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ABSTRACT

The paper introduces a new algorithm for unconstrained minimization of an n-variable
twice continuously differentiable function f. Unlike classical methods, which improve a
current solution by moving along a s.traight line, the new method improves the solution by
moving along a quadratic curve in R". The specific curve is determined by minimizing an
appropriate approximate model of f. The algorithm thus obtained (SOSD) is a natural
second order extension of the Steepest Descent method. It possesses a global convergence
property combined with a’ quadratic rate of convergence, while using the same information
and employing the same computational effort, as the Newton method. Versions of SOSD

with inexact linesearch and with no linesearches at all are studied as well, retaining the

above desirable convergence properties, which are also demonstrated computationally.



Introduction

In this paper we introduce a new computational method for solving the

unconstrained minimization problem
(A) min{f(x):x ¢ R}

. . 2
for functions f which are twice continuously differentiable (f ¢ C").

The classical methods for solving (A) are all based on the basic iteration step

x ¢ x+td (1)

where deRn is a direction vector and t > 0 is the stepsize. The direction vector is obtained
by minimizing an approximate model of f(x+td). Thus if a first order Taylor

approximation is used:

fx+td) = f(x)+td Vi)
one obtains the Steepest Descent (SD) direction:

d=-g/|lg]. (g=v)).

If a second order Taylor expansion is used:

fx+td) = f(x)+td VEx)+1/2t°d VoFx)d
then the Newton direction is obtained

1

d.=-H g (H=vfw)

N
or (if a bound is imposed on the length of d) a direction as in a Trust Region method:

d=-H+) " g

emerges (see e.g. [5], [6]).

In our method the basic iteration step is
2
X ¢ x+td+1/2t z (2)

with two “direction vectors” d € Rn, ze¢R anda stepsize t > 0. Thus the improving step



. on . .
is along a quadratic curve in R, rather than along a straight line.

The idea of an improving step along a quadratic curve was used theoretically by the
first author (see e.g. [2], [1], [3] and [4]) to obtain second order necessary optimality
conditions for smooth and nonsmooth optimization problems. Here we study the

computational implications of the basic iteration (2).

The direction vectors d and z are obtained by minimizing an approximate model of
f(x+td+ 1/2tzz) which is in fact a second order Taylor expansion of the latter (as a
function of t):

fx+td+1/2t°2) = f(x)+td Vi) + 1/2t°[z Vi) +d W Ex)d] 3)
‘ As in the derivation of the steepest descent or the trust region directions, certain

constraints are imposed on d, z. More specifically we consider the following model (recall

g=Vi(x), H=V'f(x))

(M)  min Aft,d,2):=tg d+ 1/2t7[z g+d Hd]
subject to
s
d g/l = -8

The first constraint is just normalizing the length of z. The second constraint enforces the
direction d to make a sharp angle with the steepest descent direction; this is a typical
requirement in many convergent descent methods. The positive scalar § controls this
angle and the positive scalar a controls the length of z. The objective function Af in (M) is
(omitting the constant f(x)) the righthand side of (3). Although we minimize Af also with
respect to t, this is only for deriving the optimal solutions d and z of (M). In the algorithm
t will be chosen by minimizing the true objective f(x+td + 1/2t22) and not its approximation
Af(t,d,Z).

The directions d and Z are obtained in Section 1, they are



2=~ agl|g|

lall

T..—1
gH g
Thus, Z is the steepest descent direction and d is a “signed Newton direction” i.e. it is the
. . . . T . T ,— . .-
Newton direction or its opposite according to the sign of g H 1g being positive or -

negative. At any rate (in sharp contrast to the newton direction dN) d is a direction of

descent, whenever g # 0, H 1 exists and g H 1g # 0 (we call this the nonsingular

case).

Based on the directions d, Z, the method studied in this paper iterates from a current

iteration point x, to the next point via

2
xk+1 = xk+tkdk+ 1/2thk

t, = a suitable stepsize

(SOSD) A
el
d, == t—7H, &i z="q¢/[gl

g H, 8,

| where g, = Vf'(xk), H, =V2f(xk).

{ak} and {ﬁk} are sequences of positive scalars, bounded away from zero which may be
fixed, predetermined or chosen iteratively. The name SOSD is an abbreviation for Second

Order Steepest Descent. Indeed the method (SOSD) is a natural extension of the steepest

descent method (SD). This is demonstrated in Table 1 below.

The quadratic rate of convergence of the SOSD method mentioned in Table 1 will be
. . 2 . . .
proved in Section 4 for a general C -function, following a proof for the special case where f

is a convex quadratic function

fix)= 1/2xTQx - bTx, (Q symmetric positive definite)

These results are preceeded by Section 2, in which the global convergence of the SOSD



Table 1: Comparison of SD and SOSD methods

SD SOSD
data used first order second order
(gradients) (gradients and)
- Hessians)
improving step along along
1st degree 2nd degree
polynomial polynomial
role of convergence linear quadratic

method is demonstrated.

The above mentioned results are for exact line search:

= arg min f(xk +tdk+ 1/2t2zk)
t>0

tk
Similar global convergence and rate of convergence results are obtained in Section 5 for
versions of SOSD where the stepsize is chosen according to an Armijx)—(}oldstein type rule.
In the quadratic case we avoid the need to compute the stepsize by fixing the stepsize tes
and then choosing the a, o as to make t, an exact linesearch step. This version, which is
also extended to the general Cz-case, is called “the a-method”. It also possesses a
quadratic fate of convergence, although not necessarily gobal convergence. Like the pure
Newton method it does not require stepsize computations. For the single variable case it
reduces exactly to the Newton’s method, but for n > 1 it is quite different, and in our

computational tests exhibited global convergence in all the examples for which Newton’s

method failed.

At this point we offer an intuitive explanation as to why one should expect from a
method such as SOSD to be globally convergent and at a quadratic rate. Note that in the

iterative step



2
Nyl = hk+tkdk + 1/2tkzk

when X, is still far from optimality, and a large stepsize b is expected, then z, (a SD
direction) will be dominant (forcing global convergence). While close to optimality, where

H(xk) is expected to be positive definite, and t, close to zero, the vector dk (a Newton

direction) is the dominant one (forcing quadratic rate of convergence).

We would like to emphasize that the SOSD method uses the same data as the
Newton method, and requires the same computational effort: evaluating the gradient and
Hessian, and solving a linear system to obtain the direction dk’ plus a linesearch
computation. But SOSD is globally and quadratically convergent. These properties are
shared by Trust Region methods which we believe are more complicated and less natural;
while they try to “correct” the Newton method, we try to extend (to second order elements)
the Steepest Descent method. Thus we put forward the idea that the SOSD method, and
not Newton’s method, should serve as a fundamental algorithm from which first order
modifications (such as quasi-Newton methods) should be obtained, and extensions to

constrained problems be made.

The limited computational experience, reported in Section 6, indeed supports the fact
that the SOSD method performs equally well to Newton's, when the latter converges, and
succeeds to solve test problems from all starting points from which the latter failed to

converge, and still exhibits quadratic rate of convergence.



§1. DERIVATION OF THE DIRECTION VECTORS d and z

We solve the model problem (M) first under the nonsingularity assumption
. T.,.-1
g# 0, Hnonsingular, gH g=0
It is easy to see that for fixed but arbitrary d ¢ R andt > 0, the optimal z is
i= - g
Tl
and we are left with the problem

min  min t Af(t,d,Z) = t§d+1/2t2[dTHd—allg“]
0<t<T d

(g) s.t.
T
g d+plgl =0

The upper bound T imposed here, will be dropped later. Let X be the multiplier

(4)

(5)

corresponding to the constraint (5). The Kuhn-Tucker conditions for the optimality of d, t

are
(i) g+tHd+Ag =0

(i) g d+t(d Hd-ag]) < 0

(i) g'd < — gl

ivi0o<tsT

(v) t < T => equality holds in (ii)
(vi) Ng d+gllg]) = 0

(vi) A= 0

We consider first the case

and define

(6)



h=: & H g
Ig”
If
hg<T (7
then, the solution of (i) —(vii) is
- _By—1
d= hH g
gh gh
) 5 if 0< <T
t= 48 —ah g —ah
T otherwise
- _ gt
A= M 1
If
hip=T (8)
then the solution is
_ 1,1
3 - -T'H g
t="T
A=0

We now drop the bound on the stepsize by letting T @ «. Then, only case (7) is relevant,

giving the direction

el
-1
d=-p g
T -_—
ngg (9)
Next consider the case
T i
gH lg<o (10)

C . . T .- T  — -
Multiplying (i) by the row vector g H 1 wegetg H 1g + thd + kgTH 1g =0

1

. . T T.,—
implyingtg d = —(1+Ng H “g > 0 by (10) contradicting t > 0 and (iii). Thus no



solution exists to the Kuhn-Tucker conditions under (10), indicating an unbounded solution

of (P). Indeed set

dyy = —%H 1
the value of the objective junction in (P) is
2
. Il 2
Af(t,dy,2) = —tl|gM + 1/2t"——M - 1/2 t"q|jg||.
gH g

For all t > 0, the coefficients of both M and M2 are negative, and therefore Af can be made
to approach —e by letting M approach +. Therefore { dM’ M 9 =} is an infimizing
sequence. For any M > 0, dM is the same direction as d in (9). If a common bound on the

length of both d and d,, is imposed then actually d,, = d.

' T.—1 . . "y : . .
We conclude that if g H 1g is either positive or negative, the directions obtained
from the model problem (M) are

g el _
S— 1

-—a— 8
el T.—1

zZ=

g

An important property of the directions d, Z is that

7d = ag >0 (1D

hence the angle between them is greater than 90°. This ensures that a movement from x

2
along the curve x(t) = x + td + 1/2t"z, will not bring us back to x.

; x-r"-:\

xitdy lltli

A FIGURE 1

. . 2, . . .
Moreover (11) implies that ||x(t)—x||” is monotonely increasing for t > 0, an essential



10

property for many convergent algorithms, see also the convergence proof in the next

section.

The length of d is bounded below by g, indeed

-1 ,2
2. g2 lel e el”

by the Cauchy-Schwartz inequality.

If H is positive definite, with eigenvalues 0<A;=A,=..=) , an upper bound can be

obtained as follows: let Hl/2

x=H 1/2g, then

denote the root matrix of Hand H 172 its inverse, set

T T,.—1 2

) , (x Hx)x H "x) 9 (k1+7\n)
Idll" = s 3 <8

(x x) 4\

1'n

by the Kantorovich inequality (see e.g. [7]). So, for H positive definite
( )\1 + )\n)/ 2
B=dl<p—
VA A (12)

1'n

and we see that § essentially controls the length of d.

We close this section with a few remarks concerning the singular cases g=0 or
T, .- . .. . . . .
g H 1g=0. If g=0 (but H is not positive semi definite, for otherwise we are at a point
satisfying second order necessary conditions) then the model problem (M) reduces to

minimizing d Hd. Adding a bound on ||d|| the solution of

min {d 'Hd: [d] s D}

is a direction of negative curvature. In fact the optimal d is
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D
d=—v
v,
1
where v is the eigenvector corresponding to the minimal (negative) eigenvalue of H. So,

for g=0, the basic iteration (2) becomes

x « x+td.

Consider now the case g=0 but gTH— 1 g=0: the Kuhn-Tucker conditions for

problem (P) are inconsistent for any § > 0. Thus for this case an appropriate model is

min {Aft, d, 2): g d < 0}
d

the optimal solution of which is

d= —RH—lg, A = 0 arbitrary.

We might as well take A=0, in which case d=0 and the iteration step (2) becomes just the
SD step. Indeed if SD steps are taken in the algorithm SOSD whenever gTH— 1g=0 (or H
is singular) then this will not affect either the global convergence, or the rate of
convergence for problems with local minima satisfying second order sufficient conditions.

Henceforth in the paper we consider only the nonsingular cases.
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§2 GLOBAL CONVERGENCE OF THE SOSD METHOD (EXACT LINESEARCH)

In this section we study the convergence properties of the SOSD method with exact

linesearch, i.e.

t, = arg min f(x

. r + t,dk +1/ 2tzzk)
t>0

k

2 . . .
as applied to the minization of a C -function f : R" + R. This version will be refered to as

the SOSD-E method.

We will be using the framework of the Global Convergence Theorem as developed by
Zangwill [10] and described in [7, Section 6.5]. The SOSD-E method generates a sequence
{xk}: by the rule:

Xep1€ A(xk) (x0 given initially)

n

where A is the composite point to set mapping from R" into ZR :

A = SG.
G is the function maping R intoR xR xR':
G(x) = (x,Z(x),d(x)), where

g o) .
Z(x) =: —a s dx) =: -8 H(x) “g(x),

e g0 Hx) ™ Tg)

n

and S is the point to set mapping S : R'xR" xR’ -+ 2R :

S(x,z,d) = {y = x+td+ 128%2: t= arg min f(x+td + 1/2t2z)}
t=0

Let T denote the solution set
r={xeR": gx =0}
For the function G to be well defined (ouside I') we assume henceforth the nonsingularity

condition :
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H—l(x) exists and g(x) = 0 => g(x)TH(x)— 1g(x) z 0, (2.1)

. T,,—
The implication in (2.1) holds if e.g. |y H lyl > Mlly||” for some M > 0 and p > 0. The

main result of this section follows.

Theorem 1 [Global Convergence of the SOSD-E Method]

Letf:R" » Rbea Cz-function, and X, € R"a given starting point for the sequence {xk};
generated by the SOSD-E algorithm. Assume that the nonsingularity condition (2.1) holds
and that the level set

LO ={x:fx) = f(xo)}

is compact. Then, any limit point x* of a convergent subsequence of {xk}; is a solution,

ie. gx* =0.

Proof We refer to the Global Convergence Theorem (GCT) (7, p. 124]; accordingly, three
conditions must hold

i) X, € some compact set S,Vk =0,1,..

(i) J a descent function Z : R" + R (see (7, p. 122])

(iii)  The mapping A is closed outside I’

Since both d(x) and z(x) are descent directions it follows that f(xk + 1) s f(x,) with
strict inequality for X, ¢ T. Thus (i) holds with S = LO and (ii) holds with Z(x) = f(x). To
prove the validity of (iii), i.e. the closedness of A = SG, it suffices to show that G is
continuous and S is closed on the range R(G) of G. The continuity of G follows from f ¢ C2
and (2.1). To prove the closedness of S or R(G) note first that for any triple (x,z,d) ¢ R(G):
sz > 0 (see Section 2). Fix a triple (x,d,z) ¢ R(G) and let (xk,zk,dk) ¢ R(G), with X, ? X,

z *2zd = d andlet Yy € S(xk,zk,dk), Y 2 Y we need to verify y ¢ S(x,z,d).

k

Now,
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2
= ] 277
t, = arg min f(xk+tdk+ 1/2t z,)

2
v =x +td +1/2t z
A %k k

kook t20 2.3)

K
hence
2 2 2
Iy, = =" = lltd, + 12tz | or

2, 2, 8 F 4 2 2
bl + bz dy + V= lly —x " = 0 (2.4)

The function in the lefthand side of (2.4) is a polynomial in ty which (for large k) has

' T - . . .
positive coefficients (here we use zkdk > 0), thus it is strictly monotonely increasing for
t. = 0. Since it has a nonpositive value at t = 0, there is a unique nonnegative

t, = <I>(xk,yk,zk,dk) solving (2.4) and ¢ is continuous. So, when k » o,

t, > ®x,y,z,d) =: t=0.
Now,

. - -2
y = lim Y = x+td+1/2t z.
Forallt = 0: fly) < flx, +td, +1/2t°z), ¥ k by (2.3).
Lettingk » =
fly) < fix+td+1/2t°2) V=0

hence

fy) < min fx+td+1/2t°2) < fix+id+1/2E%2) = f(y)
t20

showing that y ¢ S(x,z,d).

Remark 1 As explained at the end of Section 1, we can take a steepest descent step at
any point x violating the nonsingularity condition. The modified algorithm will still

converge globally by the Spacer Step Theorem (see Section 7.9 in [7]).
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§ 3. THE SOSD-E ALGORITHM FOR A QUADRATIC FUNCTION

In this section we shall prove the quadratic rate of convergence of the SOSD-E
algorithm for quadratic functions. In addition, we will propose a version of the method not

requiririg a linesearch which will be called “the a-method”.

Consider the quadratic problem

T
min 1/2xTQx-b X
n
xeR

where Q is a positive definite (P.D.) symmetric n x n matrix, and b ¢ R". We denote the
solution of the problem by x*, i.e. Qx* = b; it is clear then. that the above problem is

equivalent to:

@)  min fix) = 1/2(x—x*) Qx—x*)
xeR

and it is this problem which we shall consider in the remainder of this section.

Let the eigenvalues {ki} of Q be ordered as:
0=\ S\ S...S)\_ <o,
1 2 n
and definer = xl/xn (the condition number of Q). Defining y = x—x*, we have for the

gradient of f:g = Q’ and for the Hessian H = Q.

We recall that for any v e R" and peR:

vTQpV
0<ls

Z Ssu<e
Il (3.1)

for some real positive | and u, a fact we shall use frequently.

Finally we define:
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a = lim inf a,
k9o

a = lim supa,
koo

and analogously for By

We begin by deriving expressions for the exact stepsize t (see egs. (3.2) or (3.3)
below) and for the quantity:

412 4
ey g =707 ey =

k+1

A necessary condition for t to be the optimal stepsize is

= 2 2
0= flx +td, +1/2t7t)] t

T 2
(dk + tkzk) Vf‘(xk + tkdk + 1/2tkzk)

for our quadratic function, this gives:

T 2 o
(dk+tkzk) Q(xkj%-tkdk+ 1/2tkzk-x*) =0

or

T

z Qz

k¥ 3 T, 2 T T
t, + 3/2dezktk + (sz(xk—x ) + dedk)tk + de(xk x¥)=0

2

After substituting the expressions for dk’ z, and using Qy =g, we obtain (omitting the

index k):
T 2 2
,8Q8 lel 5, 5 lll
¢ —t + 3/2ap——t + (f —— —afg) t — g = 0
2 T -1 T -1 ,
[l gQ g §9 ¢ (3.2)
2 T
| e, 8,08,
Defining: w, = — and u = 5> note that by (3.1) the wk’s and uk’s are finite,
101, 2l

g
positive and bounéed away from zero. Eq. (3.2) can now be written as:
2 3 2 2 _
V2a,ut, + 3/2¢ 8wt + B w, —alglt — 8lel=0 (3.3)

For the rate of convergence we need the following expression:
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2

L e T

Iy 41

4 4
e ==l Iyl

After substituting the values for dk’ ty and omitting the index k, this becomes:

24 3 2y 2 T.—-1
at  apt 87 lell” @€ g , 26]jel 1
Tt —+ - -t - t+ —
4 T.—-1 .2, ,2 . 2T. -1
L R
This can be further written as:
24 , T . -1 .2
at agQ ‘gt 1 gt 1 Bt )
-+ — (— ~ + (— -1))
4 . T.—-1 T. -1
T T R A bl =1

we are now ready to state the main theorem of this section:

Theorem 2. [Quadratic Convergence of SOSD-E for Quadratic Functions]

Let x, 2 x*, then

(SPREY a

lim sup — = 1/4 -

kse  [x,—x¥ 8

Moreover, if IZ-—KLY = 1/- we have the sharper bound:
%4571 & g
. r -r
lim sup ——2— < 1/2 = (m) (m)
kve  lx —x" 8

The proof of the Theorem is preceded by Lemma 1 and a few calculations.

Lemma 1

If the sequence {xk} converges to x*

Then there exists k0 > 0 such that for k > ko:

(3.4)

(3.5)
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B, g,

<
tk_

2 2 T.-1
Bk("gk” /ng gk) - ”gk”

where t, is the unique positive root of eq. (3.2).

Proof We have : {xi} %+ x* and therefore : {gi} + 0. This means that for k large enough,

eq. (3.2) will be of the form:

P(t) = At + B’ + Ct - D
with A,B,C.D > 0, corresponding to the coefficients in eq. (3.2). Now P(t) is a continuous
increasing function, mapping [0, =) into [—D, =) hence there exists a unique positive root

t .
K

We shall denote by L(t) the linear part of P(t) i.e. L(t) = Ct-D. Since fort = 0 P(t) =

L(t) and P(0) = L(0) = —D, we find that the root t, of L(t) = 0 is larger than the root t,

of P(t) = 0, see Figure 2.

A
Py)
Lik)
*'k
' S
%L t
-D
FIGURE 2
6l

we obtain: t, S tL =D/C =
2 2 T .—-1
el 7eQ@ "ol

2
e,
Note that since —r is bounded, then
T -1
2,Q ‘g
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tk=(XkJD

the symbol O(a) meaning lim gfli) < A < =, We further denote by t, ~ 7, the fact that

a=0
t, behaves asymptotically as v, i.e.

t
lim (=) = 1
k#c'n
Rearranging eq. (3.2) we have: »
. = ﬁk”gk“.
k~ 2 2t
B W, —allg,ll+3/2e, 8wt +aut, (3.6)

Now, w, and u,_ are bounded and assuming that x, » x*, lim ||g,J|= limt =0 and we

k
e - k9

conclude that

T -1
ﬁk”gk” _ ﬁk”gk” _ ng 8y

L w2 2 T -1 8.lle.
Kk (gl /8, Q gy PR (3.7)

We shall use (3.7) in examining the following expression for large k, under the assumption

that X, 4 x*

1 ﬁk”gk”tk

T -
il gfq=1g, (3.8)

Using eq. (3.2), (3.8) can be written as:

2 T -1
o 8Q g ; e 2 9 Y
Tt T ey + ——
. T -
By [y ll-lle g,Q lgk)“yk” A (3.9)

The first term in (3.9) will converge to zero for k + =, as t, ~ O(Hng) and ||gk|| = O(||ka).

With the use of (3.7), the last two terms in (3.9) behave asymptotically as :
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T.—-1 T. -1
g 5Q ¢ 5Q ¢
“32a, k k k2 % S k
T -
(ng lgk)”yk” 3k||gk|| By 6k|lgk||'”yk|l
T.—1
e 8Q g
= -1/2 -; kT K
B, gl ly, | (3.10)
The proof of Theorem 2 follows.
Proof of Theorem 2
, 1 Bt
Using in (3.5) the asymptotic behavior of t and - 1] as given by
T.—1
Il gTq~1g,
(3.7) and (3.10) respectively, we obtain:
— x| | 2 T -1
Py =7l o  &Q g,
lim sup ————— = lim sup { T
k+e ”xk—x*“ ' ko 4”yk“ ﬂkllgk”
T.—1 T -1 T.—1
3 2
leg Myl 8, el B, lleglllivl
T . -1
(—1/2)ak ng gk 2
+ 2
B lgglilly
2 T . —1 T.—-1
o | Q 8, &QA g,
= lim sup {1/4-74- (——) - (———
koo By ”gk’ ””yk” ”gk““y}(“
T.—-1
8Q g
We define 5, = —.
8, Jgg |
T
2‘/klkn kayk
Note that : s§ T———=x1
AN 1Qy [l Iy

Since max {v(s) =: s2 - s4} = 1/4 (see Figure 3), then
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ey =2 5
lim sup S =
kse  x, —x*" 4p
NECR
Yo Lo
Hly L |
' s
FIGURE 3
VAN, /2 VAN
We see therefore, that if = — then (see Figure 3) v (—-—-—2) < 1/4 giving
A AN 2 AR

the sharper upper bound in1 Theorem 2.

We now present a version of the algorithm without linesearch which will be called

the a-method. Here, we choose a suitable stepsize Ek and determine @, so as to make Ek an

k
exact stepsize. For convenience we use the parameter P = By / a,. Subsitituting

B, = p,a, in (3.3) and dividing by a, yields:

”gk”Ek + “gk”'pk

a —
k _3 -2 2 -
ut, + 3/2pkwktk + P Wity (3.11)
For a, to be finite and bounded away from zero as x, x*, it is necessary that
Il
lim inf —_—> 0
k*o t (3.12)
_ g,
lim sup — < =
k+e t (3.13)

Possible choices for Ek satisfying (3.12), (3.13) include:
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T.—1
i . & E
t, = Hng or t = ,
8 le,l

the latter explained by (3.7).

We can immediately state the following theorem:

Theorem 3: [Convergence Properties of the a-method] The g-method, where a, is
determined by (3.11) and with Ek satisfying (3.12) and (3.13), converges to the solution of

(QP) with quadratic rate of convergence, as given by Theorem 2.

Proof The proof is immediate from Theorem 1 and Theorem 2 since the q-method is a

special case of the SOSD algorithm.



§4. THE SOSD-E ALGORITHM FOR A GENERAL CZ-FUNCTION

In this section we generalize the quadratic convergence result from the previous

2 .
section to general C -functions.

Throughout this section we consider the problem:

(GP) minn f(x).
xeR

Let x* be a strict local minimum of f, i.e. the second order sufficient optimality conditions

g* =: Vf(x*) = 0, H* =: sz(x*) positive definite, hold at x*.

o . . . 2 )
The generalization of Theorem 2 is obtained by showing that, for a C -function,
crucial expressions (such as the inequality in Lemma 1, or eq. (3.4)), which were obtained
‘for a quadratic function, differ only by a term of magnitude O(”xk - x*|). First we derive

some auxiliary results.

Lemma 2:

If

(1) f:DeR"+R isC’

(2) There exists an open convex set Do in D, containing x*, such that:

I R>0>VxyeD,:|Hx - Hy)| < Rlx - (4.1)
i.e. H islocally Lipschitz at x*.

3) ¥xe Do : H(x) and H* are bounded and positive definite

Then
g = H*(x - x*) + O(jx — x*|) (4.2)
Im - E 7Y = ok - =) 4.3)
IgTHg - gTH*gl = 0(x - x*lls) , (4.4)

23
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- T  #*e= 3.
g H g - g'H "l = ofx - x|
T.. -1 2 3
g H TH*g - [g’] = Oflx = x*)

- * 3
g H H*g - g'H g = o(x - x*|}

g5y = [l = o - =) g=x-x

Proof: We start with the Taylor expansion for g =: Vf(x) : R" » R" around x* :
g = Vfx*) + HZ) (x — x¥) x=2Ax+ (1 —-Nx*forsome 0 <A< 1)
Using Vf(x*) = 0, this can be rewritten as
g = H*(x - x*) + (H(x) — H*) (x — x*).
Since ||& — x*|| < ||x — x*||, this yields

g — H* (x = x*)|| s |[H® - H*||.|x = x*|| < Rjx — x*|| [lx — x*|, using (4.1),

< R|x - x*”2

" n
In addition we have, for any vector v ¢ R :

v'g - v'H*x - x*)| < |V[R [x - x*|*

and therefore

ng = vTH*(x - x*) + O(x — x’“”z)

To prove (4.3) let us look at:

1 - 1”

—H* 1”

I = -2 H - B9H”

~1p =1 )
< [ IE ) - EE
1
|

< [ H R - x| by (4.1)

To prove (4.5) note that
T T T .
s He — g H'e| =g (H ~ H9g| < [g|R Ix - x*|
But from : (4.2): |ig| = [H*|.|x — x*|| + O(jx — x*|))

and therefore:

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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T T .. w119
lg Hg — g H7g| = O(x — x*||)

The proof of expressions (4.6)—(4.8) is similar and hence omitted. ®

Lemma 3: Under the assumptions of Lemma 2, any sequence x, * x* generated by a

k

convergent descent method for (GP) has the following property:

A

. n N

3 K> Vk>K; ka+1 -x*| s —. ||xk - x*|
&

¥ « . . . o
where X; and X are the minimum and maximum eigenvalues of H*

respectively.

Proof: For any descent method we have:

f(x ) < f(xk) ;

k+1

using the Taylor expansion of f, the inequality can be rewritten as
%1

fx*) + g* (x - x*) + 1/2(x

x)H(y )(x x*)

k+1 k+1 k+1
< fx*) + g""T(xk - x*) + 1/2(xk - x*)H(yZ)(xk - x*)

where ¥, is in the interval (xk 1 x*)

Y, is in the interval (xk, x*).

Recalling that g* = 0, this further reduces to

B4y~ x*) Hy )(x, , , = x*) < (x, — 2H{y,)x, ~ x*)

k+1
Now, since x, x*, we have:

y, ? x* and H(yl) -+ H*

Y, 3 x* and H(yz) + H*

The proof is completed by recalling that for any vector v R:
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2 T... 2
}\IHVH < v H¥v < )\n”v”

. . - —- 3 = - *
in particular for v = X4 X andv = x_— x*.

Let us now look at the necessdry condition for the stepsize t, to be exact for (GP):
d +tz) Vix +td + ¢ =0
d, +tz,) Vilx, L Ttz lt=tk =
This yields, using the boundedness of d, and Z, together with (4.9):

\T B3 2 -— *
(dk + tkzk,- H‘(xk + tkdk + ll?.tkzk x*) +

2 a2
t Ol . = x*7) + O(x, ,, — % =0

Using Lemma 3 we obtain
d +tz) H*x —x* +td + 1/2°2) + t O(x. — x*|%) + O(lx. - x*|P) = 0
d, +t,2, XX k% W2 + 4 O0(x, = x| %, = =*|" =

T, .3 T .. 2 AP S
1/2 zkH*zktk + 3/2dkH*zktk + (zkH’"(xk x*) + dkH*dk

T
+0 (lix - x*llz))tk +d H*(x, = x*) + O(Jx, - x*%) = 0 (4.10)

After substituting dk and z,, we obtain, omitting the index k, and denoting y = x — x*

L8 Hg gH 'Hg g Hey

>t + 3/2ep——t + (-a

2] o] llell
el T ey

g lell” + Odl¥lp)t = 8 ————— +0(y|p = 0

(gTH— 1g)2 gTH g (4.11)

-+

a

With the help of Lemma 2 this can be further transformed to:

T .. 2 3 2 3
g | el +odl®  ,  ~alel*+0qyl
3 t + 3/2ap t +

2 T ,*=1 3
el gH ~“g+o(y|) lell

a
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T E - 3 2 T - 1 3
, @H ‘g+oly el g H 'g+O(y|") )
+ 8 - + O(lylp)t - - lell +0dly[") = o
- -— 3 -_
@H 9™ g +0(y") gH 'g
and finally: |
T 2 2
,8 H'g lel"a+odyly , , 5 lel"@+0dy
a 2 t + 3/2ap = t +(ﬁ
2lel g'H ~ lg1+0(y)) gH 'g1+0(gl)
= algl1+Oqy|)+ Oqy|D) ¢ = sllglix+0dyl) + ofyl = 0 (4.12)

Introducing the index k, we obtain for t analogously to (3.6):

8, llg I+ (O (ly, I

t, =

k Ters 2 2
L& Hg eI+, ol @+0dly,
ay 7t 3/2a,8, bt By +0(|y, [

This shows that asymptotically (k » =) we may write:
tk = 7k(1+0(”yk“)) (4.14)

where T, is the solution of eq. (3.2) with Q = H* and g = Vf(x).

This also means that, similar to Section 3:
t, = O(lg,lp = Oy, |-

We now develop the expression for the rate of convergence which will be the equivalent of

(3.4) for a general Cz-function:

2
by = %7l 2z, dz ., zytdd , 2dy, 1
= 1/4 t + t, + + t, +
o D ' A i
, vt I I, "
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Substituting dk and z, and using (4.4)—(4.8), this gives:

ol ey (gEH*' ' )1+ 0(ly,»
1/4 — + (-a
k tk 4
bt g, Iy, |

2
2 alfa+oi,p 2 _Blsllbasol

k | - -
gt g+l Dl Iy e g0l

Bearing in mind that

1= 1+0(ly[p

1
oy = ol

and omitting the index k, this can finally be written as:

2 3 T L L 1 2
a t4 apt g H g 2 el 2
( 7t —= 7 (-a resl ; )t
aylt It ety @H gy’
Il !
- 28 t+ 2)(1 + Ofly[)

T, *=—1 2
@H gyl ly

We now formulate the main theorem of this section:

Theorem 4: [Quadratic Convergence Rate of SOSD-E for Cz-functions]

1

ly

(4.15)

Let f satisfy assumptions (i)— (iii) of Lemma 2. Assume that the sequence {Xk}g

generated by the SOSD algorithm converges to a strict local minimum x* of (GP).

Then:
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ey = =l a
lim sup ———-—'—2— < 1/4 —E
kva  fx, = x| g
WE
Moreover, if = = we have the sharper bound:
1+r*
e == a3 aF 1-r
lim sup S 12 —2( —)
k4o llx, = x| g5 14r*  1+4r¥

x X .
Herer* = ) / )\n is the condition number of H*.

Proof: For k large enough, x, will be in a neighborhood D0 of x* (see Lemma 2).

Substituting : t, = ,(1+0(y,|}) from (4.14) in (4.15) yields:

2
e 4 q =%
lim sup —————p =
kve [k, - x|
2 4 3 T .1
QT akﬁkrk . ”gkuz ng* g, :
= kIim sup { il T+ (8, . - ak__'_4)7k
CX-) 4 =1 2 ’
L Y
g, 1
- 28, r, +— } 1+0(y,[»

Tox—1 2
g H* g vl vl

Since y, = 0, 1+O(||yk||) + 1. Furthermore the expression in the curly brackets is exactly

as in the quadratic case with Q = H* and the result of Theorem 2 applies.

a
Remark: An alternative way of proving Theorem 3 is to use (3.4) in [ 11] and to show
Feerr = %l
that —————— + 0. This can be proven, however, we chose not to prove the theorem

”_Hk gk”
this way since it does not provide us with the explicit bound in Theorem 4, in particular

the effect of the condition number of H* on the rate of convergence.
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§5. THE SOSD METHOD WITH INEXACT LINESEARCH

In this section we study the SOSD method, with the stepsize computed via an
Armijo-Goldstein type rule; this version is denoted by SOSD-I. We demonstrate that
SOSD-I maintains the same convergence properties as the SOSD method with exact
linesearch. We define (for g, d and z-such that gTd Z 0)

flx+td+1/2t2) — £(x)

7(t) =
thd

At the k-th iteration, the SOSD-I method is then given by:

compute: Bk“gkn -1
d =~ =7 Hy &
g H, 8
z = i g
ko .Sk
g, |
compute tk : such that:

0<0S7(tk)s l-gs1 (5.1)

starting from the initial guess:

T -1
92 g, g
B, ley
Upcate ¥ L= x +td + 128
kk+1 = Xk 19K / tkzk.

Here, ¢ is a number satisfying 0 < ¢ < 1/2 (usually : ¢ = 10_4). We now formulate

and prove two theorems concerning SOSD-I:



Theorem 5 [Convergence of SOSD-I]

Iffis a Cz-function and bounded below, then

(i) for all k such that g * 0, there exists t satisfying (5.1).

(i) for the sequence {xk};‘) , generated by the SOSD-I algorithm:

lim X, = % such that Vf(®) = 0
k b -]

Proof: (i) (We omit the index k) Suppose gTd < 0 and consider the following Taylor

expansion: (0 < 6 < 1)

fx+td+1/28°2) = f(x) + g (td+1/2t°2) + /262 (d+ 1/2tz) H (x+6(td + 1/262)) (d+ 1/2t2)
This gives :

T T 2

zg (d+1/2tz) H(x+6(td+ 1/2t z))(d+ 1/2tz)

yt&) = 1+t((=) +
dTg ZgTd (5.2)

Since d, z and H are bounded, it follows that +(t) is continuous and

lim y(t) = 1.
£+0 (5.3)

T
Now, since g d < 0, and f is bounded below we can always find a t > 0 large enough such

that:

T
fix + td+ 1/2t°2) = f(x) + otg d.
We can therefore always find a t such that 4(t) < ¢. This, together with the continuity of
v and (5.3) proves (i).

(ii) To prove (2), we distinguish between two cases:

Case (a) Suppose that the sequence {tk} of stepsizes satisfies {tk} 2t for somet > 0. In

this case, the left hand side inequality in (5.1)



fx q — fx)
gives: —_—— 20
t8xdy
. —gd s = (fx) - fx, , )
or: gkksq-;(xk X417

Now, the sequence {f‘(xk)} is descending and bounded below and therefore:

T
(flx,) = f( )) converges to zero and therefore also g, d, (= =g, [|g,[) which proves (ii)

Xk+1

for Case (a).

Case (b) t = 0, in which case, there is a subsequence {tv } of {tk} converging to zero.

k
The right hand inequality in (5.1) then yields (see (5.2)):
T
gz @ +U2 z )Hx +6¢ d +120z DA +12 z )
Vk Y A Ve Yy k Ve Vi Yk Ve Y Ve Vi
1+t + : )
v T . T, - < .
g d 2g d '
Vk Vk Vk Vk
t‘V t(V
T T T 2
ori0s -g d s—(g 'z +12d +—z ) Hx_ +6¢t d_+t’z )
e koo k Vk i o2 Yk e Yk Yk R Yk
t‘V
k
(dV +—--zV ))
k 2 'k

. T
Now,ast +0,g d > 0,henceg = 0.
Vk Vk Vk \Y

Theorem 6: [Rate of Convergence of SOSD-I]

If the sequence {xk}, generated by the SOSD-I method, converges to a strict local
minimum x* and if the function f satisfies the conditions of Lemma 2, then {xk} converges

to x* quadratically.

Proof: If we can prove that, for k large enough, the initial guess tﬁ in the SOSD-I



algorithm will satisfy (5.1), then the proof follows; this is so because in §4 we showed that
. . 0. . 0
the exact stepsize ty behaves asymptotically as t (l.e. lim tk/tk = 1) and the proof of the
: k9o
quadratic rate of convergence was based on this fact.
For k large enough, we also have that Hk will be positive definite and we can therefore
: . ) : 0
omit the absolute value sign in the expression for t-

0 . .
We now prove that t_ satisfies (5.1) for large enough k. Indeed, substituting for 2,

dk and tﬁ in (5.2) and letting k @ =, in which case tg < 0 and g, 0, yields

lim Y (tg) = 1/2
k)=



34

The “a-methods” of § 3, which is an exact linesearch version of SOSD for quadratic
2 . .
function, can be naturally extended to general C -functions: the results is a method free of
linesearch:

a-method ( choose: sequences p, and t k=0,1,2,...)

! such that :

[ p,>0, lim p >0
k k + o k

ﬁ t, > 0, limt, 0
ke
gl
lim — < = (e.g. tk=||gk||)
L k2o %

and an initial point x,¢R'.

comgute:
T
g, H,8,
Uy = Z
2lje, |
2
s, I
Wy T o1
gH, 8
llg, lIct, + 5, )
a -—
Ut 20wt pw
B lgl  _,
d = ~pa T H, g
' g H, 8
i Z, = Te.8, / "gk”
' update:

: _ 2
(‘ Xep1 =% + tkdk £'S 1/2tkzk
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Recall that a, is chosen so as to make t, the minimum of the quadratic
approximation to f at x,. Thus it is not hard to verify that (4.14) holds. Also, by the
choice of t, another crucial relation: t_= O(lg,[) = O(ly,|) holds, thus it possible to
show that, if x x* then the convergence is with quadratic rate. However, no global
convergence is guaranteed for the a-method. It is interesting to note that for the single
variable case (n=1) the a-method is exactly the (pure) Newton method

_ ) n
TR f(xk)/f' (xk)

and this is true independent of the choice of the sequences p, and t !

The sequence p, can be chosen fixed: Py = P The parameter p then controls the
“balance” between a SD step and a pure Newton step. To verify this note thatif p = 0

then d, = 0 and hence we have a SD step. If p + = then

llg, |
lim e = 0, Ilm ap = atd soz - 0, wk(&_
pre pre wﬁk

- 1 . .
t,d, 2 —Hk g, and we have a pure Newton step (regardless of the choice of t,.) Inour
. . . 6, .
numerical experiments it was found that a large p (= 10) gives good convergence results;
even with such large p, far from an optimal solution (where ”gk“ is large) the effect of z_is

not negligible (since z, is multiplied by ti) and it may be sufficient to secure global

k

convergence.
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§ 6. COMPUTATIONAL RESULTS

In this section we report the computational results of the performance of the various
SOSD algorithms as applied to the minimization of four classical test functions (see [8]).

The results are then compared to the performance of three versions of Newton’s method.

The algorithms and test functions involved are:
Algorithms

-1
N: The pure Newton method: Xep1 =%~ Hk g,

N-E: The damped Newton method with exact linesearch

N-I: The damped Newton method with inexact linesearch according to the Goldstein
rule as described in ([9], Section 8.3.e.), with ¢ = _10—_4,
SOSD-E: The SOSD method with exact linesearch (Section 4)

SOSD-I: The SOSD method with inexact linesearch as described in Section 5 with ¢
=10"%

The a-method: See last part of Sec. 5, with t, = ||gk||, by = P

Test Functions

Rosenbrock’s function (2 variables):

2 2 2
R(x) = lOO(x1 - xz) + (1 - xl)

Wood’s function (4 variables):

2.2
N

2.2 2 2
w(xl,xz,x3,x4) = 100(x2—x1) + (l—xl) + 90(x —x
+1-x) 2+ 101x. -1 + x.-1)) + 19.8x.~1) x.~1
x3) Ax,=1) (x,~1)) Bx,-1 x,~1)

Extended Wood’s function (20. variables):

5
W)= I w(

o1 Xgi—g X4 Xgi—1 Xy
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Dixon’s function (10 variables):

D =(1-x)"+1-x) + ngl(xz—x )
n ! mq=p M (n=10)

2

The results are summarized in the following tables: each entry designates the number of

iterations required to satisfy the following stopping criterion:

I, = x*| = 1071

NC(j) means that no convergence was achieved after j iterations, whereas NC means

that convergence was not obtained at all.
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FUNCTION: ROSENBROCK

Second Order Steepest Descent Newton
Starting
Point SOSD-E SOSD-I a-method N N-E N-I
(20,200) e=1p8=1 | a=1p=1 6
p=10
31 67 12 5 45 78
(-1.2,1) a=1p=1 e=1p=1 ]
. p=10
12 21 7 6 13 21
(10,10) a=2f=4 a=1p8=1 6
p=1/2 10
13 37 8 5 27 46
(—25,50) a=173=2.89 | a=18=1 6
p=1/2 10
46 56 18 5 52 85
(—25,-50) | a=1.5=2.25 a=s =1 6
p=1/2 10
32 74 12 5 52 39
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FUNCTION: WOOD

Second Order Steepest Descent Newton
Starting
Point SOSD-E SOSD-I | a-method | N | N-E [ N-I
(—-3,-1,-3,-1) a=4p=16 | a=18=1 6
p=1/2 10
25 32 30 NC| NC|NC
(0,2,0,2) a=58=25 | a=1g=1 6
p=1/2 10
11 19 19 NC| NC|NC
(0.1,1.0,0.1,10) |e=108=100| ¢=1g=1 6
p=1/2 10
9 10 18 NC| NC|NC
(200,—300,450,250) | a=9 =81 |a=9 =81 6
p=1/2 10
23 45 27 321 25133
(- 200, - 300, a=9 =81 |a=9 =81 6
-450,—250) p=1/2 10
17 46 32 38 311 43




Yo

FUNCTION: EXTENDED WOOD

Second Order Steepest Descent Newton
Starting
Point SOSD-E SOSD-I a-method N N-E | NI
P, a=5 =25 a=5p=25 6
p=10
26 39 28 NC NC NC
P, a=5 =50 a=5p=50 ]
p=810
40 60 53 NC NC NC
Py a=10 =100 a=5 =25 6
p=510
37 37 39 49 NC 44
P, a=10 =100 | a=10 §=100 6
p=510
17 16 16 17 16 17
P, a=10 =100 | a=10 =100 ]
p=1/2 10
25 36 20 24 NC 26
p,=(=3,-1,-3,-1,..)
p,=(=1,-2,-3,~4,..)
p,=(20.19,....11,~11,=12,..., = 20)
p4=(10.-20,30,—40,50,10,10,...,10,—50,40,... -10)
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FUNCTION: DIXON

Second Order Steepest Descent Newton
Starting
Point SOSD-E SOSD-1 a-method N N-E | N-I
p, |e=10p=100|a=10 =100 6
p=510
21 24 47 218 NC|NC
p, |e=104=100|{a=10§=100 ]
p=510
21 25 31 610 NC|NC
p, |a=10$=100{a=10 =100 ]
p=1/2 10
28 34 46 418 NC [NC
p, |a=108=100|a=10 g=100 6
p=1/2 10
22 27 33 NC(1000)| NC|NC
Py |a= 10 $=100|a=10 =100 6
p=1/2 10
27 33 47 685 | NC|NC

p,=(=3,-1,-3,..)

p,=(-1,-2,-3,-4,..)
p3=(— 100,-100,1,1,-100,-100,1,1,...,— 100,—100)
p4=(0, -10,0,-10,0,...)

p5=(100,200,300,400, -500,600,700,800,900,1000)
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Remarks

(i) The parameters a and p = g—in SOSD-E and SOSD-I were chosen between 1 and

10. No attempt was made to choose the best values for the parameters, so that
the results reflect the typical behavior of the methods.
(i) In SOSD-I, less than two function evaluations were needed on the average to

perform the inexact linesearch.

Some general conclusions can be deduced form Tables 2-5. First we point out that g
a

should be chosen greater than one. This can be motivated by the coefficient - in the rate

8

of convergence result given in Theorem 4. Our experience so far suggests using

8- oM
g .

As previously mentioned, for the a-method, it was found that a large value of p,
. 6 . .
typically p = 10, gave good results. Here we remind that the a-method does not require
a linesearch and is therefore much more efficient in terms of function evaluations than the

other methods.

T This was further corroborated by additional numerical experiments performed by
J. Zowe and his students at the University of Bayreuth. (private communication to the

authors) .
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