy, aui a“ia“j aulapjauk

exist for i,j,k =

1,2,...,M and for p in some open neighborhood, A, containing the

true parameter jy,

2

A2, For all p A, IEE— and I—E—E——I are bounded by
~ ou. AU, OY.
i 177
33Lnf
integrable functions for i,j = 1,2,...,M and |———| is

aulaujauk
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bounded by a function H which has finite expectation with respect

to the density f(y;go).

2

O"Lnf(yiyy) th
A3, E [ ] is the i-j element of a negative definite
Yo Buiau.
]
matrix.
2
o Lnf(yiyg) _ .
Ad, EE [ Buiauj ] is continuous in pat p = I

The notation Eu[-] refers to expectation with respect to the

density £(y,un).

According to Zacks [13], a consistent asymptotically normal
estimator is best asymptotically normal if its asymptotic variance-
covariance matrix approaches I—lln as the sample size n + o,

h

The symbol I denotes the Fisher Information matrix and its i—jt

element is given by

2
3"Ln g(t,a,uy)

We now state our optimality theorem.

Theorem 5.1

For the continuous M-stage piecewise linear barrier, the
likelihood equations

BLnL(E)

T =0and i=1,2,...,M admit a strongly consistent,
i
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eventually unique set of joint best asymptotically normal estimates

of the true parameter y,.
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Section 6: Experimental Study on the Statistical Properties of
the Estimators for Moderate and Small Sample Size

Although the asymptotic properties of the m.l.e.'s are
highly optimal, we cannot be sure that the estimation procedure
produces satisfactory estimates for a sméll or moderate sample
size. In order to examine this question, a Monte Carlo simulation
experiment has been performed.

Pseudo-random numbers were generated by the Fortran subroutine
URAND, which is described in Forsythe, Malcolm, and Moler [6],
Chapter 10. This subroutine is a congruential generator; its

integer sequence on the IBM system is generated by

x;,, = 834,314,861x, + 453,816,693 (mod 231y,

This subroutine yields pseudo-random numbers with a uniform dis-
tribution on [0,1]. By appropriate transformation, pseudo-random
variates from a one-stage first passage time density with para-
meters a = 3.0 and ¢ = 1.0 were produced. Two particular ex-
periments were examined, one with a small sample size of twenty-
five and the other with a moderate sample size of fifty. Both
experiments involved a five-stage barrier where the first four
stages had a length of one time unit and the last stage was
open-ended. In each case, 200 repetitions of the experiment
were performed. On every run the intercept for the barrier was
estimated by using (1.2), and the initial slopes of the barrier,
before iteration, were set equal to the q given by (1.3).
Careful examination revealed that oﬁ every run satisfactory

convergence of the algorithm occurred within three iterations of
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the Newton-Raphson procedure. A summary of the results of the
experiments are now tabulated. Table 1 contains elementary
statistics and Table 2 lists the correlation matrices of the
resultant estimates.

For both experiments, and especially for the one using
moderate sample size, the estimates are quite satisfactory with
small bias and variance. This indicates that for both small and
moderate sample size the algorithm furnishes reasonable solutions

to the problem.
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Section 7: Application

We now present a brief analysis of one experiment performed
by John Schnizlein of the Department of Psychology, the University
of New Mexico. For further details, see Schnizlein [12].

Human subjects in a sound-proof chamber receive a sonic
stimulus in the form of a 60 db (decibel) tone, and their reac-
tion times to response are recorded electronically to millisecond
accuracy. The sample size in a particular experiment was 360,
but, in general, some of the data were eliminated by practical
considerations. Fortunately, the invalid measurements
constituted only a small percentage (< 5 percent) of the sample.

On the basis of psychological grounds, for this experiment
no reaction time was expected to be less than 100 m.s. (milli-
seconds) or greater than 200 m.s. Accordingly, the effective
region was begun at time 0 and split into four equal stages of
length 20 m.s. each, with the fifth stage being left open-ended.
The intercept of the barrier was estimated by (1.2) and the
initial slope values were all set equal to the p given by
(1.3). satisfactory convergence of the numerical procedure was
attained within three iterations; the results are given in Table
3. This physical example indicates the utility of the computer

algorithm in an experimental setting.,
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Section 8: Summary

The study of reaction to stimulus encompasses a wide area in
the field of psychology. This paper has investigated the special
area of estimating growth functions (barriers) in response to
stimulus. A statistically sound procedure has been developed to
estimate these growth functions and the computer algorithm used

to implement the procedure is available.
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Statistic

Statistic

Mean

1.000

1.150

1.060

.936

1,255

Mean

.976

1,056

1.028

.938

1.117

Elementary Statistics

Variance

127

.415

.354

.553

.448

Variance

.073

.192

.140

.246

.148

Table 1

Mean Square

Error

.356

.661

.598

. 746

.716

Mean Square

Exrror

271

442

.375

.500

.402

Skew

-.069

.667

-.106

-.047

1.847

Percentage

Bias

+15%

+25%

Sample Size N

Skew

-.497

.639

.169

422

1.438

Percentage

Bias

-2%

+6%

+128%

Sample Size N

25

50



Correlations Matrices for

Table 2

Hy Hy M3 Hy Mg
1,000 .567 .461 .315 .378
- .567 1,000 - ,293 - ,064 .058
.461 .293 1,000 - .235 .073
.315 .064 - ,235 1.000 .186
.378 .058 073 - .186 1.000

Sample Size

N = 25

ﬁl i12 i\13 i\14 ﬁ5
1.000 .589 421 .404 .431
- .589 1.000 - .402 - ,015 .018
421 .402 1,000 - .186 .059
.404 .015 - ,186 1,000 .011
.431 .018 - .,059 .011 1,000

Sample Size

N = 50




3.326

1.407

.909

Table 3

Maximum Likelihood Estimates

uy = 1,578
ﬁ4 = 1,826
Wg = 3.008

Sample Size

N

347



