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Abstract

We propose a new criterion for decision-making under uncer-
tainty. The criterion is based on a certainty equivalent (CE) of a
random variable Z,

Su(Z) =sup {z+ EZv(Z -2)}

where v(-) is the decision maker’s value-risk function. This CE is
derived from considerations of stochastic optimization with re-
course, and is called recourse certainty equivalent (RCE). We
study (i) the properties of the RCE, (ii) the recoverability of v(-) from
Sy(-) (in terms of the rate of change in risk), (iii) comparison with
the “classical CE” u~!Eu(-) in expected utility (EU) theory, and
Yaari’s CE in his dual theory of choice under risk, (iv) relation
to risk-aversion and (v) applications to models of production under
price uncertainty, investment in risky and safe assets and in-
surance. In these models the RCE gives intuitively appealing answers
for all risk-averse decision makers, without the pathologies inherent in
the EU model, where the Arrow-Pratt indices are used to exclude
certain risk averse utilities leading to implausible predictions.
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Abbreviations and special notation

CE = certainty equivalent page 2
Cy = classical CE page 3
DM = decision maker, decision making

D(T) = distribution functions with compact support page 25
D{z\,z2,23} page 22
EU = expected utility page 2
MPIR = mean preserving increase in risk page 22
MPSIR = mean preserving simple increase in risk page 22
M, = u-mean CE page 3
RCE = recourse CE page 5

RV = random variable
SP = stochastic program, stochastic programming

SPwR = stochastic programming with recourse page 7
Sy, = the RCE page 5
U = class of normalized utility functions page 10
[x,p] page 17
(2,p) page 18
Y; = Yaari’s CE page 3

1 Introduction

Decision making under uncertainty presupposes the ability to rank
random variables, i.e. a complete order > on the space of RV’s, with
X > Y denotes X preferred to Y. If the preference order > is given
in terms of a real valued function CE(-) on the space of RV’s,

X »Y & CEX) > CE(Y) foralRVs X, Y

we call CE(Z) a certainty equivalent (CE) of Z, corresponding to the
preference > . In particular, a DM is indifferent between a RV Z and a
constant! z iff z = CE(2).

In the expected utility (EU) model, the DM is assumed to have a util-
ity function u(-) which typically is strictly increasing (more is better)
and concave. The DM’s preference is then given by

X>Y & EuX)2EuY) (1.1)
'Regarded as a degenerate RV.




= uEu(X)>ulEuY),
Accordingly we define the classical certainty equivalent (CCE) by
Cu(Z2) = u"1Eu(2) (1.2)

Another CE, suggested by expected utility, is the u-mean CE M,(-) defined
implicitly by
Ew(Z-My(2))=0 forallRV's Z (1.3)

M, does not induce the same order? as the classical CE C,, i.e. the two
CE'’s are not equivalent.

Expected utility theory is “the major paradigm in decision making ...,
It has been used prescriptively in management science (especially deci-
sion analysis), predictively in finance and economics, descriptively by
psychologists ... . The EU model has consequently been the focus of much
theoretical and empirical research ... ”, [32].

Empirical tests (e.g. [1], [2] and [17]) revealed systematic violations
(also called “paradoxes”) of the EU model axioms which were traced to the
linearity in probabilities of the expected utility. Alternative theories of
decisions under risky choices were proposed which avoid the said paradoxes,
e.g. the prospect theory of Kahneman and Tversky [17], the local utility
theory of Machina [22] and Yaari’s dual theory [38]. In particular, Yaari's
risk aversion is compatible with linearity in payments3.

Given a monotone function f : [0,1] — [0,1] with f(0) = 0 and f(1) = 1,
Yaari’s certainty equivalent Yy(') is

Y)(2) = / f(1~ F (1))t (1.4)

where F',, is the cumulative distribution function of the RV Z. In particular,

both Yaari’s CE (1.4) and the u-mean CE (1.3) are shift additive in the
sense that

CE(Z+c)=CE(Z)+¢ forall RV Z and constant ¢ (1.5)

There are a utility u(-) and RV’s X,Y such that Eu(X) > Eu(Y) but M.(X) <
M (Y).

3¢In studying the behavior of firms, linearity in payments may in fact be an appealing
feature”, [38, p. 96]. Indeed, a firm which divides the last dollar of its income as dividends,
cannot be equated with the proverbial rich who value the marginal dollar at less than that.
Yet both the firm, and the rich, can be risk averse.




In the EU model a risk-averse decision maker, i.e. one for whom a RV
X is less desirable than a sure reward of EX, is characterized by a concave
utility function u. The concavity of u also expresses the attitude towards
wealth (decreasing marginal utility). Thus the DM’s attitude towards
wealth and his attitude towards risk are “forever bonded together”, (38,
p. 95]. Certain difficulties with the EU model are due to this fact. In Yaari’s
dual theory [38], and in the RCE model proposed here, the attitude towards
wealth and the attitude towards risk are effectively separated.

The above mentioned alternative theories, which lost much of the ele-
gance, simplicity and tractability of EU, address the discrepancies between
the EU model axioms and actual choices under risk as observed in psycho-
logical tests. In this paper we focus on the predictive usage of the EU
model, which is dominant in economics and finance. Here too the EU model
has a mixed record, giving valid predictions, as well as implausible ones.

To be specific, we consider two models of economic behavior under un-
certainty, a competitive firm under price uncertainty [31],[21] and
investment in safe and in risky assets, [3],(9],{15].

For the competitive firm, the EU model yields the fundamental result,
that optimal production under uncertainty is less than that under (compa-
rable) certainty. It also gives a sensible condition (necessary and sufficient)
for production to start, [31).

One would however expect that an increase in the selling price will result
in increased production, but the EU model claims the opposite for certain
risk-averse utilities. The dependence® of the optimal output on the fixed
cost is another source of difficulty.

In the investment model, diversification is prescribed by the EU model
under a natural condition. An impressive illustration of the predictive power
of the EU model is the following result of Tobin, [36], which holds for all
risk-averse utilities:

“If a is the demand for risky investment when the return is a
random variable X, then a/1+ A is the demand when the return
is the random variable (1 + A)X™.

In the investment model, when the rate of return of the safe asset increases,
one would expect part of the investment capital to switch from the risky
asset to the safe asset. However, the EU model allows the opposite behavior

‘Called “paradoxical” in [21] and “seemingly paradoxical” in [31].



for certain risk-averse utilities’. Also it was established empirically® that
the elasticity of demand for cash balance is > 17, but here again the EU
model leaves open the possibility of elasticity < 1 for certain risk-averse
utility functions.

To avoid these pathologies (of the EU model), additional hypotheses
are customarily imposed on the utility function u(:). These hypotheses are
stated in terms of the Arrow-Pratt absolute risk-aversion index

_ ,ull( z)
T(Z) = -u'—(ZY (1.6)

and the Arrow-Pratt relative risk-aversion index
R(z) = 2r(2) (1.7)

In the investment model, a typical postulate of Arrow (3] is:
“r(+) is non-increasing” (1.8)

The Arrow investment model [3] does not consider the effects of the rate
of return p of the safe asset. This question was addressed in [15] where
(p. 1068) it was shown that, even with r non-increasing, it is possible for p
to increase and for investment money to shift from safe to risky assets! A
sufficient condition to exclude this possibility is

“r(-) is non-decreasing or R(:) < 1” (1.9)

Both (1.8) and (1.9) are conditions on the 3rd derivative of the utility u,
which may be difficult to check. Moreover, the only risk-averse utility func-
tion with r(-)"both non-decreasing and non-increasing is the exponential
utility.

The CE advocated here is the recourse certainty equivalent (RCE)

Su(Z):=sup {z + Ezv(Z -2)} (1.10)

where v(+) is the value-risk function of the DM, mapping the possible (yet
to be realized) values z of a RV, into their values v(z) to the DM, at the time

3To quote from [15]: “such optimal behavior appears to be unlikely”.

®See references in (3, p. 103]. '

"“Thus, the notion that security, in the particular form of cash balances, has a wealth
elasticity of at least one, seems to be the only remaining explanation of the historical
course of money holdings”, 3, p. 104).



of decision (before realization). We propose the RCE S, as a criterion for
decision making (DM) under uncertainty i.e. for ranking RV’s. The given
value-risk function v induces a complete order > on RV’s,

XrY & 5,(X)2S5(Y) (1.11)

in which case X is preferred over Y by a DM with a value-risk function v.

Any new approach to DM under uncertainty should be measured against
the standards of the classical expected utility (EU) approach. “What mat-
ters is whether the model offers higher predictive accuracy than competing
models of similar complexity ... . What counts is whether the theory ...
predicts behavior not used in the construction of the model”, [32].

The advantages of the RCE approach, for predictive purposes, are demon-
strated here by reexamining the above classical models of production and
investment, and by studying a classical problem of optimal insurance cover-
age. In particular, the RCE approach (i) retains the successful predictions
of the EU model (as listed above), (ii) does not require restrictive (third-
derivative) conditions on u (thus the conclusions are valid for the whole class
of risk-averse utilities), and (iii) is mathematically tractable, comparable in
simplicity and elegance to the EU model.

We derive the RCE, using considerations of stochastic programming
with recourse, in § 2. The main properties of the RCE are collected
in Theorem 2.1. One such property is shift additivity, which holds for
arbitrary value-risk functions v,

Su(Z +c)=S,Z)+c forall RV Z and constant c. (1.12)

Thus the BCE separates deterministic changes in wealth from the ran-
dom variable which it evaluates. As mentioned above, shift additivity holds
also in Yaari's dual theory of choice [38], and in the u-mean CE (1.3).
In contrast, the classical CE (1.2) is shift additive only for linear and ex-
ponential utilities. For this reason, certain results (discussed in [4]), which
in the EU model hold only for the exponential utility, hold in the RCE
model for arbitrary utilities. Examples are the bridging of the gap between
the buying and selling values of information, and the well known separation
theorem in portfolio selection®.

In Theorem 2.1 it is also shown that risk aversion in the sense of

S«(Z)< EZ forallRV Z
$The proofs in [4] use only shift additivity.
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is equivalent to®
v(z)<z forall =z

which, for normalized value-risk functions v (i.e. v(0) = 0 and v'(0) = 1) is
a weaker requirement than the concavity of v(:).

In Section 3 we discuss the recoverability of the value-risk function v(:)
from the RCE S,. It is shown that v(-) measures the rate of change in
the RCE, when moving from a sure situation to a risky one (Theorem 3.1).
Besides rendering a precise meaning of the value-risk function, this also
suggests an empirical way to construct it from observed behavior.

It is natural to ask, in the RCE model, what notion of risk-aversion
corresponds to the concavity of v(:). The answer is given in Section 4, where
we show that v(-) is concave iff the RCE S,(-) exhibits risk-aversion in the
sense of Rothschild and Stiglitz [28], i.e. aversion to mean preserving
increase in risk.

Certain functionals, associated with the RCE and useful in applications,
are studied in Section 5. Section 6 is devoted to production under price
uncertainty. The next two sections deal with investment in safe and in risky
assets: The Arrow model (3] in Section 7, and a slight generalization in
Section 8. An application of the RCE to the problem of optimal insurance
coverage is discussed in Section 9.

In the last section, § 10, we attempt to explain the success of the RCE
theory in making plausible predictions with fewer assumptions than the EU
theory.

2 The Recourse Certainty Equivalent

A decision under uncertainty, as the name implies, is a decision made
before the realization of the random variable in question. The consequences
of this (apriori) decision depend on the (posteriori) realization. A rational
decision maker must weigh these consequences according to their likelihood
and value.

This is the rationale for stochatic programming with recourse (SPwR ).
or two-stage stochastic programming, proposed in 1955 by G. Dantzig
(10], see also Dantzig and Madansky [11] and Beale [5]. For illustration,
consider the problem

max {f(z): o(z)< 2} (2.1)

9We acknowledge the help of the referees in clarifying this point.




Here:

z - decision variable,

Z - budget,

g(2) - the budget consumed by z,

f(2) - the profit resulting from z.
If Z is random then the apriori decision z may violate the (stochastic) con-
straint

9(2)< 2 (2.2)

for some realizations of Z. In SPwR the optimal decision 2* is determined by
considering for each realization of Z a second stage decision y, consuming

h(y) budget units and contributing v(y) to the profit. Thus 2* is the optimal
solution of

max {f(2)+ £, (max o00): 90 +h0S D)} (29)

The success of SPwR stems from the fact that it takes into account the trade
off between greed (profit maximization) and caution (honoring the budget
constraint).

In those cases where 2, y are scalars (e.g. levels of production), A(:) is
monotone increasing (“more costs more”) and v(-) is monotone increasing
(“more is better”), we can rewrite (2.3) as

max {f()+ B, (max (o): ) 4v<2))} (9

where y, v correspond in (2.3) to A(y), v o h~! respectively. If v is mono-
tonely increasing then (2.4) is equivalent to:

max {f(2) + E ; v(Z - g(2))} (25)

in which y has been eliminated. The optimal value in (2.5) is the “SPwR
value” of the SP (2.1).

In this paper we use the SPwR paradigm to “evaluate” RV‘s. Our thesis
is that assigning a value to a RV is in itself a decision problem. Thus,
the “value” of a RV Z to a DM is the “most that he can make of it”, i.e.

value of Z = max {2:2< 7} (2.6)

and we interpret (2.6) as the “SPwR value” which, by analogy with (2.5),
is the RCE (1.10)
sup {z + E'Zv(Z -2)}
z

8



Here v(z) is the current (before realization) value of the realized value z.
We call »(-) the value-risk function.

Remark 2.1 Another possible interpretation of (2.6) is
max {z: u(z) < EZu(Z)} (2.7)

where u(-) is a utility function. For monotonely increasing u(-), the optimal
value of (2.7) is then the classical certainty equivalent (1.2). The difficulties
of modelling stochastic constraints by utility surrogates, such as the above
or others, have been noted elsewhere, see [20]. In particular, the formulation
(2.7) does not allow trade off between “greed” and “caution” as in (1.10).

Remark 2.2 Note that S,(Z) can be viewed as a temporal induced pref-
erence functional in the sense of Kreps and Porteus [19], see also [24], but
unlike the multiperiod setting in the above references we have here a sin-
gle period. However, in this single period there are two “periods”, or time
instants, induced by risk: The instant before the realization of the RV and
the instant after. The time separation between these instants is irrelevant
for our purposes.

We list now several assumptions on v(:) which are reasonable, and useful for
our purpose.

Assumption 2.1

(vl) v(0)=0

(v2) () is strictly increasing

(v3) v(z)<zforallz

(v4) v(-) is strictly concave

(v5) v is continuously differentiable

Remark 2.3 By Assumption 2.1(v1),(v2)

v(z) < 0 for <0,

thus v(-) can also be viewed as a penalty function, penalizing violations
of the constraint
2<2



Of particular interest is the following class of value-risk functions

Y=dp: ! strictly increasing, strictly concave, continuously (2.8)
R differentiable, v(0) =10, v'(0)=1 ’

which, for the purpose of comparison with the EU model, can be thought
of as normalized utility functions!®,
The question of the attainment of the supremum in (1.10) is settled, for

any v € U, in the following:

Lemma 2.1 Let the RV Z have support [zmin, Zmax), With finite zmn and
Zmax- Then for any v € U the supremum in (1.10) is attained uniquely at
some zg,

Zmin < 25 < Zmax, (29)
which is the solution of
Ev(Z -25) =1, (2.10)
so that
Su(Z) =25 + Ev(Z - 25) (2.11)

Proof. Note that Z — zpmin > 0 with probability 1. Also v'(-) is decreasing
since v is concave. Therefore

EV(Z = zmin) S EV(0) =1
Similarly

Ev'(Z = 2max) 2 EV'(0) =1 .
Since v’ is continuous, the equation!!

Ev(Z-2)=1

has a solution zg in [Zmin, Zmax), Which is unique by the strict monotonicity
of v'. Now zg is a stationary point of the function

f(z)=z+EwZ -2) (2.12)

which is concave since v € U, see (2.8). Therefore the supremum of (2.12)
is attained at zg. O

1%For concave v the gradient inequality
ofz) < 9(0) + ¥/(0)2

shows that all v € U satisfy (v3) of Assumption 2.1.
!1This equation is the necessary condition for maximum in (1.10). Differentiation “inside
the expectation” is valid if e.g. v’ is continuous and Ev'(-) < o0 , see 8, p. 99).

10



Theorem 2.1 (Properties of the RCE)
(a) Shift additivity. For any v: R — R, any RV Z and any constant c
So(Z+¢)=5y(2)+¢
(b) Consistency. If v satisfies (v1), (v3) then, for any constant ¢ '2,
Su(e)=c¢ (2.13)
(c) Subhomogeneity. If v satisfies (v1) and (v4) then, for any RV Z,

1
A

(d) Monotonicity. If v satisfies (v2) then, for any RV X and any
nonnegative RVY,

Su(AZ) is decreasingin A\, A >0

S(X +Y) 2 5.,(X)

(e) Risk aversion. v satisfles (v3) iff
S«(Z)< EZ forallRV’sZ (2.14)
(f) Concavity. If v € U then for any RV’s Xo, Xj and0< a < 1,
Su(aXi+ (1 -a)Xo) 2 aS,(X1) + (1 - a)Sy(Xo) (2.15)

(g) 2nd order stochastic dominance. Let X, Y be RV’s with compact
supports. Then
Su(X)2S(Y) forallvel (2.16)

if and only if
EvX)>2 Ev(Y) forallvel (2.17)

Proof. (a) For any function v : R — IR,

S(Z+c) = sup{z+Ev(Z +c-2)}
= c+s11p{(z—c)+Ev(Z—(z—c))}=c+5,,(Z)

2Considered as a degenerate RV.
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(b) For any constant c,

Su(c)

sup {z +v(c - 2)}

< sup{z+(c-2)} by(v3)

¢
Conversely,

Su(e) 2 {e+o(c-c)}
= ¢ by(vl)

(c) Forany v: IR — R and A > 0 define vy by
() = §v(,\z), Ve

Then )
Su(2) = X wW(AZ), forall RV Z,

as follows from,

Su(Z) = sup {z+ %Ezv(/\(Z -2)}

1
= X ,,(/\Z )
It therefore suffices to show that
vA(2z) is decreasingin A, A >0

Indeed, let
0< A <A
By the concavity of v it follows, for all z,

v(A22) — v(M2) < v(A12) = v(0)
A2 = A\ - M

and by (v1)
v(A22)  v(A12)
A TN

12

-Al- sup{z + Ep(0Z - 9} (3= 1)

(2.18)

(2.19)



S(X+7Y)

sup {2+ Ev(X +Y - 2)}
> sup {z+ Ev(X - 2)} by (v2)

(e) If v satisfies (v3) then for any RV Z,
Su(Z) = sup{z+ Ev(Z - 2)}
< sup{z+E(Z-2)}=EZ

Conversely, if for all RV's Z
S«(2)< EZ
then, for any RV Z and any constant z,

z+ Ev(Z - 2)
. Ev(Z -2)
.. Ev(2)

EZ
E(Z-2)
EZ

IN IN N

proving (v3).
(f)Let 0 < @ < 1,and X, = aX; + (1 — a)Xo. Then by the concavity of v,
for all zp, 21,

Ev(Xq —az1 — (1 -a)z) 2 aEv(X; - 21) + (1 = @) Ev(Xo - 20)

Adding az; + (1 — a)zp to both sides, and supremizing jointly with respect
to 21, 29, we get

Su(Xa) 2" sup {afa + Eo(Xi - 2]+ (1 - @) [z0 + Ev(Xo - z0)]}
= aS,(X1)+ (1 - a)S,(Xo)
(g) (2.17) => (2.16). Since each v € U is increasing, (2.17) implies
2+ Ev(X-2)22+Ev(Y-2) Vz,andVveU

and (2.16) follows by taking suprema.
(2.16) => (2.17). Let zx, 2y be points where the suprema defining S,(X)
and S,(Y) are attained, see Lemma 2.1. Then, for any v € U,
Su(X) = zx+ Ev(X-2x)2 2y + Ev(Y - zy), by (2.16)
> zx + Ev(Y - zx)

13



Therefore
Ev(X - 2x) 2 Ev(Y - zx) forall v e U, implying (2.17). O

Remark 2.4 Theorem 2.1 lists properties which seem reasonable for any
certainty equivalent. Property (b) is natural and requires no justification.
The remaining properties will now be discussed one by one.
(a) Note that shift additivity holds for all functions v, i.e. it is a generic
property of the RCE.

To explain shift additivity consider a decision-maker indifferent between
a lottery Z and a sure amount S. If 1 Dollar is added to all the possible
outcomes of the lottery, then an addition of 1 Dollar to S will keep the de-
cision maker indifferent.
(c) An important consequence (and the reason for the name “subhomogene-
ity”) is

Su(AZ) < ASy(Z), foralRVZ and A > 1

Thus indifference between the RV Z and its CE S,(Z) goes together with
preference for AS,(Z) over the RV AZ, for A > 1. This is explained by

E(\2) = \EZ
Var(AZ) = A*Var(Z) > AVar(2) ifA>1

An interesting result, in view of (c) and (e), is that for v € U,

) 1
um, ¥

(d) If v satisfies (v1) and (v2), and if the RV Z satisfies Z > z,;; with
probability 1, then

S.(A2) = EZ

Su(2) 2 zmip (2.20)

This follows from part (d) by taking X = zp,;; (degenerate RV) and Y =
Z - znin-

(e) In the EU model, risk aversion is characterized by the concavity of the
utility function. In the RCE model risk aversion is carried by the weaker
property v(z) < z, Vz. We show in § 4 that concavity of v corresponds to
strong risk aversion in the sense of Rothschild and Stiglitz, [28].

(f) The concavity of Sy(-), for all u € U, expresses risk-aversion as aversion to
variability. To gain insight consider the case of two independent RV’s X, and
Xo with the same mean and variance. The mixed RV X, = aX;+(1-a)X,

14



has the same mean, but a smaller variance. Concavity of S, means that the
more centered RV X, is preferred.

The risk-aversion inequality (2.14) is implied by (f): Let Z, Zy, 2, ...
be independent, identically distributed RV’s. Then by (f),

S =3%) > %gsu(z;)
= 54(2)

As n — 00, (2.14) follows by the strong law of large numbers.

In contrast, the classical CE u~! Eu(-) is not necessarily concave for all
concave u.
(g) In general, for a given u € U,

Eu(X) 2> Eu(Y) (2.21)

does not imply
54(X) 2 54(Y) (2.22)

i.e. (2.21) and (2.22) may induce different orders on RV’s, see [7]. Note
however that in (2.16) and (2.17) the inequality holds for all 4 € & '3, This
defines a partial order on RV’s, the (2nd order) stochastic dominance, 16].

Example 2.1 (Exponential value-risk function) Here

w(z)=1-€"*, Vg (2.23)
and equation (2.10) becomes Ee~%%+* = 1, giving 25 = - log Ee~Z and the
same value for the RCE

Su(Z) = -log Ee~? (2.24)

A special feature of the exponential utility function (2.23) is that the classical
CE (1.2) becomes
u"'Eu(Z) = - log Ee~?

showing that for the exponential function, the certainty equivalents (1.10)
and (1.2) coincide.

131n which case Y is called riskier than X.
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Example 2.2 (Quadratic value-risk function) Here!*
1,
u(2)=z- 55 % <1 (2.25)
and for a RV Z with zmax < 1, EZ = p and variance o?, equation (2.10)

gives zg = u, and by (2.11)

Su(2) = p - %a2 (2.26)

Corollary 2.1 In both the exponential and quadratic value-risk functions

s..(f: Z) =Y. S«(Z) (2.27)
=1 i=1

for independent RV’s { 2y, Z,, ... , Z,}}% O

Example 2.3 For the so-called hybrid model ([4],/33]) with exponential
utility u and a normally distributed RV Z ~ N(u, o?),

1
Su(Z)=p- 502

Example 2.4 (Piecewise linear value-risk function) Let

_ ) Bt t<o
v(t)-{at’ £>0 0<a<l<p (2.28)

If F is the cumulative distribution function of the RV Z, then the maximizing
z in (1.10) is the 4=2-percentile of the distribution F of Z:

.« _p-1l-a
Z=F (ﬂ-d)

and the RCE associated with (2.28) is

S.(2) =8 / " LdF(t) +a / tdF ().

4The restriction z < 1 in (2.25) guarantees that u is increasing throughout its domain.
3The classical CE (1.2) is additive, for independent RV's, if u is exponential but not if
u is quadratic.

16



The following result is stated for discrete RV’s. Let X be a RV assuming
finitely many values,

Prob{X =z} = p;i (2.29)
We denote X by
X = [x,p], x=(21,22,... yZn), P = (P1sP2y.-+ +Pn) (2.30)
The RCE of [x, p] is
Su([%,p]) = max {z + Y v(zi - 2)p} (2.31)

1=1
We consider S,([x,p]) as a function of the arguments x and p.

Theorem 2.2

(a) For any function v: R — IR, and any x = (z,,22,... ,Z5), the RCE
Sy([x,p]) is convex in p.

(b) For v concave, and any probability vector p, the RCE S,([x,p]) is
concave in X.

Proof. (a) A pointwise supremum of affine functions, see (2.31), is convex.
(b) The supremand

n
z+ Y piv(zi - 2)

1=1

is jointly concavein z and z. The supremum over z is concave in z, [27]. O

We summarize, for a RV [x,p], the dependence on p and x, of the ex-
pected utility Fu(-) and 3 certainty equivalents.

As a function As a function
| of p of x
Eu, u concave linear concave
u~!Eu, u concave convex ?
Yy (1.4) convex linear
Sy convex concave (if v is concave)
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3 Recoverability and the Meaning of v(-)

In § 2 we studied properties of S, induced by v. This section is devoted to
the inverse problem, of recovering v from a given S,,.

The discussion is restricted to RCE’s S, defined by v € U. For these
RCE’s, we find v € U satisfying (1.10).

Our results are stated in terms of an elementary RV X

X @)
which we denote (z, p). For this RV,
Su((z,p)) = sup {z +pv(z - 2) + Pv(-2)} (3.2)
which we abbreviate S,(z, p).
Theorem 3.1 Ifv € U then
o(2) = 5z lmo (33)

Proof. For v € U the supremum in (3.2) is attained at z = z(z, p) satisfying
the optimality condition (2.10)

pvl(z - z(z,p)) + pv'(—z(z,p)) =1 (3'4)

which, for p = 0 gives
v'(=2(z,0)) =1

and since v € U,

%(z,0)=0 (3.5)
Now, by the envelope theorem (appendix A),
95y(z,
2D = o(a - 5(a,) = o -+(2,p) (36)

and (3.3) follows by substituting (3.5) and v(0) = 0 in (3.6). O

To interpret this result consider an RCE maximizing individual who
currently owns 0 $, and is offered the sum z with probability p. The resulting
change in his RCE is

A(z,p) = Sy(z,p) = Su(z,0)
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E{(z,p)} = pz

pv(2)
tangent to Sy(z,:) at p=0

slope = v(z) = 8—3-"5(5-'9-

p

Figure 3.1: Recovering v(z) from S,(z, p)

and the rate of change is ﬁ%—'ﬂ. Theorem 3.1 says that this rate of change,
for an infinitesimal change in risk (p — 0) is precisely v(z), the value-risk
function evaluated at z.

Note that for a risk-neutral DM the added value A is E{(z,p)} = pz.
We illustrate this, for fixed z, in Fig. 3.1.

The following theorem is a companion of Theorem 3.1. It says that the
limiting rate of change A—%ﬂ is exactly the probability p of obtaining z.

Theorem 3.2 If v € U then
/)
P= 5-5u(28) lomo (3)
Proof. Substituting z = 0 in (3.4) gives
v(~2(0,p)) = 1 (3.8)

By the envelope theorem (Appendix A) we get

as.,a(:m) = pv'(z - z(z,p))
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which, substituting z = 0 and (3.8) gives,

85.(0,p)
—_—=p 0
oz P
It is natural to ask, for any certainty equivalent CE(z, p), for the values
£ CE(z,0) the value risk function of CE
5=CE(0,p) the probability risk function of CE

We summarize the-results, in the following table, for the classical CE, the
u-mean CE and the RCE.

Certainty equivalent CE(z, p) %CE(:,O) ;;CE(O,p)

Cu=u"'Eu ﬂf‘%ﬁ%‘m p
M, L2 | »

Sy v(z) 14
For the Yaari CE (1.4)
_ ) zf(p) 220
Hep) = { (1= (P, 250 (39)

We get:

im YD) - Ys(2,0) _ [ 2f1(0), 220
P P | =), <0

and the two-sided derivatives

nm Yj(Z,p) - Yf(o’p) - f(P)

=0t T
. Yy(z,p) - Y;(0,p) _
zl-l.nol' T 1 f(P)

Remark 3.1
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(a) The value-risk function for the EU model is thus precisely the
normalized utility function

- uz) -0 —0 o 0) =
un(e) = =gy (un(0) = 0, un(0) = 1)

This result suggests a new way to recover the utility function in the EU
theory.

(b) The probability-risk function (for a nonnegative RV) in Yaari’s theory
is thus precisely the function f(p) in terms of which Y} is uniquely defined.
This is a new interpretation of f.

(c) Note that the value-risk function corresponding to Yaari’s CE is of the

form
az, <0
v(z) = { Bz, >0 (3.10)

with a = f/(0), 8= f'(1). The convexity of f plus its normalization

f(0) =0, f(1) =1 imply
a<l<p

The function v in(3.10) is the source of the piecewise linear value-risk
function in Exmaple 2.4.

4 Strong Risk Aversion

In the EU model risk aversion is characterized by the concavity of the utility
function, while in the RCE model it is equivalent to the weaker property
(Theorem 2.1(e))

v(z)<z, Va. (4.1)

It is natural t6 ask what corresponds, in the RCE model, to the concavity
of v, i.e.
veEU (4.2)

The answer is given here in terms of a classical notion of risk-aversion due
to Rothschild and Stiglitz [28], see also [12].

Definition 4.1 Let FX, FY be the c.d.f. of the RV’s X, Y with support
(a, b).

(a) If there is a ¢ € [a, b] such that
Fy() 2 Fylt), agtse
Folt) 2 F(t), c<t<b
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Pa ya wreasing preference

0. . N ' 1
Figure 4.1: Iso-EU and iso-mean lines in D{z,, 27,23}

then F' _ is said todiffer from F _, by a mean preserving simple increase

X
in risk (MPSIR).
(b) FY is said to differ from F X by a mean preserving increase in risk

(MPIR) if it differs from F X by a sequence of MPSIR’s.

Definition 4.2 An RCE maximizing DM with a value-risk function v ex-
hibits strong risk-aversion if

F_, differs from F
Y X S,(Y) < S,(X
{byaMPIR } = S(Y)<5(X)
This concept is best illustrated graphically as in [25]. Let

r1 <2< 73

be fixed, and let D{z,,z;,z3} denote the probability distributions over
the values z1,z3,23. Each p = (p,p2,p3) € D{z1,22,23} can be repre-
sented by a point in the unit triangle in the (py,p3)-plane as in Fig. 4.1,
where p, is determined by p, = 1 — p; — p3. The dotted lines are loci of
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distributions with same expectation (iso-mean lines) i.e. points (py,p3)
such that
n 21+ (1 -p - p3)z2 + p3z3 = constant (4.3)

As one moves in the unit triangle across the iso-mean lines, from the south-
east (SE) corner to the northwest (NW) corner, the values of the mean
(4.3) increase. Thus movement from the SE to the NW is in the preferred
direction.

The iso-mean lines are parallel with slope (i.e. Ap3/Ap)

slope of iso-mean lines = 277150 (4.4)
I3 — 27

A ‘movement along the iso-mean lines, in the NE direction corresponds to
an MPIR as in Definition 4.1(b).

Similarly, the solid lines in Fig. 4.1 represent iso expected utility
curves which are parallel straight lines (due to the “linearity in probabili-
ties” of the EU functional) with

u(z2) — u(zy)

slope of iso-EU lines = w(3) = w(z2)

>0 (4.5)
The slope (4.5) is positive because of the monotonicity of .

For EU-maximizers strong risk-aversion corresponds to the iso-EU
lines being steeper than the iso-mean lines, i.e.

u(z2) —u(z1) 22 -2
u(z3) - u(zg) T3 — I

(4.6)

which holds for all z; < 23 < z3 iff u is concave.

Turning to the RCE functional, the iso-RCE curves are not straight
lines (since the RCE functional is convex in the probabilities). For RCE-
maximizers strong risk-aversion means that at each point (py, p3), the
slope of the iso-RCE curve (through that point) is steeper than the
slope of the iso-mean line (given by (4.4), see Fig. 4.2. Let now p3 =
p3(p1) be the representation of an iso-RCE curve. By the definition (1.10),
P3 is solved from

sup {z+p1v(z1 - 2)+ (1= py — pawtea — 2) + pav(z3 — 2)} = constant (4.7)
z

Then d
strong risk-aversion <<= B, (4.8)
dpm =~ 23— 23
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d ' n 1
Figure 4.2: Iso-RCE curves and iso-mean lines in D{z;, 23,23}

Let the left side of (4.7) be written as a function

s(;, P2, P3)

of the probabilities p;. Differentiating (4.7) with respect to p; we get

81 — 83 — (83 — 83)py = 0, where s; = il (4.9)
3
dp;

By the envelope theorem (Appendix A)

ds .
8= 8_p. = u(z; - 2°) (4.10)

where 2* = 2°(p, p3) is uniquely determined by (2.10)
nv(z-2)+(1-p - pa)v'(z2 - 2") + pav(z3 - 2) = 1
Combining (4.9) and (4.10) we thus get

_ v(zy = 2%) = v(zy - 2%)
" v(z3 - 2*) - v(zg - 2*)

;)
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and the Diamond-Stiglitz risk-aversion is, by (4.8)

v(zg=2")-v(z;-2") -2y _(23-2")-(21-2")
v(zz=-2*)=v(z3-2") " z3—-z9 (23-2")-(23-2")

(4.11)

which holds for all z; < z3 < z3 iff v is concave.
The above discussion can be generalized to a general RV X with distri-
bution function F € D(T'), where

D(T) := {distribution functions with compact support T} (4.12)
We note that the RCE S,(X) can be written as

So(X) = / U(z, F)dF(z) (4.13)

where
U(z,F) = 2(F) + v(z - 2(F)) (4.14)

and the maximizing z(F') is obtained implicitly from (2.10)

/v’(z - 2(F))dF(z) =1
Thus S, regarded as a function of F,
S(X) = V(F) (4.15)

is a generalized expected utility preference functional in the sense
of Machina, [22]. By (4.13), U(z, F) is then the local utility function of
Machina. We recall [22, Theorem 2] that for V(F) Fréchet differentiable on
D(T), the preference order induced by V is strongly risk-averse iff U(z, F')
is concave in z for all F' € D(T). Finally, by (4.14), the local utility U(-, F)
is concave for all F iff the risk-value function v(-) is concave.

Remark 4.1 In the EU theory concavity of the utility » characterizes both
risk aversion (CE(X) < E X) and strong risk aversion, hence the two
are equivalent in EU theory. In the RCE theory, risk aversion requires that
v(z) < z while strong risk aversion requires the stronger property that v is
concave.

For non-EU theories this divergence between the two notions of risk-
aversion is not surprising. We note that in Yaari’s dual theory

Y/ (X)< EX requires f(t)<t, Vt

whereas strong risk-aversion requires the convexity of f, [38, Theorem 2J'¢.

1The convexity of f, plus Yaari’s normalization f(0) =0, f(1) = 1 implies f(t) < t.
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5 Functionals and Approximations

Let Z = (Z;) be a RV in R™, with expectation u (vector) and covariance
matrix £ (if n = 1 then as above & = 02 ). For any vector y € R" , the
inner product,

n
y-Z=) v
=1

is a scalar RV. Given u € U, the corresponding RCE of y - Z are taken as
functionals in y, the RCE functional

su(y) := Suly - 2), (5.1)

We collect properties of the RCE functional in the following theorem, whose
proof appears in Appendix B.

Theorem 5.1 Let u € U be twice continuously differentiable, and let Z
and s4(-) be as above. Then:
(a) The functional s, is concave, and given by

su(¥) = 25(y) + Eu(y - Z - 25(y)) (5.2)

where zg(y) is the unique solution z of

Ed(y-Z-2)=1 (5.3)

(b) Moreover,
s4(0) = 0, Vs4(0) = p, Vz"u(o) = u"(O)E (5.4)
25(0) =0, Vz5(0) = p (5.5)

and if u is three times continuously differentiable,

Vizs(0) = %2 w (5.6)

Theorem 5.1 can be used to obtain the following approximation of the func-
tional s,(-) based on its Taylor expansion around y = 0.

Corollary 5.1 If u is three times continuously differentiable then

() =y + 5Oy Sy +o(ly ) © (57)
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Remark 5.1

(a) In particular, for n = 1 and y = 1, it follows from (5.7) that the RCE
has the following second-order approximation

S(2) = u+ -;-u”(O)a’ (5.8)
= 4- %r(O)az
where 7(-) is the Arrow-Pratt risk-aversion index (1.6).

(b) We also note that the approximation (5.7) is exact if

(i) u is quadratic, or
(i) u is exponential, Z is normal.

(c) By differentiating, and calculating the Taylor expansion of the classical
CE(1.2)of y- Z,
cu(y) = u Eu(y - 2) (5.9)

it follows that c,(y) is approximated by the right-hand side of (5.7). Thus
we have

cu(y) = su(¥) = o(ll y I*) (5.10)
showing that the CE functionals (5.1) and (5.9) are close for small y.

6 Competitive Firm under Uncertainty

The first application of the RCE is to the classical model studied by Sandmo
[31], see also [21, §5.2). A firm sells its output ¢ at a price P, which is a
RV with a known distribution function and expected value EP = u. Let
C(q) be the total cost of producing q, which consists of a fixed cost B
and a variable cost ¢(g),

Cle)=c(g)+B
The function ¢(-) is assumed normalized, increasing and strictly convex,
c(0)=0, c'(g)>0, c"(¢9)>0 Vg>0 (6.1)
The firm has a strictly concave utility function u, i.e.

u'>0, u'<0
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which is normalized so that u(0) = 0, u/(0) = 1. The objective is to maxi-
mize profit
m(q)=qP-c(q)- B

which is a RV. The classical CE (1.2) is used is Sandmo’s analysis, so that
the model studied is

maxu™" Bu(r(q))

2

or equivalently,
max Eu(r(g)) (6.2)
92

Here we analyze the same model using the RCE. For the sake of comparison
with the EU model, we assume that the firm’s value-risk function is 4 € U,
i.e. is a utility. The objective of the firm is therefore

max Su(7(q)) (6.3)
Now

maxSy(7(q)) = maxSu(¢P - c(g) - B)
92 92
max{Su(¢P) - c(q)} - B

by (1.12). We conclude:

Proposition 8.1 The optimal production output ¢* is independent of the
fixed cost B. O

This result is in sharp contrast to the expected utility model (6.2) where the
optimal output § depends on the fixed cost B: § increases [decreases] with
B if the Arrow-Pratt index r(-) is an increasing [decreasing] function; the
dependence is ambigious for utilities for which r(-) is not monotone.

Note that the objective function in (6.3) is

f(q) = su(q) = e(q) (6.4)

where sy(-) is the RCE functional (5.1). The function f is concave by
Theorem 5.1 and the assumptions on ¢. Therefore, the optimal solution ¢*
of (6.3) is positive if and only if f'(0) > 0. By (5.4) s'(0) = p, so

¢" >0 ifandonlyif u> ¢'(0) (6.5)
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in agreement with the expected utility model (6.2). We assume from now
on that

p>c(0)

A central result in the theory of production under uncertainty is that, for
the risk-averse firm (i.e. concave utility function), the optimal production
under uncertainty is less than the corresponding optimal production gcer
under certainty, that is for P a degenerate RV with value u. We will prove
now that the same result holds for the model (6.3). First recall that the
optimality condition for gcer is that marginal cost equals marginal revenue

¢'(qcer) = p (6.6)
Proposition 6.2 ¢* < qcer for all u € U.
Proof. The optimality condition for ¢* is
0= f(q") = 5,(¢") - ¢'(q") (6.7)

By Theorem 5.1
34(9) = 2(q) + Eu(gP - 2(q)) (6.8)

where 2(q) is a differentiable function, uniquely determined by the equation
Ev/(qP - 2(q)) =1 (6.9)
By the envelope theorem (Appendix A),
3u(9) = E{Pu'(¢P - 2(q))} (6.10)
and the optimality condition (6.7) becomes
EPu'(q"P - 2(¢")) = ¢(q") (6.11)
Multiplying (6.9) by 4 and subtracting from (6.11) we get
E(P - p)u(q"P - 2(¢")) = ¢'(¢") - p (6.12)

or
E{ZK2)}=d(q") - (6.13)

where we denote

Z:=P-p,h2):=v(q"Z +q"u-2(q")
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Since u € U, it follows that A is positive and decreasing, and it can then be
shown (see e.g. [21, p. 249]) that

E{Zh(Z)} < MO)EZ
but EZ = E{P - u} = 0, and so, by (6.13),
dg) < p

and by using (6.6)
¢'(g") < c(gcer)

and since ¢’ is increasing,
q" < gcer O
6.1 Effect of Profits Tax

Suppose there is a proportional profits tax at rate 0 < t < 1, so that the
profit after tax is

m(q) = (1 - t)(¢P - C(q))
As before, the firm seeks the optimal solution ¢* of (6.3), which here becomes
max Su(r(q)) = max Su((1 - t)(gP - c(q) - B))
max {Su((1 - t)gP) = (1 = )e(q)} - (1 - 1)B

which can be rewritten, using the RCE functional s,(:) and omitting the
constant (1 - t)B,
max sy((1 = t)g) - (1 - t)e(g)

Let the optimal solution be § = §(t). The optimality condition here is

(1= (1 - )g) - (1 - )c(g) = 0

giving the identity (in ¢),
s.((1 = 1)q(t)) = '(q(1))

which, after differentiating (with respect to t),

[(1-97(t) - a(®)] "((1 - H9) = 7'(t)e"(D)
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and rearranging terms, gives

7(O{c"(@) - (1 - )s5((1 - )} = -q(B)sy((1 - 1)) (6.14)

The coefficient of #(t) is positive since ¢’ > 0 and s,(-) is concave (Theo-
rem 5.1(a)). The right-hand side of (6.14) is positive since § > 0, s" < 0.
Therefore, by (6.14),

g(t)>o0

and we proved:

Proposition 6.3 A marginal increase in profit tax causes the firm to in-
crease production. O

In the classical expected utility case the effect of taxation depends on
third-derivative assumptions; it can be predicted unambigiously!” only in
one of the following cases:

(a) r constant and R increasing,
(b) r decreasing and R increasing,
(c) r decreasing and R constant.

In all these cases, the EU prediction agrees with our prediction in Proposi-
tion 6.3.
6.2 Effect of Price Increase

If price were to increase from P to P + ¢ (¢ fixed), then the corresponding
optimal output §(¢) is the solution of

rgg{ Su((P+€)q)-c(9)} = X { su(q) + eq = c(9)}
The optimality condition for §(¢) is
8u(3(6)) + € = ¢'(4(e))

Differentiating with respect to ¢ we get

7(€)8,(3(€)) + 1= 7'(e)c"((e))

1
19= Gz =g > °

by the convexity of ¢ and the concavity of s,. We have so proved:

hence

7See Kata’s correction (18] to [31].
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Proposition 6.4 A marginal increase in selling price causes the firm to
increase production. O

This highly intuitive result is proved in the expected utility case only under
the assumption that () is non-increasing.

6.3 Effect of Futures Price Increase

The RCE criterion was also applied to an extension [14] of Sandmo’s model
[31], dealing with a firm under price uncertainty and where a futures market
exists for the firm’s product. In [14, Proposition 5] it is shown that an
increase in the current futures price causes a speculator or a hedger to
increase sales, but not so for a partial hedger, unless constant absolute
risk-aversion is assumed. This pathology is avoided in the RCE model, where
the above three types of producers will all increase sales, [34].

7 Investment in One Risky and in One Safe As-
sets: The Arrow Model

Recall the classical model [3] of investment in a risky/safe pair of assets,
concerning an individual with utility v € & and initial wealth A. The
decision variable is the amount a to be invested in the risky asset, so that
m = A - a is the amount invested in the safe asset (cash).

The rate of return in the risky asset is a RV X.

The final wealth of the individual is then

Y=4-a+(1+X)a=A+aX

In (3] the model is analyzed via the maximal EU principle, so the optimal
investment a* is the solution of

oglaang Eu(A+ aX) (7.1)

or equivalently
max u~!'Eu(A4 + aX)
0<a<A

Some of the important results in (3] are:

(I1) a* >0 if and only if EX > 0.
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(I2) a* increases with wealth (i.e. %‘i‘- > 0) if the absolute risk aversion
index r(-) is decreasing.

(I3) The wealth elasticity of the demand for cash balance (investment in
the safe asset)

Em _ dm/dA
EA™ m/A

is at least one (7.2)

if the relative risk-aversion index
n,
R(z) = _zu_(z_)_ is increasing (7.3)

u'(2)

Arrow (3] postulated that reasonable utility functions should satisfy (7.3),
since the empirical evidence for (7.2) is strong, see the references in (3, p.
103).

We analyze this investment problem using the RCE criterion, i.e.

02‘35’& Su(A +aX) (7.4)
where again we assume that the investor’s value-risk function is u € «. The
optimization problem (7.4) is, by (1.12), equivalent to

og?g’i Su(aX)+ A
Let a* be the optimal solution. Using the RCE functional s,(-), a* is in fact

the solution of

o?g“%(a) (7.3)

Now, since s,(+) is concave
a* >0 ifandonlyif s,(0)>0

but by (5.4) '(0) = EX, and we recover the result (I1).
Assuming (as in [3]) an inner optimal solution (diversification)

0<a*<A (7.6)
we conclude here, in contrast to (I2), that

da*
—— 7.7
77 =0 (7.7)
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i.e. the optimal investment is independent of wealth!®,
An immediate consequence of (7.7) is

Em

m- >1 Vueld
indeed
Em Adm A dA-a") A da* A

- (_——=
EA mdA  A-a dA A-a“l A) A-a*

>1

proving (7.2) for all risk-averse investors. Thus, in the RCE model, there is
no need for the controversial postulate (7.3).
The quadratic utility (2.33)

u(z):z---%z2 z<1

violates both of Arrow’s postulates (r decreasing, R increasing), and is con-
sequently "banned” from the EU model. In the RCE model, on the other
hand, a quadratic value-risk function is acceptable!?. For this function the
optimal investment a* is the optimal solution of

- 1 2,2
022X, {su(a) = pa - 50%°}

where 4 = EX, 0% = Var(X). Therefore

o = plo® ifo< pla?< A
14 ifge?>a

showing that, for the full range of A values, a*(A) is non-decreasing, in
agreement with (I2). Moreover, if diversification is optimal, then

Em A

A A-pjoi !

Following [3] we consider the effects on optimal investment, of shifts in the
RV X. Let h be the shift parameter, and assume that the shifted RV
X(h) is a differentiable function of A, with X(0) = X. Examples are:

*However, initial wealth will in general determine when divesification will be optimal,
i.e. when (7.6) will hold.
19 Assuming 0 < X < I.
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Xh)=X+h (additive shift),
X(h)=(14+h)X (multiplicative shift).
For the shifted problem, the objective is

J2ax, Su(aX(h)) (7.8)

Let a(h) be the optimal solution of (7.8), in particular a(0) = a*. Now
Su(aX(h)) = {(a) + Eu(aX(h) - &(a)) (7.9)

where £(a) is the unique solution of
Ev'(aX(h)-£(a)) =1 (7.10)

The optimality condition for a(h) is

d
1€@) + Bu(aX() - (@)} = 0
which gives (using (7.10)) the following identities in A

E{X(h)u'(a(h)X(h) - §(a(h)))}
E{u'(a(h)X(h) - &(a(h)))}

Differentiating (7.11) with respect to h we get, déﬁoting Z = aX(h) -
£(a(h)),

a(h)E{u"(Z}X(X~€'(a(h))} = E{X(h) [«'(2) + a(h)X(h)u"(2)]} (7.13)

0 (7.11)
(7.12)

where a(h) = i-a(h) and similarly for X(h).
The second order optimality condition for a(h), ;{;’,s.,(aX(h)) <0,is
here
Eu'(Z)X(X - €(a(h))) 20

hence, by (7.13),
sign of a(h) = sign of E{X(h) [4'(Z) + aXu"(2)]}

exactly the same condition for the sign of .a‘f;a(h) as in [3, p. 105, eq. (18)).
Therefore, the conclusions of the EU model are also valid for the RCE model.
In particular:
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Proposition 7.1 As a function of the shift parameter h,
a(h) increases for additive shift,
a(h) decreases for multiplicative shift.

These results are illustrated for the quadratic value-risk function. There

o = EX
~ Var(X)
and
a(h) = a"+ _h for an additive shift
- Var(X)
a(h) = ] _*1_ ha‘ for a multiplicative shift (7.14)

In fact, (7.14) holds for arbitrary u € U, a result proved in [36] for the EU
model.

Proposition 7.2 If a® is the demand for the risky asset when the return is
the RV X, then a(h) = a*/1+ h is the demand when the return is (1 + h)X.

Proof. The optimality condition for a* is
E{u'(a*X - €)X} =0 (7.15)
where £* is the unique solution of
EW(@'X-¢&)=1 (7.16)

The optimality conditions for a(h) are given by (7.11), (7.12). Now, for
a(h) = r3pa”,

a(h)X(h) =a*X (7.17)
and it follows, by comparing (7.12) with (7.16), that
§(a(h)) = ¢

Substituting this in (7.11) and using (7.17), we see that (7.11) is equivalent
to (7.16), and that a(h) = a*/1+ h indeed satisfies the optimality conditions
(7.11), (7.12). O
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8 Investment in a Risky/Safe Pair of Assets: An
Extension

We study the model discussed in [9] and [15], which is an extension of the
model in Section 7. The analysis applies to a fixed time interval, say a year.
An investor allocates a proportion 0 < k < 1 of his investment capital Wy
to a risky asset, and proportion 1 — k of Wy to a safe asset where the total
annual return per dollar invested is 7 > 1. The total annual return ¢ per
dollar invested in the risky asset, is a nonnegative RV. The investor’s total

annual return is
kWot + (1 - k)Wor

and for a utility function u, the optimal allocation k* is the solution of

O?I?SXI Eu(kWot + (1 - k)Wor) (8.1)

The model of §5, is a special case with Wy = A, t =1+ X, kWy=a, r=1.
It is assumed in [9), [15] that 4’ > 0 and u” < 0, thus we assume without
loss of generality that u € U.
One of the main issues in [15] is the effect of an increase in the safe asset
return 7 on the optimal allocation. The following are proved:

(F1) An investor maximizing expected utility will diversify (invest a positive
amount in each of the assets) if and only if

Etu'(Wt)

m < T < E(t) (8.2)

(F2) Given (8.2) he will increase the proportion invested in the safe asset
when 7 increases if either
(a) the absolute risk aversion index () is non-decreasing, or
(b) the relative risk aversion index R(-) is at most 1.
The same model is now analyzed using the RCE approach, i.e. with the
objective
o‘é‘?%‘x Su(kWot + (1 - k)Wor)

where u denotes the investor’s value risk function, assumed in /. Using
(1.12) and the definition (5.1), the objective becomes

Dax {(1 - k)Wor + s,(Wok)}) (8.3)
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The following proposition, proved in Appendix C, gives the analogs of results
(F1, (F2) in the RCE model.

Proposition 8.1 (a) The RCE maximizing investor will diversify if and
only if
Etu'(Wot - n) < 7 < E(t) (8.4)

where 7 is the unique solution of
Ev'(Wot-1n)=1 (8.5)

(b) Given (8.4), he will increase the proportion invested in the safe asset
when 7 increases, O

Comparing part (b) with (F2), we see that plausible behavior (k* in-
creases with 7) holds in the RCE model for all u € U, but in the EU model
only for a restricted class of utilities.

We illustrate Proposition 8.1 in the case of the quadratic value-risk func-
tion (2.25). Here the optimal proportion invested in the risky asset is:

0 if > E(t)
k= S i E(t) - Woo® < 7 < E(Y) (8.6)
1 if E(t) - Woo? > 7

where o2 is the variance of ¢. Thus k* is increasing in E(t), decreasing with
o? and decreasing with 7 (so that, the proportion 1 — k* invested in the safe
asset is increasing with safe asset return 7). These are reasonable reactions
of a risk-averse investor.

We also see from (8.6) that k* decreases when the investment capital W,
increases. This result holds for arbitrary u € U, see the next proposition
(proved in Appendix B). In the EU model, the effect of W on k* depends
on the relative risk-aversion index, see [9)].

Proposition 8.2 Ifthe investment capital increases, then the RCE-maximizing
investor will increase the proportion invested in the safe asset. O.

Following the analysis in [3] and § 7, we consider now the elasticity of cash-
balance (with respect to Wy). Here the cash balance (the amount invested
in the safe asset) is

m=(1-k")W,

and the elasticity in question is E’?‘%
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Proposition 8.3 For every RCE-maximizing investor with u € U,

Em
—_— D
EW, = 1
Proof. .
Em _ dm/dW, _1-k'(Wo) - Wo%l
EW, - m/Wy - 1 - k*(Wpy)
hence
Em . . dk‘(Wo)
— > —_— <
W, 2 1 if and only if W, S 0

and the proof is completed by Proposition 8.2. O

(8.7)

- The equivalence in (8.7) shows that the empirically observed fact that
Em/EW, > 1 can be explained only by the result established in Proposi-
tion 8.2 that dk*/dWj < 0, a result which is not necessarily true for many

utilities in the EU analysis.

9 Optimal Insurance Coverage

Insurance models with two states of nature were studied in [13], [21] and the
references therein. In this section we solve an insurance model with n states
of nature, and give an explicit formula for the optimal allocation of
the insurance budget, thus illustrating the analytic power of the RCE

theory.

9.1 Description of the Model

The elements of the model are:

n  states of nature

P =(p1,...,Pn) their probabilities

§@ = premium for 18 coverage in state ¢, §; > 0
B = insurance budget

¢ =Ji/L}=1 3 = normalized premium

B =B/ L j=1d; = normalized budget

z; = income in statei

x =(z1,...,25) the decision variable
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The budget constraint is

iqg:;:B (9.1)

=1

We allow negative values for some z;’s, i.e. we allow a person to “insure”
and “gamble” at the same time, e.g. [13, p. 627].

For the RCE maximizer with value-risk function v, the optimal value
of the insurance plan is

I = max {S,([xp)): iqm = B}
t=1
T xTaneB T {z+ gl’i v(zi - 2)} (9.2)
= SU([x" P])

where x* = (z7) is the optimal insurance coverage.

9.2 The Solution

Theorem 9.1 The optimal insurance coverage is

si=B+oE)-Tgut (9.3)
pi i=1 Pj
where
¢ = (v (9.4)
Moreover, the optimal value of the insurance plan is
I'=B-Yad() + L nv(d(2) (9.5)
1 1}

Proof. The problem (9.2) is maximizing a concave function subject to linear
constraints. Since the Kuhn-Tucker conditions are necessary and sufficient

r= m/\in max L(x,z,A) (9.6)
where L is the Lagrangian

L(x,z,A) =z + Z piv(zi—2)+ A(B - Z ¢ z;) (9.7)
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The optimal x*,2*,A* satisfy

aL - "
% = 1-21),-0'(:'- -2")=0 (9.8)
aL 1 " L] L] :
el piv'(z] -2")-A"¢;=0, (i=1,...,n) (9.9)
oL .
a—'\ = B—Zq"z" =0 (9-10)
From (9.9) and (9.8) we get
1
AN=g—=1
2
and consequently @
v'(zf - 2%) = ;:,

Since v’ is monotone decreasing (v is strictly concave) we write, using (9.4)
2t -2 =)L), (i=1,...,n) (9.11)
bi
Multiplying (9.11) by ¢; and summing we get
. _ e g
Yai(zi-2) = qufﬁ(;:.

.B-2" = unﬁ(;%
L2 = B—Zq.-¢(f;:)) (9.12)

which is compared with (9.11) to give (9.3). Finally,
Ir= z‘+Zp.-v(z}' -z
and (9.5) follows by (9.11) and (9.12). O In the above model, the price of
insurance is actuarially fair if
g=p (1=1,...,n)

i.e. if the normalized premiums agree with the probabilities.
For actuarially fair premiums we get from (9.3), using that v'(0) = 1
implies ¢(1) = 0,
z;=B (i=1,...,n)

i.e. theindividual is indifferent between the occurrence of statesi = 1,...,n.
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9.3 Special Case: Two States of Nature

We translate the results of Theorem 9.1 to the special case of two states, as
given in [13], (21, §3].

Consider insurance against a single disaster. Specifically, let there be
two states of nature:

State Digaster Probability
1 occurs P
2 does not occur 1-p

The final wealth is a RV

_ ) y+s  with probability p (State 1)
X(s) = { W - xs with probability 1-p (State 2) (9-13)
where

w initial wealth

s insurance coverage

r premium

] income in disaster state

In (21, §3] this model is treated using the EU model
max E u(X(s))

obtaining first order optimality conditions, comparative statics, and, in the
case of exponential utility

u(z) = 3(1- ), (9.14)
the explicit solution
. W=y 1 T
S ETEL Ar+l) m(;&;) (8.18)

To apply Theorem 9.1 here we write the incomes in the two states and their
probabilities

T1=y+s, m=p
gy =W —ns, pp=1-p
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We define the normalized premiums

T
1+

-9

Q= (9.16)

=3

_ 1
T 1+

—

@ = (9.17)

[~

The insurance budget (9.1) is implicit in this model. The budget B can be
computed by

Q1+ @22 = Q(y+9)+ g (W -rs)
= qy+aW+s(a-qr)

but g; — ga7* = 0 by (9.16) and (9.17), and therefore the budget is
B=qiy+@aW (9.18)
Now, from (9.3),

2} B+(1—q1)«£-)—q=«g)

ay+aW +q [¢(;—') -dg)]

and therefore the optimal coverage is

$ = 2-y
= alW-rra)- o2
= 7 -+ ¢ (o) ¢ ()| e

Note that in this two state model, actuarlially fair insurance means = =
72, in which case s* = 1=(W - y)
For the utility uy of (9.14), we get by (9.4)

K1) = (54)7(2) = - logt

which, substituted in (9.19), gives the formula (9.15) of s*.
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9.4 Related Work

The RCE criterion was applied in [34] for studying the existence of optimal
insurance contracts. Two fundamental results of Arrow (3] concerning

o the optimality of 100% coverage (above deductibles) for a risk-averse
buyer of insurance, and

o the Pareto optimality of coinsurance for risk-averse insurer and buyer
of insurance,

were shown to hold as well in the RCE model.

10 Why Does the RCE Work ?

The models discussed above (§§ 6-9), give sufficient data for comparing the
predictive powers of the RCE theory and the EU theory. We saw that the
plausible predictions of EU are shared by RCE, and that the RCE criterion
is a simpler and a more powerful analytical tool, e.g. § 9.2 where it gives
an explicit solution for all risk-averse DM’s, while in general the EU model
can only provide comparative statics. Also the RCE predictions hold for all
risk-averse DM’s, while in the EU model risk-aversion does not suffice and,
in order to avoid implausible predictions, restrictions (occassionally severe)
must be imposed on the DM’s subjective preference.

The simplicity of the RCE criterion can be explained at the technical
level. Shift additivity makes risky choices independent of constant factors
(fixed costs, initial wealth), and by using the envelope theorem, comparative
statics are free of certain ungainly derivatives. Such conveniences are in
general unavailable to the EU maximizer.

This however is not the whole story. The main advantage of the RCE
theory, at the fundamental level of modelling choice under risk, is that its risk
aversion is of the “right kind” from the start, without a need for qualifiers
such as the Arrow-Pratt indices. Indeed, in the EU theory, behavior under
uncertainty is analyzed in terms of the Arrow-Pratt indices »(-) and R(:).
The typical postulates are

(A1) r(w) = -"7"-&?- is a non-increasing function of w

(A2) R(w) = -%‘f’l is a non-decreasing function of w
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The economic literature contains several alternative formulations. In par-
ticular ([12, pp. 352-354] and [23, pp. 20-21]) (A1) is equivalent to

(B1) If w(wy + ¢1) = Eu(wy + X) and u(wg + ¢3) = Eu(wz + X) for
w; < wa, then ¢; < ¢

and (A2) is equivalent to

(B2) If w(wye1) = E u(wy X) and u(wacz) = E u(weX) for wy < we, then
a2e

Properties (B1), (B2) can be expressed directly in terms of the classical CE
Cu(X) = u 1 Eu(X)

Indeed, (B1) is equivalent to

(C1) Cu(X + w) — w is a non-decreasing function of w

and (B2) is equivalent to

(C2) 1Cu(wX) is a non-increasing function of w

Consider now the RCE S,(X). The properties corresponding to (C1), (C2)
are

(S1) Su(X + w) — w is a non-decreasing function of w
(S2) 1S,(wX) is a non-increasing function of w

Now (S1) holds trivially, for any function v : R — R, by the shift additivity
of the RCE, Theorem 2.1(a). In fact, S,(X+w)—-w is Sy(X), a constant in w.
Moreover, (SZ) is the subhomogeneity property, proved in Theorem 2.1(c)
forall v e U. '

Therefore, in the RCE theory the properties (S1) and (S2) hold for all
value-risk function v € U, i.e. for all strongly risk-averse DM’s. In the EU
theory, risk-aversion coincides with strong risk-aversion (see § 4), but the
properties (A1) and (A2) (which correspond to (S1) and (S2)) hold only
for a restricted class of utilities.
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Appendix A. The Envelope Theorem

This result is used repeatedly in this paper. For convenience we cite an
elementary version here. See [35] and [30] for details and examples.
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Theorem A.1 (The Envelope Theorem). Consider the unconstrained
maximization
maximize, y = f(z, q)

Let 2*(q) be the maximizer, for given q, and let
¥ = f(z"(9), q) = &(q)

Then
#9= L5010 o

Appendix B. Proof of Theorem 5.1

(a) By (5.1) and (1.10), s,(-) is the pointwise supremum of concave func-
tionals, hence concave. The rest of (a) is proved as in Lemma 2.1.
(b) Fory = 0, (5.3) gives

Eu'(-25(0)) =1
or u'(-zs(0)) = 1, proving that z5(0) = 0. From (5.2) it follows then that

34(0) = 0.
Differentiating (5.3) with respect to y gives

Eu'(y-2 - 25(y))(Z - Vas(y)) = 0
which at y = 0 becomes
4"(0)(EZ - Vz5(0)) = 0

proving that ezs(O) = u. Then, by differentiating (5.2) at y = 0 we get
Vsu(0) = 0.

The expressions for V225(0) and V2s,(0) follow similarly by differenti-
ating (5.3) and (5.2) twiceat y = 0. O
Appendix C. Results from Section 8

Proof of Proposition 8.1.
(a) The objective function in (8.3)

h(k) = (1 = k)Wor + s,(Wok)
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is concave, by Theorem 5.1(a). Hence, the optimal solution z* is an inner
solution, i.e. 0 < k* < 1 if and only if

R(0)>0 and A'(1)<0 (C.1)

Now
h,(k) = —WoT + WQSL(WQIC) (C.?)

which becomes, upon substitution of the computed expression for s,(-),
h'(k) = =Wor + WoEtu'(Wokt — n(Wok)) (C.3)

where 7(q) is the unique solution of

Ev(gt-1n)=1 (€4
Therefore
R'(0) = =-Wor+ WoE(t)
h'(l) = -Wor+ WoE'tu'(Wo - n(Wa))

and (C.1) is equivalent to (8.4).
(b) Let k() be the optimal solution of (8.3) for given r, i.e. A'(k(7)) =0,
or using (C.3),

-7+ E{tu'(Wok(r)t — n(Wok(7))} =0
Differentiating this identity (in 7) with respect to 7, we obtain
~1 4 E{tWo(K'(7)t = K'(7)n'(Wok(7))u"} = 0

or
K(rWoEt(t-n' " =1 (C.5)

Now, the second order condition for the maximality of k(7) is
0> h”(k) = WoE{tWo(t - n')u"} (CG)

Therefore, k() is multiplied in (C.5) by a negative number, and conse-
quently
K(r)<0

proving that k() [1 — k(7)], the proportion invested in the risky [safe] as-
set, is a decreasing [increasing] function of r, the safe asset return. O
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Proof of Proposition 8.2. Let k = k(W) be the optimal solution
of (8.3), i.e. h'(k(Wy)) = 0, or using (C.3)

— 1+ E{tu/(Wok(Wo)t - n(Wok(Wo))} = 0 (c.7)
Differentiating this identity (in Wp) we get
Et[k(Wo) + Wok'(Wo)] [t = n'(Wok(Wo))] v =0

or
K'WoEt(t - n')u" = —=EtkU" (C.8)

By the second order optimality condition (C.6) it follows that, in (C.8), k¥’
is multiplied by a negative number. Since the right hand side of (C.8) is
positive (t,k > 0, u” < 0), it follows that

kl(Wo) <0 O
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