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Real Investment, Capital Intensity and Interest Rates

In a growing economy the cash flows from investment projects can be expected
to be rising over time. In this paper we explore the interactions of growth and
uncertainty of cash flows with variable capital intensity in the decision to
invest. We derive simple rules for the optimal timing of investment projects
based on IRR and NPV. We show that the ability to vary capital intensity raises
the specter of perverse responses of investment to interest rates. Variable
capital intensity is a sufficient condition for the perverse responses that can
occur when growth rates are high or uncertainty is high. An empirical
analysis of a panel data set on residential investment in the 1980s confirms the
predictions of the model.

It is now widely recognized that the decision to invest is a decision to exercise a
real option and that many insights from the theory of financial options apply to real
investment decisions. One important difference between real and financial options is the
ability to vary the capital intensity of the investment, i.., the capacity or output level. The
capital intensity of a project (as opposed to the scale of a project) is important when there
is a fixed factor like land or labor. Analytically the ability to vary capital intensity means
that the exercise price of the option is endogenous rather than fixed. This paper pursues
the implications of this endogenous exercise price for investment decisions.

Irreversibility causes projects to be optimally delayed until the net present value
(NPV) and the internal rate of return (IRR) exceed critical values far larger than their
traditional break-even levels. One consequence of this delay is that our usual intuition may
no longer hold. For example, standard investment theory argues that an increase in the
interest rate will reduce investment spending because some projects whose IRR earlier
exceeded the cost of capital will now have IRRs below the necessary hurdle rate and will
not be undertaken. This reasoning may not work when projects are optimally delayed
because at optimal exercise, the NPV is positive and the hurdle rate exceeds the cost of
capital. The increase in interest rates and cost of capital can be offset by a decrease in the
option value that accelerates investment projects.

In a growing economy the NPV and IRR on delayed investments are rising over
time. An increase in the interest rate may discourage investment by increasing the cost of
capital but speed optimally delayed investment because the option value of waiting has
fallen. On balance the acceleration of projects causes increased investment. This does not

mean that negative NPV projects are being undertaken. It does imply that positive NPV
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projects are undertaken earlier. Eventually with a growing economy the same projects are
commenced. However, during a given period, if interest rates rise, investment may
increase over what it would have been with steady interest rates.

High levels of uncertainty about future cash flows are a sufficient but not a
necessary condition for this counterintuitive behavior. Similar perverse reactions to interest
rates can occur under certainty when capital intensity is variable. Optimal delay beyond
the naive hurdle (IRR=cost of capital) occurs in certainty models when the intensity of
investment is variable and the cash flows from the investment are rising. For example,
consider the decision to construct a building on a plot of land. If the land is in a growing
urban area, rents will be rising over time. Both the expected waiting time to invest and the
optimal capital intensity are positively related to the expected growth rate of rents. If the
owner commits today to the currently optimal intensity, he sacrifices some revenue in the
future compared with what he would obtain if he waited and constructed the larger
building that becomes optimal next period.

When interest rates rise, there are two offsetting effects. The first is the increase
in the hurdle IRR because the cost of capital is higher. This first effect always occurs.
The second is the increase in the project IRR because investment is made with less capital.
The second occurs only when capital intensity is variable. When the interest rate rises, the
optimal intensity falls since investors will substitute other factors for capital. With a
production function exhibiting decreasing returns to scale, the decline in capital intensity
will result in an increase in the output/capital ratio, a decrease in the cost of investment per
unit of output, and a corresponding increase in the IRR from the project. If the project IRR
increases more than the cost of capital, the net effect accelerates some projects. We show
that the critical parameters are the elasticity of substitution in production and the ratio of
the growth rate to the interest rate. The positive interest rate response occurs when the
ratio of the growth rate to the interest rate is large relative to one minus the elasticity of
substitution.

High levels of uncertainty are also a sufficient condition for positive interest rate
responses to occur in our model. Any level of uncertainty, however, increases the
likelihood of positive responses relative to the certainty case because it reduces the critical

ratio of the growth rate to the interest rate.



Notice that our argument is not a hysteresis argument as in Dixit (1989) that
investment persists because of sunk costs of entry and exit. Instead investment is
displaced in time by the effects of interest rates on capital intensity. Pindyck (1988)
addresses capacity choice and expansion by focusing on “operating options” to produce
output if it is justified by the stochastic demand once capacity is in place. By contrast, our
model is motivated by land development decisions. Net revenue is stochastic and the
investor chooses the optimal capital intensity given a fixed factor like land or labor!. Our
model does not address the option to expand which reduces the incentive to invest and
which is explored extensively in Abel et al. (1996). Like Abel et al., however, we link our
contingent claims approach to the g-theory of investment. While we do not consider
strategic option exercise games, our results are complementary to Grenadier’s (1996) in
providing a rational foundation for puzzling investment behavior in real asset markets.

Some authors have discussed the possibility of positive interest rate responses in
real options models. The possibility was first raised by Heaney and Jones (1986). In their
model, the interest rate response balances the negative effect of interest rates on the present
value of the cash flows with the negative effect on the value of waiting. For short-lived
projects the first effect on the PV of the cash flows is small so that the second effect on the
value of waiting dominates. Capozza and Li (1988) find positive responses in an urban
context with infinitely lived projects. In their model the exercise price includes the
opportunity cost of the land, which falls when interest rates rise. The positive interest rate
effect arises when the opportunity cost of the land is high relative to the capital needed for
the project and uncertainty is high. Amin and Capozza (1991) develop a two-factor model
and find that the Capozza and Li result holds when both interest rates and rents are
stochastic. Ingersoll and Ross (1992) develop a model of real investment that focuses on
stochastic interest rates and bullet projects. In their model, as in Heaney and Jones the
positive effect occurs for short duration projects.

Our model addresses the production issues and differs from most earlier work by

incorporating variable intensity in the decision to invest. The positive response occurs

'"The appendix in Pindyck (1988) briefly characterizes a capacity choice problem similar
to ours. McDonald and Siegel (1986) also illustrate their model of the value of waiting to invest
with a related model where labor input can vary.



when growth rates and/or volatility are high if the production function incorporates
substitution between capital and other factors of production. The model provides readily
testable implications for empirical work and we contribute the first empirical tests that
verify the existence of positive interest rate responses. Our empirical tests use a powerful
panel data set on residential investment in 56 metropolitan areas during the 1980s. We
show that both growth rates and the volatility of growth rates are significant determinants
of the interest rate elasticity. More than 25% of the observations fall in the positive
interest rate response region.

In addition to the new theoretical and empirical findings on interest rates,we derive
simple rules for the optimal timing of investment. We show the relationship among cash
flow yield, IRR, NPV, and Tobin’s ¢ under both certainty and uncertainty. The results
reveal that growing cash flows are a sufficient condition for projects to be optimally
delayed

In the next section we outline the structure of the general model of real investment
with variable intensity . The following two sections discuss two illustrative cases--with
and without uncertainty. The optimal decision rules for investment are summarized in
these sections. The fifth section provides the link between individual projects and
aggregate investment which we analyze in the empirical work. The sixth section describes
the data for our empirical tests and discusses the empirical results. The final section

concludes and discusses policy implications.

Problem Structure

Our point of departure is the general model of the option to replace capital in
Capozza and Li (1994). Here we simplify by allowing a single state variable, X(z), the net
cash flow per unit of output from the project, and by assuming that projects are new
investments, i.e., no durable capital committed in the past will be lost if the project is
undertaken. There is at least one fixed factor, e.g., land, and at the time of investment, the

investor can choose the capital intensity, K, and output or capacity level, O(K).2

*Capital is assumed to be infinitely durable and does not depreciate.
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The production function, Q(K), is assumed to be increasing and concave. Without
loss of generality, a unit of capital is assumed to cost one dollar so that K is also the cost
of the investment in the project.> Once the capital cost of the investment is committed to
the project, it is assumed to be irreversible.

The net cash flow, X(z), at time, £, may evolve stochastically over time following

geometric Brownian motion of the form

dX/X = gdt + odz, 2

where g is the mean growth rate, G is the standard deviation of the growth rate, and dz is
the increment of a standard Wiener process. Decision makers know the parameters of the
process so that there is either perfect foresight (when 6=0) or rational expectations (when
c>0).

At any time ?, the price of a unit of capacity is the present value of expected

future cash flows:

P(X) = E,|[7X(s)e 045 @

where E, is the expectation conditional on the information about the risk-adjusted cash
flow process as of time # and r is the discount rate*. The value of the annual output
level O(K), is Q(K)P(X).

If the project is undertaken at time , the net present value (NPV) of the project is

*While this assumption simplifies the notation, there is no loss of generality. The results
also apply to the more general case in which the unit cost of capital is stochastic as long as the
state variable X(#) is viewed as the ratio of unit cash flow to the cost of a unit of capital
(McDonald and Siegel, 1986).

*We do not model the interest rate process so that our results should be viewed as
comparative statics with respect to the interest rate. In effect, we treat interest changes as
permanent. This is similar to assuming that interest rates follow a random walk in a stochastic
setting. If interest rates mean revert, i.e. changes have a temporary and a permanent component,
the rational reactions to the rate changes will be smaller and will depend on the rate of reversion.

The relevant interest rate is one matched both to the horizon and the risk characteristics of the
investment. Since the projects are long-lived the interest rate should be a long term one.
Evidence of mean reversion is much weaker in the long rate than in the short rate.
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&) = 0KPX) - K

which is the present value of future cash flows minus the cost of the investment. The

investment problem is to choose the number of units of capital, K, and the time of

investment, T> ¢, to maximize the value of the investment opportunity,

W) = max, E[VX(T))e 9]

where E, is the conditional expectation defined above, T is a random first stopping time

adapted to the cash flow process and X is chosen to maximize the NPV at time 7. W(X)

represents the value of a perpetual warrant or option to invest in the project at any future
date. It is also the present value at time ¢ of the NPV at the optimally chosen time of

investment.

The Deterministic Model
In this section we derive the optimal investment rules under certainty (i.e., perfect
foresight) and show that delaying investment relative to the traditional JRR=cost of capital

or NPV>Orules, is optimal even under certainty. Let the state variable in (1) increase at a
constant rate g (0<g<r) with a standard deviation 6=0. Then from (2), the present value

of the net cash flow is

Py = X
r-g

Note that the cash flow at time T is X(T)=X(f)e8%~9. The value of investment opportunity

in (4) can be rewritten as

wx) = VX”)

rlg
X0 x<x
X*

where X *=X(T) is the threshold or hurdle cash flow for an optimal investment to take

®)

(11)

(18)

(20)



place.

Optimal Decision Rules
From (3), the first-order condition with respect to capital K implies that when the
optimal level of capital K* is chosen, the marginal benefit of capital equals the marginal

cost of capital:
0'K") PX*) =1

whereQ/ = dQ(K)/dK. Equation (7) defines the optimal K as a function of X and implies

that 9K,
X

Similarly, from (6), the first-order condition with respect to X* implies that at

time T, the current cash flow yield Q(K)X/K satisfies:

Q*X* _
K*

r.

This equation is similar to the Jorgensonian (1964) rule to invest when the cash flow,
QX" equals the user cost of capital, 7K *. Equations (7) and (8) determine the optimal
threshold level, X* and the optimal level of capital K*.

Note that from (3) and (5), for an optimally chosen level of capital, K*, the

internal rate of return (RR) for the project is

IRR=—QK£+g,.

From (2), g is also the rate of appreciation of the price of output. The two terms in (9) are
the current yield and the capital gains yield. These components are analogous to the
dividend yield and capital gains from investing in an asset that pays steadily increasing
dividends.

From (8) and (9), investment takes place when the IRR reaches the hurdle rate

7
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given by

IRR* =r + g. 30)

In capital budgeting theory in finance and neoclassical investment theory in economics, the
traditional rule is to invest if the IRR of the project exceeds the cost of capital, . For
irreversible projects with the possibility to delay, if cash flows are rising over time, the
optimal rule is to delay the project until the current yield, rather than the IRR, equals the
cost of capital. Thus, the hurdle /RR* must include the expected growth rate of cash flows.

That is, even under certainty the appropriate hurdle IRR is not equal to the cost of capital.

Substituting (5) into (3) and using (8) yields the critical net present value, V'*,

v* = £k (32)

which is proportional to the optimal level of capital X*. (11) indicates that the critical

value must reflect the present value of growth in cash flows.

The critical value of Tobin’s q, defined as the present value of cash flows per unit

of the cost of investment, g = QKI)(—P@’ 1S

* ¥

q9 = (35)

r- g'
The decision rules are summarized in Table 1. Note that these decision rules are
independent of the specification of the production function.

The decision rules based on IRR and NPV are illustrated in Figure 1.° With an

option to delay the project, the IRR and the NPV of the project rise over time as the cash

>Note that, from (12)-(14), when the production function is Cobb-Douglas (p-0),

investment takes place immediately or is delayed forever. The optimal level of capital is either
zero or infinity.

SSince the current yield and Tobin’s q are linear transformations of IRR, their graphical
illustrations are similar to that of IRR.



flow, X, rises. When X<X*, IRR is less than IRR* and the NPV from investing today is
less than the value of the investment opportunity, W. In this situation, the value of the
investment opportunity includes the NPV from investing today and a positive value of
waiting. Optimal investment takes place when X=X*; at that time the IRR=IRR* and the
NPV=V*,

An Explicit Solution

Dividing (7) by (8) and using (5) implies that the elasticity of output, given by

_XKo'®
Y (&) . i
Q(K)  at the optimal level of capital is

YK =1- % 37)

which satisfies 0<y (K)<1 for0<g<r. Since the elasticity of output is decreasing, (13)
determines a unique optimal level of capital K *.

To obtain an explicit solution, we specify the production function to be CES,

OK)=[a+(1-a)K PP,

where a = the asset's distribution coefficient with O<a</ and p=(1-7)/n>0 with
O<m<Ibeing the coefficient of the elasticity of substitution between capital and other

factors of production such as labor or land. The elasticity of output is

YIS B
1+[a/(1-a)]KP

which satisfies 0<y (K)<land is decreasing in K. As m~1, p~0, and the production
function reduces to the Cobb-Douglas, Q(K) = K1~ ¢,

From (13) and using the production function, the optimal level of capital K* then



-1\
£ = ( Va 1) .
rlg - 1

From (B), the threshold level that triggers investment is given by

X*=r 1-a
1 - g

p

The optimal level of capital K*, the critical net present value, V*, and the value of
the investment opportunity, W, are increasing functions of the growth rate, g, and
decreasing functions of the level of the interest rate, r. These comparative statics results
are consistent with those in Capozza and Li (1994) where cash flows are assumed to
increase linearly. While the effect of the growth rate on the threshold level, X*, is
ambiguous in Capozza and Li (1994), here a higher growth rate always implies a higher
threshold level and more delay before investment takes place. This occurs because, when
cash flows rise exponentially rather than linearly, an increase in the growth rate has a
greater impact on the option value to invest in the future than the value of investing today.

A higher level of the interest rate implies a higher threshold level and a longer time
until the investment takes place in models without a variable level of capital (e.g.,
McDonald and Siegel’, 1986; Capozza and Helsley, 1990). However, an increase in the
interest rate is found to lower the threshold level and hasten investment in Capozza and Li
(1994) where output is determined by a Cobb-Douglas production function. Here the

interest rate effect is ambiguous, as we demonstrate in the next sub-subsection.

Interest Rate Effects

The impact of interest rate changes on the threshold level and on investment is
more complicated in this model. To transform the multiplicative relationship in (15) into an
additive one, we study the interest rate elasticity of the threshold: the ratio of the
percentage change in the threshold level, X* to the percentage change in the level of the

interest rate.

"In the final extension of their model, McDonald and Siegel do allow the capital/labor
ratio can vary.
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From (15), the interest rate elasticity of the threshold is

XX 1 g
orlr | (-m)(1- g ((1 ™) r)’ 2)

which is positive (negative) if g/r<(>)1-m. This leads to the following proposition:

Proposition 1. Let cash flows, X, increase at a constant rate, g. Assume that the

production function is CES with an elasticity of substitution, 7. Let CY be the current

yield, IRR the internal rate of return, V' net present value and g be Tobin’s g. Then for
cash flows X near the threshold X*, if g/r<(>)1-m,
CY(X) <(>) CY/,
IRR (X) <(>) IRR,
VX <) P,
7 <) ¢/,

where the partial derivatives with respect to the interest rate are positive in the first two
inequalities and are negative elsewhere.

The proof appears in the appendix. The positive effects of interest rate changes on
the critical values CY* and JRR* are expected since they include the opportunity cost of
capital. If the capital intensity is given exogenously, CY and IRR are independent of the
interest rate. In this model, they are determined endogenously and hence vary with the
interest rate. A higher interest rate reduces the optimal levels of capital and output. For
production functions that exhibit decreasing returns to the variable factor, a lower level of
output implies a higher output/capital ratio and a higher CY and IRR.

As the interest rate increases, the present value of the cash flows decreases and
thus the NPV and Tobin’s ¢ decrease. An increase in the interest rate also reduces the
present value of investing in the future and thus lowers the critical values for NPV and g.

The response of investment to interest rates is determined by the effect of the
interest rate change on any of the decision variables relative to the effect on its critical

value. A positive response of investment to interest rate changes arises when an increase in
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the interest rate results in a larger increase in the IRR than in its critical value JRR*®
Figures 2-3 illustrate the effect of a change in the interest rate on IRR, IRR*, NPV,
V(X), V* and the value of investment opportunity W(X). Suppose that the interest rate rises

from r, to r,. Consider the case where g/r<1-m. In this case (illustrated in Figure 2),

the hurdle rate rises from X, 1* to Xz*. The increase in the interest rate raises IRR and IRR*

but lowers V(X), V* and W(X). Indeed, for projects with cash flows between X; 1" to X,

IRR* rises more than RR and the NPV falls more than the value of the investment
opportunity. As a result, these projects that would have been undertaken are delayed.

Let us now turn to the case where g/r>1-7 (shown in Figure 3). The hurdle rate

falls from Xl* to Xz* as the interest rate rises from r tor, While the increase in the

interest rate still raises RR and IRR*, but lowers V(X) and W(X), IRR rises more than

IRR* and W(X) falls more thanV(X) for projects with cash flows between X, and X"

Therefore, these projects, which would not have been undertaken when IRR was less than
IRR* or NPV was less than the value of the investment opportunity, are now acceptable

since IRR exceeds IRR* and NPV exceeds the value of the investment opportunity.

The General Problem

We now turn to the stochastic case in which 6 > 0 and where expectations are

rational. When the cash flow evolves stochastically over time, the present value of cash
flows and the value of the investment opportunity can be priced as contingent claims
(options). To use the contingent claims approach, we assume that the stochastic changes in
the state variable are spanned by existing assets in the economy. In this way, an
equilibrium model such as the continuous-time version of the Capital Asset Pricing Model
can be used to determine the risk-adjusted returns on the present value of cash flows and
the option value to invest.

The present value of cash flows per unit in (2) is given by

8For.Cobb-Douglas production function (7t =1), the positive effect always occurs. This
result is consistent with the finding in Capozza and Li (1994).
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PX) = i (76)
r-¢

where £ is the risk-neutral growth rate, g=g-A and A is the risk premium for the
portfolio replicating the stochastic evolution of the cash flow, X. Since r- g=(r+A)-g, the
term r+A is the risk-adjusted discount rate for cash flows. The option value to invest

satisfies the following ordinary differential equation:’

2
%X2 Wy + 8XW, - 1 = 0. (82)

The boundary conditions are

w(0) = 0,
WX = X", (83)
WX?) = V(X™).

The conditions have the usual interpretations. The first condition follows from the
observation that the project is worthless if the current and future cash flows are zero. The
second is the high-contact or continuity condition, stating that at the time of investment,
the value to invest in the future equals the project’s current NPV. The third is the "smooth-
pasting condition" or first order condition, which ensures that the threshold, X* is chosen
optimally.

The solution to the problem (18) subject to the first and second boundary

conditions in (19) is (compare (6))

) = Vx| T (84)
X

’Note that d=r- & is the dividend yield, X/P, from investing in an asset with price P.
&=r-d does not reduce to the risk free rate since the dividend yield is not zero.
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2

' 2
[—@—22_) + J(g“—%)2 + 20%r[>1. As 6-0, g~ g, a-r/g. As

1
2

where ¢ =

o

G- o - 1.

Optimal Decision Rules in the Stochastic Case
The smooth-pasting condition in (19) is analogous to a first-order condition of
(20) with respect to the threshold level X* (see Merton (1973)). This condition implies the

critical current yield:

From (21), optimal investment occurs when the current yield equals the cost of capital, r, .
plus an uncertainty premium, (6%/2)c.

From (9), the IRR of the project is the current yield plus the expected growth rate,

g- (21) implies that investment is made when the IRR reaches the hurdle rate given by

2
IRR*=r+g+%a.

Compared with the hurdle rate in the deterministic case given by (10), the hurdle rate,
IRR, in the stochastic case contains an uncertainty premium since the value of waiting is

higher under uncertainty. This hurdle rate differs from the required rate of return,

IRR* = r + A, in the traditional theory, where A is the risk premium defined earlier.

The critical value of NPV is (from (21))

5 2
pro 8t (OA/Z)OL X"
r-g

which implies that at the optimal time the NPV yield, V#K*, must equal the value of the

A 2
growth, —57, plus the value of the volatility of the cash flows, (672)ex .

A

r-g r-g
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From (21), the critical value for Tobin’s g, is

Te I : 2;2)04 : (98)
The decision rules in the stochastic case are also summarized in Table 1. The
investment policy for the case with stochastic cash flows is similar to that in the
deterministic case (illustrated in Figure 1) except that the optimal level of capital and the
threshold level are higher.
The condition for the optimal level of capital is the same as (7). Dividing (7) by
(21) and rearranging yields

A

Ky =-L"8
YE) r+(6%2)a ©9)

which is a stochastic generalization of (13).

An Explicit Solution
For the CES production function, the optimal level of capital and the threshold

level of cash flows are

- Up
K - Va -1 ’ (100)
a -1

2 _ 1/
X' =|r+ Sglf e} (101)
2 N 1- Ve

The comparative statics results with respect to the growth rate are the same as in
the deterministic case. As in other option models, the option value to invest increases in the
volatility of cash flows. Thus the higher the volatility, the longer will be the time until the
investment is undertaken. In addition, the higher the volatility, the higher is the level of

capital that will be committed when the investment takes place. These results are similar to



those in Capozza and Li (1994).

Interest Rate Effects

The interest rate elasticity of the threshold level is

XX _ 1
ol (1-m)(1- /P

[a-m)-n] (102)

where
r-9
a(e-1)/@E - 022 + 202

1’]:

which is increasing in ¢ ando and approaches g/r as 6~ 0 and one as 6. Thus, for

any g, if the volatility is sufficient large, n>1-n, and X,'<0.

Proposition 2. Assume that cash flows, X, evolve according to a geometric Brownian

motion with drift g and standard deviation, ¢ . Also assume that the production function is
CES with elasticity of substitution 7. Let CY be the current yield, IRR the internal rate of

return, V the net present value and g be Tobin’s g. Then for cash flows X near the
threshold X*, if n<(>)1-m,
crm <¢) cr;,
IRR (X) <(>) IRR;,

v@® <) 7,

7,X) <¢) g,,
where the partial derivatives with respect to the interest rate are positive in the first two
inequalities and are negative elsewhere.

The proof is also given in the appendix. As in the deterministic case, an increase in
the interest rate raises the IRR and IRR* of the project, but lowers the NPV and option
value to invest. If the volatility is low, IRR* rises more than IRR, and the NPV falls more
than the option value to invest. Thus some projects that would have been undertaken are

delayed as the interest rate rises. However, if volatility is high, IRR rises more than IRR*,
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and the option value falls more than the NPV. Consequently, investments that would not
have been made are hastened (see Figures 2-3).

Note that the hurdle rate /RR* and the option value of the project are positively
related to the volatility. If the volatility is high, there is more delay before investment is
made. The positive interest rate effect arises when projects awaiting development are
undertaken when the interest rate rises.

Figure 4 summarizes the effect of a change in the interest rate on the timing of
investment for various levels of the expected growth rate and volatility. Let (g,0)be any

point located on the interest rate-neutral curve, i.e., the collection of (g,0) at which the

interest rate changes have no impact on investment. For a given level of the interest rate
and a given level of the elasticity of substitution, the positive effect of interest rate
changes on investment arises ifg>g or 6> . The interest rate-neutral curve shifts
downward as the elasticity of substitution rises. This implies that the larger the elasticity of

substitution, the more likely is the perverse effect.

Aggregation

To analyze the effect of changes in the interest rate on investment directly, we
assume that the rate of arrival of new projects is a constant, N, at any point in time".
These projects are ex ante identical with the initial cash flow X following a cumulative
distribution function F(X) with F’>0. The number of projects that will be undertaken at

time ¢ is

N

where 1 Kisxh) is an index function that takes the value of one if the initial cash flow from

asset i satisfies X %> X *and zero otherwise. The level of investment is defined to be the

1This assumption is motivated by the empirical analysis of housing permits in the next
section. If the number of households in a metropolitan area is growing, then at each moment in
time the number of new feasible projects is approximately equal to the number of new
households. See Capozza and Sick (1993) for a more detailed accounting of the relationship
between household growth and the arrival of residential investment projects.

17

(119)



expected number of projects undertaken'" at time #:

1) = En(] = N[1-FX").

Since F/ > 0, investment rises as X* falls and vice versa.

The interest rate elasticity of investment is then:

IJI= - bX")x'

where b(X)=XF/(X)/[1-F(X)]>0. We have shown in equation (28) that the interest rate
elasticity of the threshold level, x ", is positive if the expected growth rate and volatility
are low and is negative otherwise. From (28), rising interest rates adversely affect
investment only if the expected growth rate and volatility are low. The positive effect of

interest rates on investment arises if the expected growth rate or volatility is high.

The Empirical Tests
The Sources of Data

To test the model's implications for interest rate effects we analyze residential
investment which is recognized to be sensitive to interest rates. Our sample includes
annual data on single family building permits in 64 metropolitan areas during the 1980s.
The source for these data is the Building Permits Branch of the Bureau of the Census of
the U.S. Department of Commerce.

In metropolitan areas, a major determinant of the growth rate of the real rents is
the growth rate of population in that area (Capozza and Helsley, 1989, 1990). Therefore,
we use population growth as a proxy for real rental growth because data on the implicit
rents of homeowners are not available. The population data by metro area are obtained
from the Bureau of Economic Analysis of the U.S. Department of Commerce.

Our sample spans the period from 1980 to 1989. This period is selected for two

reasons. First, the data on building permits were not available before 1980. Second, the

"This definition is motivated by the housing permit data we use in the next section.
Permit data register the number of housing units but not the gross change in the capital stock.
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standards for defining metropolitan areas were modified in 1980 and 1990 by the Office of
Management and Budget. Even during this sample period, the number and composition of
metropolitan areas are not constant. We can construct consistent data for 64 large
metropolitan areas during the sample period. The average annual growth rates of
population are calculated for each of the 64 metropolitan areas. After eliminating those
with negative average growth rates, 56 metropolitan areas remain in the sample.

The relevant interest rate is one matched to the horizon and risk of the investment.
Since we are studying residential investment we choose the primary conventional home
mortgage rate to represent the nominal interest rate. Mortgage rates reflect the maturity
and default risk of the residential assets and therefore are a suitable discount rate for net
rental income (cash flow). The time-series data for the mortgage rate were retrieved from
CITIBASE data.

The real interest rate is calculated in two ways--first as the nominal mortgage rate
minus the CP1 inflation rate. The CPI is obtained from the CRSP tape from the University
of Chicago. An alternative real interest rate is calculated using the average of the current
and preceding two years’ inflation rates as a proxy for the expected inflation rate. Other

time series methods for estimating expected inflation rates were also tested.

Description of the Variables

HP,: the number of building permits for single-family homes issued in
metropolitan area i for year ¢.

GHP,; = log(HP,/HP,,): the annual growth rate of building permits in percent for
single-family homes issued in metropolitan area i for year 7.

POP,: the population in metropolitan area i in year .

GPOP;, =log(POP,/POP;,)): the annual growth rate of population in percent in
metropolitan area { for year .

GHPC,, = GHP,, -GPOP;: the annual growth rate of building permits per capita in
percent for single-family homes issued in metropolitan area i for year ¢.

RM (RMA): the annualized real mortgage rate in percent defined as the beginning-
of-year yield on the primary conventional mortgage minus the CPI inflation rate (minus a

3 year average of current and the preceding two years of CPI inflation)..
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GRM, = log(RM/RM,_,): the annual percentage change in the real mortgage rate
for year t. (GRMA uses RMA)

RATIO;=GHPC,/GRMt,: the interest rate elasticity of building permits per capital
issued in metropolitan area i for year t (RATIOA uses GRMA)

AGPOP;. the average annual growth rate of population in metropolitan area i.

SGPOP;: the standard deviation or volatility of the growth rate of population in

metropolitan area i.

Summary Statistics

Table 2 reports the summary statistics for the growth rates of building permits,
population and other relevant variables for the sample period, 1981-1989. The average
annual growth rates of building permits (GHP) range from -12.0 percent to 15.5 percent
across the 56 metropolitan areas, with a mean of 2.8 percent and a standard deviation of
5.9 percent. The average annual growth rates of building permits per capita (GHPC) vary
in a similar range, with a lower mean of 1.4 percent but a similar standard deviation of 6.1
percent. The small change in the variability indicates that the cross-sectional variance of
the growth rates of building permits is much greater than that for the population growth
rates.

The real mortgage rate (RM) is significantly positive during the sample period,
with a mean of 7.7 percent and standard deviation of 3.4 percent. Figure 5 plots the real
mortgage rate at the beginning of each year. RM rose from 1% to 13% during 1980-1983
and then declined for most of the rest of the sample period. It fell to nearly 6 percent at the
beginning of 1989. Not surprisingly, the percentage change in the real mortgage rate
(GRM) also shows high variability, with a mean of 18 percent and standard deviation of
67 percent. The #-ratio, implies that the mean of GRM is indistinguishable from zero.

When averaged over the sample period and across the metropolitan areas, the
elasticity of residential investment as measured by RATIO = GHPC / GRM is close to
zero. This weak relationship between aggregate changes in the construction activity and
changes in the interest rate is consistent with the findings of earlier empirical tests of
neoclassical models of the investment demand (see Hall (1977)). The time-series means of

RATIO, however, vary substantially across metropolitan areas, with a minimum of -6.7
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and maximum of 13.5.

The average population growth rate (AGPOP) and the standard deviation of the
population growth rate (SGPOP) also exhibit large variability among the metropolitan
areas. AGPOP varies from 0.1 percent to 5.1 percent and SGPOP fluctuates from 0.1
percent to 2.2 percent across the metropolitan areas.

The lower panel of Table 2 reports the cross-correlations between the variables.
As expected, GHP is highly correlated with GHPC with a coefficient of 0.999. The
variable RATIO is more correlated with SGPOP (with a correlation coefficient of 0.24)
than AGPOP ( with a correlation coefficient of only 0.08). The correlation coefficient
between AGPOP and SGPOP is moderate at 0.24. The correlation between the two
variables suggests that the expected population growth rate and the volatility of the growth

rate are not close proxies for each other.

Subgroup Analysis

To examine what determines the effect of changes in the interest rate on residential
investment we first rank the metropolitan areas by their average population growth rates
and their volatilities. We then assign each metropolitan area to quartiles based on the
rankings. Panel A of Table 3 reports the subgroup means of the interest rate elasticity of
building permits per capita, i.e., RATIO = GHPC/GRM. The standard errors are given in
parentheses below the means. The shaded region in the table highlights the cells where the
perverse response occurs.

The last row in panel A of Table 3 reports the means of the variable RATIO for
four quartiles formed from the average population growth rate AGPOP. The mean for the
lowest average growth quartile is -2.40 with a standard error of 0.84. This mean is
significantly negative at 1 percent level. The means for the other quartiles are positive.
The mean of the third quartile is significant at the 10 percent level.

The first row in panel B of Table 3 reports the differences in the means of each

quartile from the lowest average growth quartile and the x? statistics for testing the joint

hypothesis that the means are all equal. To adjust for heteroskedasticity, the standard

errors for the differences in means and the y?statistics are calculated using the

heteroskedasticity-consistent covariance matrix estimator of White (1980). These
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differences are all significantly positive. The joint hypothesis that the subgroup means are
all equal is rejected at 5 percent level. These results are consistent with the prediction of
the model that the interest rate effect on investment is negative if the expected growth rate
is low and is positive otherwise.

The last column in panel A of Table 3 presents the means of RATIO for the four
quartiles formed from the volatility of the growth rates. The interest rate elasticities
reflected in the subgroup means increase in volatility. The interest rate effect is negative
and statistically significant for the first two volatility quartiles, while the effect is almost
zero for the third volatility quartile and significantly positive for the highest volatility
quartile. The last row in panel B of Table 3 reports the differences in means between each
volatility quartile and the lowest volatility quartile. The differences are significantly

positive for the third and highest volatility quartiles. From the %2 statistic in that row, the

hypothesis that all volatility subgroup means are equal is strongly rejected at the 1 percent
level. This provides further evidence that the interest rate effect on investment is not
independent of the volatility of the growth rates. The positive relationship between the
interest rate elasticity of investment and the volatility of the growth rates is again
consistent with the prediction of the model.

To investigate the roles of the mean population growth rate and volatility of
population growth rate simultaneously, we divide each volatility quartile into four sub-
quartiles from ranked average population growth rates of metropolitan areas within the
quartile. While the sub-quartile means are negative and mostly significant within the
lowest volatility quartile, they are positive and largely significant within the highest
volatility quartile. Similar to the results in the last row of panel A of Table 3, the means in
the subquartiles are not strictly monotonic. Nevertheless, they tend to increase in the
average population growth rates. This implies that the effects of interest rate changes on

investment are related to both the mean and the standard deviation of the growth rates.

Regression Results
To further investigate the effects of changes in the interest rate on investment, we
conduct pooled time-series and cross-sectional regressions of the variable RATIO on the

average population growth rate, the volatility of the population growth rate and other

22



related variables. Since the interest rate elasticity of investment may also be related to the
level of interest rates and other exogenous factors like government regulations, tax rates
and monetary policies, we include dummy variables for each calendar year except the first
year to capture the time series variation of any excluded variables. Some year dummy
variables are significant.

Table 4 reports the regression results. The standard errors appear in parentheses

below the regression coefficients. The first y%statistic tests the joint hypothesis that all
coefficients are zero. The second x?statistic tests the joint significance of all coefficients

except the intercept and year dummies. Since specification tests reject the hypothesis that
the residuals in the regression models are homoskedastic, the heteroskedasticity-consistent
covariance matrix estimator of White (1980) is used to calculate the standard errors and

¥ statistics.

The regression intercepts are significantly negative at the 1 percent level in each
regression. This indicates that the average effect of interest rate changes on investment is
negative.

In the first regression, the ratio of the average population growth to the real
mortgage rate, AGPOP/RM, is used as the explanatory variable. The regression coefficient
for this ratio is 0.86, with a standard error of 0.41, which implies that this variable is
significantly positive at the 5 percent level. This result is consistent with the prediction of
the deterministic model that the effect of interest changes on investment is positively
related to the ratio of the growth rate of cash flows to the real interest rate. For the
perverse effect of interest rate changes on investment to occur, the fitted value of the
dependent variable must be positive. This regression implies that the ratio, AGPOP/RM,
must exceed 1.42 (=1.22/0.86) with an asymptotic standard error (see White (1984)) of
1.22 for the positive interest rate effect to occur. According to the deterministic model, the
critical value is 0<1-7 < 1 where 7 is the elasticity of substitution. Since the standard
error 1s large, the estimated critical value is not distinguishable from either zero or one.

In the second regression, the average population growth rate, AGPOP, is the
explanatory variable. The coefficient estimate (0.74) is also more than two standard errors
away from zero. Since the variation in the real interest rate over time is captured by the

year dummies, the positive coefficient for the variable AGPOP is consistent with the
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model’s prediction that the effect of interest rate changes on investment is positively related
to the growth rate of cash flows for a given level of the interest rate. The positive effect of
interest rate changes on investment occurs if the average growth rate exceeds 1.73
(=1.28/0.74) percent with a standard error of 1.31 percent. The estimated critical value
from this second equation is plotted in Figure 6. This critical value lies between the median
(1.19 percent) and the third quartile (1.95 percent) of the population growth rates. This
implies that the positive response is estimated to occur in more than 25% of the
observations. Alternatively, the ratio of the average growth rate to the average real
mortgage rate (7.7 percent) must exceed 0.22. The implied value of the elasticity of

substitution, 7t = 0.78.

Both the model and the data in Table 3 suggest that the relationship between the
effect of interest rate changes on investment and the average growth rate is not monotonic.
To account for a possible nonlinear relationship, the third regression introduces a quadratic
function for the average population growth rate. The coefficient estimates for the average
population growth rate and its squared value are 2.57 and -0.42, respectively. They are
both significant at the 5 percent level. For the range of the average population growth rates
reported in Table 2, the critical value of the average growth rate that must be met for the
positive effect of interest rate changes to arise is 1.20 percent (the median is 1.19 percent)
with a standard error of 0.47 percent. Equivalently, the positive response to interest rate
changes occur if AGPOP/RM exceeds 0.16 (=1.20/7.7). The implied elasticity of
substitution is 7t =0.85.

In the fourth regression, we examine the significance of the volatility of population
growth rates in explaining the effect of interest rate changes on investment. The regression
coefficient is 6.08 with a standard error of 2.40. This is significant at the 1% level and is
consistent with the prediction of the stochastic case of the model. From the coefficient
estimate, the positive effect of interest rate changes arises if the volatility is greater than
0.63 percent (the standard error is 0.43 percent). This critical value is between the median
0.46 percent and the third quartile 0.71 percent implying that the perverse interest rate
effect would occur in between 25 and 50% of the observations. The R2 of this regression
is 5.6 percent, while the R? of regressions using average population growth rate as

explanatory variables are less than 1 percent. These R? suggest that the volatility of
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growth has more explanatory power than the average growth rate.

In the last regression, the explanatory variables include the average growth rate,
the squared value of the average growth rate and the volatility of the growth rate. The
coefficient for the volatility remains significant at the 5 percent level. The coefficients for

the other variables lose their significance although they retain the expected sign. The y?2

test shows that the three explanatory variables are jointly significant at 5 percent level.
The results in tables 3 and 4 use the realized real mortgage rate. To examine
whether these results are robust to this proxy for the real interest rate, we also tried an
alternative calculation for the real interest rate. This alternative for expected inflation is a
moving average of current and the preceding two years’ inflation rates. The results (not
reported) are similar to those in Table 4. Not surprisingly, the overall fit improves with
this variable since the moving average reduces the noise in the dependent variable. The

coefficients are smaller since the variance of the alternative real interest rate is lower.

Conclusions

In this paper we have analyzed real investment with variable capital intensity both
theoretically and empirically. These investments include situations where capital can be
varied relative to other inputs to the investment. This, of course, is a wide class of .
investments since it includes any investment decision that involves fixed amounts of either
land or human capital and would include decisions to develop an ore deposit or an oil field,
all land development decisions whether residential or commercial, decisions to renovate or
redevelop existing industrial or commercial facilities (e.g., factories), and decisions to
invest in human capital.

Two types of theoretical results are derived. First, simple decision rules for
optimal investment timing are derived and elaborated in terms of current yield, internal rate
of return, net present value yield, and g ratio. In a growing economy the simplest optimal
timing rule is for current yield where optimal investment occurs when the current yield
equals the cost of capital in the certainty case and equals the cost of capital plus an

2

. . o° o
uncertainty prémium (7’ +

). The IRR equals the cost of capital plus the growth rate

of cash flows (r+g) under certainty. With uncertainty the uncertainty premium must be
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included (r + g + ). The net present value and g rules are only slightly more
complicated (see Table 1). Note that investments are optimally delayed relative to
traditional investment criteria even under certainty if cash flows are growing.

Secondly, we derive the conditions under which positive responses of investment
to interest rates can occur. In the model uncertainty is not a necessary condition for
positive responses of investment to interest rates to occur. High growth rates are sufficient
to cause the positive response. High volatility increases the likelihood of positive
responses when growth rates are positive and is sufficient if growth is zero. Intuitively an
increase in the interest rate raises both the hurdle IRR and the project IRR. The project
IRR rises because higher interest rates reduce the optimal capital intensity and increase the
corresponding output/capital ratio. If the project IRR rises more than the hurdle IRR,
projects are accelerated in time rather than delayed by the interest rate increase. When the
elasticity of substitution between capital and other factors is high, acceleration is more
likely.

The empirical analysis of residential investment during the 1980s in 56
metropolitan areas confirms the predictions of the model. Both growth rates and volatility
of growth rates are significant explanatory variables in regressions with the interest rate
elasticity of investment as a dependent variable. In the data sample the estimated interest
rate neutral curve places between 25 and 50% of the observation in the perverse region.

The model could be extended in a number of ways. First, we have assumed that
output is sold in a competitive market so that there is no interaction between the capital
intensity and the price of output. For investments in monopolistic settings, including
infrastructure investments like roads, bridges, etc., demand is downward sloping. A less
than perfectly elastic demand should weaken the effect of capital intensity on investment
decisions. Second, as with most models of real investment decisions, our model is a one
factor model and we have modeled only the stochastic process for project revenue. As
indicated above, if the process for long-term interest rates is included and it has a
temporary as well as a permanent component, the optimal reactions to interest rate changes

will be smaller. We conjecture that this should not, however, affect the sign of the optimal
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reaction'?,

The policy implications of these results are profound. If increases in the interest
rate can accelerate investment spending then extreme care must be taken when monetary
decisions are designed to transmit restraint to the economy through their effect on
investment. It becomes extremely important to understand the conditions under which the
perverse results are obtained.

Since it is the ratio of the growth rate to the interest rate that is critical, positive
interest rate responses can occur either when growth rates are high or when interest rates
are very low. Therefore, policy is most at risk at the extreme points--near the peak when
growth rates can be high and at the trough if interest rates are very low. That is, when
monetary policy is most needed may also be the times when it is least or even perversely
effective.

There are also regional implications to the results. Since some parts of the
country grow faster than others, interest rate policy can have very different effects
regionally. Indeed, the regions most in need of restraint from interest rate policy are also

the areas most likely to respond perversely.

Appendix
Proof of proposition 2 (proof of Proposition 1 is a special case in which 6-0.).

We first prove the inequality for CY. Since CY(X) is a continuous function of X, it

is sufficient to consider the case in which X=X*. In this case, CY(X *)=CY* and thus

CY (X*)<(>)CY," is equivalent to cyl<(>)cy," where cy=1og(CY) and I=log(r). Since
cyl—cyl*= -x,’, the first inequality follows from the equation before the proposition.

Note that & is the root of the quadratic equation: (6%2)e (et — 1)+ et ~r=0. The

right hand side of (21) can also be written as ¢ where ¢ =(1-g/r)/(1- 1/e)>1, which

approaches unity as 6-0. To show CY,>0, note that cy,=~[(¢ - 1)+(&/r)]k,"/p>0

2Amin and Capozza do provide a two factor model with stochastic interest rates.
Analytical results cannot be obtained, but qualitative results are similar to the one factor model.
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where ¢>1 and k"=~ /[p(e:~1)]<0. To show CY,">0, note that

¢y, =1+ J =(1-1)/(1-2/r)>0 where <.

Note that IRR(X)=CY(X)+g, V(X)+K *=CY(X)K */(r-), and
q(X)=CY(X)/(r- $). Thus
log[IRR(X)-g] - log(IRR"~g)
log[V(X)+K "] - log(V*+K™)
loglg(X)] - log(g ™)
log[CY(X)] - log(CY™).
The inequalities for /RR, V and Tobin’s g can be shown analogously.

1]
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Fig. 6. Estimates of Interest Rate Effects.

Each curve is drawn using estimated regression coefficients in Table 4. The regression number is next to the

curve. The dashes indicate sample means.
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