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MECHANTICS OF THE BELTED TIRE

F. Bohm

Summary: The ring on an elastic foundation is the basic concept to formu-
late the static and dynamic properties of radial cord tires. To illustrate the
theory, static axlal deflection under concentrated load, natural frequencies
of radial vibrations and the formation of stationary waves at high rolling
speeds are treated. By comparing measurements of radial and axial vibrations
with theoretical results it is shown that the model in question may well be
used.

1. Introduction. In 1948 the Michelin Tire Company developed a tire
which differed in its design from the usual bias ply tire (Fig. 1). The side-
wall cords (a) reinforcing the rubber run in radial planes, so that this tire
is called a radial tire. It is also called a belted tire since the tread of
this tire is reinforced by a steel-cord reinforced belt (b). The innermost
belt ply (ply 1) is in direction almost parallel to the radial cords. Both
outer layers (plies 2 and 3) have a direction of *18° measured from the center-
line of the tire. Ply 1 acts as a foundation layer for the two others and is
not utilized in all belted tire designs. The internal pressure causes a con-
siderable tension in the longitudinal direction of the belt. For a given
cross section this is easily found. Although the belt itself is relatively
stiff, the sidewalls are very flexible and the cross section due to internal
pressure can be determined by use of membrane equilibrium. The belt can Dbe
considered as a stiff body elastically supported on the radially reinforced
membrane. Experiments by Hinton [1] and Borgmann [2] show that the deflec-
tions of a belt are similar to those of a ring on an elastic foundation. The
same conclusion is reached by Frank [3] in his dissertation. The ring on

Fig. 1. Cross section of a belted automobile tire. a-radial
reinforcement, b-belt (steel-cord reinforced). Ply 1 is par-
allel to (a), plies 2 and 3 are reinforced at an angle of
B=t18° from the circumferential direction.



elastic foundation was treated by Federhofer [4], Volterra [5], and Rodriguez
[6]. For the derivation of the equations of motion one must consider the
equilibrium of the deformed belt element, because of the pretension in the
belt. Nonlinear terms will be neglected. It is the purpose of this paper to
discuss the linearly elastic properties of deformation, vibration, and rolling.

2. Mechanical Properties of the Belt. 1In order to treat the belted tire
as a ring on an elastic foundation, the properties of the belt have to be
determined first. The internal stresses caused by tension and bending of the
belt are obviously carried by the steel cords. At the edges of the belt, how-
ever, the cord forces must of necessity drop to zero, and hence they have to
be transmitted to other cord layers. Thus, large shear stresses take place
at the belt edge, especially in the rubber layers between the two oblique plies.

In order to illustrate these internal properties of the belt, the deforma-
tions have been studied using a model made of foam rubber.l Figure 2 shows
the design of the three-layer belt. The oblique reinforcement was made by
cementing threads on the foam, whereas the transverse reinforcement was ob-
tained by cementing rattan strips to the outside in order to support compres-
sion forces. Because of the longitudinal force T and the distance between
the layers d an unbalanced torque arises.

Fig. 2. Belt model (foam rubber).

Ty =5 Tdtan f. 2.1)

The tension force in the belt T is made up of T,, which is determined by the
internal pressure of the tire, and by a part which is dependent upon the
longitudinal strain € of the belt. The term (EF) is an effective stiffness,

1g. HEfer, Diplomarbeit, accepted by the "Fakultét fiir Bauwesen der TH Stutt-
gart, Lehrstuhl I fiir Techn. Mechanik," 1965.



or product of modulus and area,

T=T,+ (EF)¢. 2.2)

Figure 3 shows the belt model in tension. Because of Ty the free edge is
noticeably twisted. The shear deformation of the rubber layers along the
belt edge are shown in Fig. L. Since the layer which is reinforced with
rattan strips is located d and 2d respectively from the oblique reinforce-
ments, and since there 1s a transverse contraction as a result of the longi-
tudinal tension, the cross section shows a bending effect. This can be seen
on the bright lines in Fig. . The shear deformation can be madé visible,
and for this purpose one inserts needles into the rubber layer. Figure 5
shows a plan view of the belt. A wool thread was pulled through the eyes of
the needles which makes the shear deformation across the width of the belt
visible. The wooden bars to the right and left of the row of needles hinder
the above-mentioned warping of the cross section. There are other shear de-
formations too, but they are smaller and dependent upon the variable trans-
verse contractions of the different reinforced plies. For example one can
see in Fig. 5 that the needles are slightly tipped towards the middle of the
belt.

Fig. 3. Deformation of the belt model in tension.

Fig. b. Shear deformation of the middle rubber layer
along the edge of the belt.



Fig. 5. Shear deformation of the middle rubber layer across
the width of the belt. It is made visible by needles which
are inserted into the rubber and strung with woolen yarn.

If one omits the transverse reinforcement one gets, for the same longi-
tudinal extension, a completely analogous shear deformation of the middle
layer. The transverse contraction occurs here only in the rubber layer in
the middle. An originally plane section of the belt has after deformation

the form shown in Fig. 6. This somewhat simpler behavior is treated analyt-
ically in the following.

P

Fig. 6. Graph of the deformation of the cross section
without transverse reinforcement.

The field of deformations is approximated by the simple expression:

d
s u(z) = 5¥(y) 3)
v(y)

Because of the shear deformation in the x-direction the threads are unloaded
towards the edge and this results in a varisble transverse contraction in
the y-direction. These effects, however, occur only in the immediate vicin-



ity of the edge. They show up strongly only with the belt model, since the
foam rubber has a very small shear modulus.

We consider the belt to be at first loaded by Ty and uniformly strained
by the amount |€5x| << 1, and having the transverse contraction Iaoyl << 1.
The strain £,¢ of the steel cords is given by

€of = €95 c08%f + &9, sin?f . (2.4)

The strain energy of the belt per "unit" length is

b

ty
1 3d 1
E—Ecmg[(egx +33y) +2 Ve 50x€0y:| + Efnymeaf}dy »

&=

| a-\

where Ep 1s the modulus of the cord, ny is the end count of wires across a
section in the y-direction, Eg is Young's modulus and vy is Poisson's ratio
for rubber. The virtual work due to the external force Ty is 8'A = T 884,
and therefore is

) 00 o0
6A=(S¢—5;6:(s€0x+58'0—y680'

Calling the end count of cords n, this yilelds

3 1

1, T,
Ec’—d‘(60x+1’060y)+Ef"[ (1+‘3052/9)250x‘*‘7(5“‘2/3)2"%}:‘[

= 2 2.5)
1. 1
Egq 3d,,2‘(80y +vg0s) + Efn [7(Sln2ﬂ)28°”+?(1 —Coszﬂ)zeoy} =0
- Y

These equations have already been derived by F. Martin [7] in a different
way.

If the strain of the threads &€,r is neglected in the strain energy,
one obtains a relationship between the strains £,, and 5oy’

oy =0 =gy, cos?f + g, sin?f . (2.6)

From (2.5) follows

E, 3db [ 216 1

1 -} 1utan2ﬂ+tan4ﬁJ€0-“=(EF)£0x=T09 2.7

vhere (EF) can be called the effective stiffness for tension.

From Egs. (2.7) and (2.6) €4 and éb can be determined. Now we look
at the edge disturbance of this fundamental condition. Let



o 0 d o d ,
£x='ai;=€°"’ £y=a—;-=€0y+8y(y), ny=:*:?%=:}:”2“)’(y)~ (2‘8)

Since the cords are unloaded near the boundar& one has to take their strain
into account:

& =ea s — sin f cos B/(y) + sin®B e, (y) 29)

On the edge of the belt Ef.has to vanish. We write the strain energy

+b/2
1
o= f{%Ecl—?—_%%[ﬁzo’c + (oy+ &) +2vc €0x (e0y + &)] + Efnef J,-?de?} dy . (2.10)

—bj2

Because of the additional degrees of freedom, y and £ _, ®yip 15 now smaller
than without boundary effects. We keep £,x and Eoy fixed and take a varia-
tion such, that @(y,y', &€,) becomes a minimum value. If we represent the
integrand in brackets by F, the Euler equations become:

oF oF 0 [oF
— = — —=—|z5]=0. 2.11
= 5slm) @11
These condltions yield:
LBl @y 26, +2 SE 2 si ' &, sin? B sin?
3 Gl___Té( toy +2¢& +2vce0.) + fn(eof——z—smﬂcosﬂy + &y sin ﬂ)smﬂ:O, (2.12)
d . Eom d . apn o
— |5 sinf cos f ny +de+2Efn7sm Beosfe,=0. (2.13)

Equation (2.12) relates y' and €y+ The zero strain of the cords along the
edge and the condition that the transverse tension of the rubber body van-
ishes serve as boundary conditions:

3d ,
Eg 1—98 (eoy + £J'|y=;};b/2 +vce0.) = 0. (2.14)

By substituting into (2.12) we get £f = 0! TFrom (2.14) we determine
8&"y=ib/2 = — &y —Vcéx>» (2.15)
and get from (2.12) using (2.4)
Plymson = 222 (cot f — v tan f) = ;- (2.16)
Differentiation of (2.12) yields

d
,2Efn-2—sin°ﬂclosﬁy"

&y = 3d ] 9
Ecw-k 2Efnsintf
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and because of the large stiffness of the steel-cord layer compared with
the rubber layer we get
E 3d

.2 61—

&y :700t ﬁ(l —_ m) . (2.17)
We substitute Eq. (2.17) into Eq. (2.13) and get finally a second order
ordinary differential equation for the shear deformation

(3 dy

d
— Ecl—‘—,,?c“ By’ +dGy=0. (2.18)
- g

''he solution is an exponential function (7%/%) exp (-xy) where y is measured
now from the boundary. The decay-factor is

1= ]/I_G% = T —vg) tanp . 2.19)

?Ecl—v?;

For practical numerical values (vg = .5, d = .17 cm, B = 18.5°) one obtains
A = 1.36 cm~l. The subtangent to the curve y(y) at the edge of the belt
therefore has the length 0.73 cm and represents the region of influence of
the shear deformation. Undoubtedly the above equations of deformation are
only an approximate description. An accurate treatment would include a
two-dimensional deformation-problem and would be too lengthy for this paper.

Now one may elucidate the important properties of the force distribution
in the laminated medium under tension. The tension Tg 1s transmitted by the
oblique cords, but in a narrow zone along the edge it is attenuated. It is
reduced by shear deformation y of the intermediate layer, and by the trans-
verse contraction gy.of the rubber in all three layers, which is approx-
imately constant through the thickness.

In Fig. 7 a construction with transverse reinforcement 1s shown. The
transverse reinforcement resists the tendency for the belt to contract
laterally. This is brought about by a shear deformation 1/2 8(y) and 8(y)
respectively, as shown in Fig. 7. A procedure analogous to the one used above
yields

_ T, 1 + sintp
eox—2bEfncos4ﬂ'1—-cos2ﬁsin4ﬁ’ (2.20)
. 2 sin? B cos® B
oy = — €ox 1L 9sint8 T 2sinig . (221)
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Fig. 7. Shear deformation in y-direction of a ring
with rigid restraint at the base.

We introduce for both oblique cords an average cord strain

d .
& =é&f — 5 sinfi cosfy’ —1.25d sin? B¢’ (2.22)

and in the expression for the elastic strain energy we use only the strain
energy of the oblique cords and the shear energy of the intermediate layers.
With this we can find a differential equation for X(y) where

X(y) =2 sin f cosBy(y) +1.25 dsin? 63 (y); (2.23)
analogous to (2.18)

—2n Ef[(% sin 8 cos ,3)2 + (1.25 d sinzﬂ)z] X' 4 d6X =0 (2.24)

The solutions are:

2

d . 2nE ; E
y(y) = 5 sinf cos f 2 ——ngEof ey, d(y)=1.25 d sin®f1 (';ldfe"f 7. (2.25)

The decay-constant A is given by

A= / Gd
= y -
V 2 nEf [(? sin § cos ﬂ) + (1.25sin? ﬂ)’]

(2.26)

Given E = 1.8x10 kp/cm2 (cord), F = .25%3x10 %cn?, n = 6.5 cm™L, G = 50 kp/cnf
B =17.5° and d = .18 cm. With these values \ = A5 em~l and the subtangent
has the length 2.2 cm. Calculating the effectiveness of the belt one will
subtract Ab from the width of the belt and using this new quantity

1,4
b*=b—db=b— (2.27)



which subtracts the influence of the boundary.

As a good approximstion for small angles B we obtain for the effective
stiffness (EF) of the belt with foundation

(EF) =2E;nb*costf, (2.28)
while for the bending stiffness
(EL) =2 E/n3 costf, (2.29)

and the bending stiffness in the orthogonal direction

3d? b
(EI), = (EL) 3z +Ec 1z (2.30)

is obtained by proportioning according to the second power of radius of gyra-
tion and adding the bending effect of the rubber. In torsion the effect of
the cross sectional portion of the rubber is practically the only effect.
Therefore we have:

(6L)=6 (';_;” + %‘) . (2.31)

Hence the belt has been reduced to a beam in its external mechanical action.
But there are also effects which cannot be explained this way. Although the
flattening of the belt in the contact region of the tire requires only small
displacement, it illustrates the limits of the beam model of the belt.

We investigate now the effect of the cord reinforcement under bending
about the y-axis of the belt section. Due to the thickness of the layers
we have a strain difference AE = d:-k between the cords in the two oblique
directions. In Fig. 8 we examine an element of the belt. Along the edges
we obtaln transverse forces which are unbalanced because of the difference
in strain.

v

Q=2Enb*cos®fsinfl de =v-d-x, (2.32)

Later on in Section 4, Eq. (4.4) the change in curvature will be given.

/%

s
AN

f\

\dn

8

/3

s

e

Fig. 8. Transverse forces Q caused by bending about the y-axis.
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The result is then a distributed moment which acts as a small disturbance
on the belt:

n=—Q=—rd " (2.33)

The curvature of the section, 1/pG (Fig. 9), which is very small in general,
vanishes in the area of contact caused by the flattening. The transition to
the curvature l/pG in some distance from the area of contact is not given by
this theory of the belted tire. If one knows pG(Q), by measurement or any
reasonable assumption then there acts as a disturbing moment on the belt

1

Radachse _

Fig. 9. DNotation for the dimensions of a
section of a belted tire.

3. The Shape of the Side Walls in Equilibrium and the Spring Rates
of the Belt. The equilibrium shape of the cross section of a cord reinforced,
axlsymmetric membrane has been treated by Day and Gehman [8]. For radial
reinforcements one obtains solutions in terms of elliptic functions. One
can show that the radius of curvature p (Fig. 9) satisfies the equation

e="7%R (1)

The value of p variles only slightly within the region of interest. Thus

the outer part of the cross section can be represented closely by an ellipse,
and the inner part by an involute of a circle. The semiaxes of the ellipse
are given by

a=R,— Ry (3.2)



and
3
= R
b = (R,— Ry) V?ﬁB . (3.3)

The base circle of the matching circular involute is given by

(R? — Rp)*
o* ______1_4_R?BB_. (3.4)

If the shape of the cross section is fixed, the tension in the belt can
easily be determined. From Fig. 9 we get

T,=pbR;— p (Rt — Rb) tanf¢.

The angle BG in general is very small such that one can assume without much
error

T,=pb*a (3.5)

For a real tire the shape in equilibrium deviates only slightly from
a circle. For the determination of the stiffnesses of the belt we restrict
ourselves to the concept developed by Rotta [9], for a cylindrical tire-
element, i.e., we neglect the circumferential curvature of the membrane.
Rotta showed that the lateral stiffness kg (Fig. 10a) satisfies the equa-
tion

sin p
k= w—y 4 (3.6)

1+ cosy — 3 ! sin y

Fig. 10. To derive the elastic stiffnesses of the belt, virtual
displacements are given according to the arrows shown: (a) lateral
stiffness, kg; (b) radial stiffness, kg; (c) torsional stiffness,
kp; (d) tangential stiffness, k..

11



By analogy, one can show (b), that the radial stiffness kg 1is glven by

k=% + @ sin g,

% singy — qgcos gt (3.7)
Similarly, from (c) the torsional stiffness kp 1s
b2
ky=k,—. (3.8)

4

Finally the fore and aft stiffness (d), due to the shear compliance of the
radially reinforced side walls, is given by:

k, = C—I;—! + pcotg,. (3.9

4. EBquilibrium Equation of the Belted Tire. The equilibrium conditions
for the belt are derived from the assumption that the belt has four degrees
of freedom: the displacement u in the circumferential direction, the radial
displacement v, the transverse deformation w, and the belt torsion ¢. These
four quantities are functions of the independent variable ¢ (coordinate in
the circumferential direction of the tire) and time t. In the derivation of
the equations of motion the nonlinear terms are neglected, but it is still
necessary to establish the equilibrium relationships from the deformed belt
element. This is so because linear parts of these terms (due to the deforma-
tion), have to be included in the equations because of the tension force in
the belt T, as well as the torsion moment Ty, which is induced by Ty; both
of these quantities are present at the beginning of deformation. The theory
of the ring has been treated by Federhofer, Volterra, and Rodriguez (4,5,6].
However, the pretension of the belt results in additional terms.

We measure displacements from the midline of the belt, in the form

=y fe,utev+ew. (@4.1)

The strain € of the midline is calculated, using 0/ = ( )', as

ezum;yn=L“1+ijy+(%r+(w;uy_1,

or after linearization

e=217 (4.2)

The angle of twist ¢ of the belt will be taken positive in the sense of a
left handed screw as shown in Fig. 11.

If one considers only small displacements u, v, w, and angle @, the
unit vectors T (in the direction of the belt), t (normal to the direction

12



Fig. 11. ©Sketch of the displacements of the belt.

but in the plane of the belt) and T (normal to the belt) are determined from
the equations:

~&

w

t=e, +e e Y t=e, > te—ey, n=—2¢ (4.3)

Here T is the outer normal and T, %, and n form a right handed system. By
the displacement of this orthogonal unit triad an amount ds in the direc-
tion of the belt, one can determine a rotation vector W by amalogy to the
Darboux vector of a spatial curve:

w=t(5—2) T (1 -7 k(2 4y) )

The coefficients of the unit vectors represent the torsion and the curva-
ture of the belt.

Now we consider a belt element with the forces and moments acting on
it. The force-resultants, and moment-resultants, along the edges are repre-
sented separately from the load and moment intensities (Fig. 12). Iet p
be the mass per unit length, b the acceleration, and 6 the angular momentum.
The mass of the side walls is neglected. Then the equations of equilibrium
for the element become

d(Tt) v d(Qn)

&, +eTtegt+eq+pb*(l4en=¢b,
d(TM fj_ Mrt) d(](‘lll 1) d(M b) 7 (4.5)
s So

d B2 L2 b2
+Qt+e.,,m+e n—I—e,,l=—_.E( Qp—l—;—'t—}—u;lzn)g J

15



Tyt+d (Tyd)

/
-Mrt-d(Mrt)
"Mz-t-"d (Mzn
-Mn-d(Mym)
fierad

mepady

Fig. 12. Forces and moments acting on a tire element for the
derivation of the equations of motion of the belt.

where Ty is,given by (2.1) and T by (2.2). Using the components of ¥ we
get:

MT=—-GIP(w—-I—-1L:—), M1=*—EI,,(.'::_2+1£‘)a M2=_EI_7(” +v)‘ (4"6)

a® a?

Shear deformations due to the shear forces Q and V are neglected.

By performing the differentiations with respect to the unstrained
length of the belt ds@, the equations of equilibrium can be written down.
Before doing that we wish to define more carefully the load and moment
intensities. ILet t(@) be the external load in tangential direction, p(p)
the external axial load, q(p) the external radial load, hy, the height of
the tread, n(¢) the external radial moment. The load and moment intens-
ities are now:

%:—k,u—l—t(tp), §:=._ksw+P((P)’

G=—kotqp), m=-+kry—hyp), @.7)
’ 2

7=h 1), I=—2k (-’;—) + n(@)

Finally the equations of equilibrium become:

14



" 1 .
EFu +v ——a—Q—-k,u—l-t(,,,)=uQ,

T,% + 3V —kutplg) +pb*y=ig,

To”";’”—EF“”g”_lq'_kavﬂ@) —io,

d“’“ﬂ(To “ L EFEE ) G‘fe(?_'fg)
e
dtanﬁ 7," o) 0
d?w[nc)~u_1)_EFW+u}_g&Cé_2»
¢ q a o \af T

+EIx( +w)+ _'%'k, (%)2+n(¢)=?'9%'

These are six equations in the six unknowms u,v,w,p,V,Q. The inertia terms
are given here for the tire which 1s not rotating. One obtains the inertis
terms for the rotating tire by considering that the tire elements are
equivaelent with respect to the circumferential coordinate and that they pass
a deformation field which varies with time with the angular speed Q. This
description, named after Euler, requires use of substantial derivatives.

Let ¥ = ¥(p,t) be the field of deformations with respect toan observer
at rest. Let the center O be stationary (Fig. 11) which is the situation

on the road wheel. Then the absolute velocity is given by:

Dt _ Dy
Dt Dt+Dt €y 0 ‘Q+Dt'

The substantial derivative D/Dt follows from:

Dyp v | oy ds¢

Dt az+ D+Qb
And therefore

Dt . ,

o=t Ra++Q20.

We then obtain the acceleration as the substantial derivative of the veloc-
ity

D%

pE=0=—6aQ4+0+200 + 20",

and substituting the component of the displacement vector

15



Dy

pr=Ce[0Q+u+ QW +v)]+ e+ 2uw)+e[v+ 20 —u), 4.9)
D?
D—l:—e,,[u+2.0( +0) 4+ QW 20 — u)] +e (o +202w + Q2w

+e [ +2020 —i)+ 20 —2u —v—a)]. (4.10)

Note that the rotation vector W represents the rotations of the triad
along ds,,. This might be used to determine the absolute angular momentum
of the belt element. Therefore there arises an additional term due to the
rotation

s, =mael.

Hence the angular momentum vector becomes

oo afe et ol o

and after linearization

. ’ , bz 2 ") " bz
e i s ke

Hence

D% &)
Dt — + &p Q,

and the substantial rate of change of the absolute angular momentum is

e [ -2 2y @ EE 4 (4 0) 002y 220y

o420 + ) o H 6y A Q0T - “’;’92@";‘]. (@.11)

DH
Dt

5. Illustrations of the Theory by Static Axial Deflections, Radial
Vibrations and the Formation of Stationary Waves at High Rolling Speed.
During rolling the steering properties are heavily influenced by the axial
deflections due to the effect of side forces. As a simple example consider
the static axial deflection caused by a external load p(@) acting from the
side in the direction &,. In the equations of equilibrium we consider only
the unknowns, w,p, and v and arrive at the three equations

16



T+ LV kb ple) + bty =0,
GI ” " E I, (w" )
o S A G A &

G Y EIx ba___‘
T Ta (a_’__b_)—}- a (a + )+V (2) =0.

Let p = p, be the transverse load for -¢* < @ < + ¢¥ and p = O elsewhere
plo) = (1 + 22 i‘——v—fp coqu))

We eliminate from (5.1) the axial force v and neglect the small terms hyp(o)
and g— kT(b/Q)Q, thus obtaining:

— Eﬂf’fw”” + (T Ga12 )w —k,a?w=—pb*aly + (E L G—}’—’)zp” —a?p(p),
(5.2)
G¢I, , EI GI EI.\ ,
—anw ( — thea ) (a’p+ a’)w'
The second equation is homogeneous. A Fourier expansion
7] <)
w(p) =Zw,cosvp, yg) =2y, cosvy (53)
y=0 v=0
yields
I, I
(Ea +Gap)v~u, |
¥r= I GI, (5.4)
and this substituted into (5.2) leads to:
W= i?v ET GI, ET,
ElL G I, [”2( st —ax‘) +pbr “2]”2<—a£+7) G
2 Nt (T0 - —ag—) v+ ksa® —

G I,v* + EI, + a® kr

Ag an example we calculate the axlal deflection under the load Py = 1.0 kp/cm
with ¢¥ = 11° for a belted tire with the following characteristics:

a = 30cm b* =10 cm p =1l5ati

y = 60° pe=0° G =50kp/cm

I,= 84cm? p =185° EI, = 0.56 - 106 kp/cm?
T =400 kp k, = 2.2 kp/em? ky = 175kpem/cm.

The substitution of these numerical values into (5.4), (5.5) and graphical
superposition of the different waves yields the deformation shown in Fig.
13. These calculated deflections compare very well with those measured by
Hinton and Frank and also by Borgmann [1,2,3]. Taking into account the

17



704 em

—\{V’Wﬂ

0 SN——

Fig. 13. Static axial deflections of the
belt under a lateral load.

moment intensity n and its first derivative dn/ds,»one might calculate from
(5.5) the distortion of the belt due to radial bending, the flattening and
the rotation of the moments of the pretension.

Another example is the vibration of the belt in the plane of the wheel.
The only unknowns now are the displacements u and v. We get the two equa~

tions:

S W) = S ) =g+ ke, l
(5.)

v

T,, EF,,
;(v +v)—-——{—‘—(u + v)

_EI
al

(vuu_i__v”)_{_q:g-ﬁ—*—kavn ]

A sinusoidally varying load q, may act in the area of contact in radial
direction. We determine the natural frequencies we =‘Jk/p by the assump-
tion

u=Asino,tsinnp, v=Bsino,tcosng, (5.7)

where n 1s the wave number at the circumference and is obtained from the
determinant

EF \ EF  EI
— n’ 4k, — o w; aT”'Jf‘—;F)("L'l)”
=0. (5.8)
EF T Er EI,, , ;
'—az—n ;"2—0(712—1)—!—?—!-—?1('1'——1)7l2+ka'—0(()§

For the same numerical values as above the result for the different wave
forms (n = 1,...,5) is shown in Table 1 (EF = Ely/iy = 6.72x10% kp and
Ely = .lhxlOfL kp/em®, density p = L.45x10-5 kpsec?/cm, k. = 3.3 kp/cm2,
and kg = 26 kp/cmg). The frequency oy corresponds to a longitudinal vibra-
tion, while wp corresponds to an axial vibration. If % Wg (Fig. 1k4)

we use the following linear equations in order to determine the amplitudes
A and B:
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T,

~El 4wy Bi) - E

20— B —El4n 4 )

a{"(n2——l)nB=—-ng‘A+k,A,
EI
ad"(nz—1)n2B+qn=—gw2B—}—kaB,

TABLE 1
n 1 2 3 I 4 5
w, 1920 sec™t | 2930 sec! | 4120 sec! | 5350 sec! | 7010 sec-!
0, 549 sec! 695 sec? 782 sce! 850 sec™! | 914 sec™!
w27 87.5 Hz 110.7 Hz 124 Hz 124 Hz 145 Hz

‘ /’ Biegeschwingung! \

~
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1245 1735

5
Hz 47

19

~—

724,50z

112Hz

nach Chigsa

A4
V‘\/\

L1 M =
00 150 Hz200

5
A\

Radial natural vibrations and resonance of the belt tire.
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In the case of resonance the amplitudes can only be determined if one takes
the energy dissipation into account. The dissipation is a consequence of the
hysteresis in the rubber. We therefore assume that the energy loss is pro-
portional to the stored elastic energy when the displacements are a maximum.

Apiss. = (0,2 bis 0,3) Ay, = Ap,. , (5.10)

which must be replaced by the excitation. ILet us now consider the transverse
waves. We find the damping energy by comparison with the elastic bending
energy at t = T/4 (belt with foundation)

2n

1 M2
Agp.Bend.= 5 f E——Iiy- adg, becomes Ag. Bend = _’25

p=0

or if only the resonance applitude is taken into account:

nEIy

4g Bend=5 —"(n*—1) B,. (5.11)

In the state of resonance v and q make a phase angle of 90° and therefore

o]
Vres, = — €08 0, ¢t (X' B, cos n¢)
n=1

or

+* t=T ©
Ag,,. = f[f Vs dt]adp =2¢* an (2 B,q,)
n=1

—@* =0

Ag.=2¢*an B, q,. ' (5.12)

For the values g, = 1.0 kp/cm and (5.10) we obtain the amplitude ratios shown
in Fig. 14 (independent of the ratio of dissipated energy and deformation
energy and independent of the point of disturbance on the circumference).
These amplitude ratios and natural frequencies coincide with those measured
by Chiesa, Oberto, and Tamburini [10]. The resonance amplitude for n =1
may be determined from the hysteresis (loss) energy during the shear deforms-
tion of the side walls.

In the same way the natural frequencies of axial vibrations are deter-
mined. From the assumption

w=Asinw,tcosng and y=Bsinwtcosng

we get the determinant for the eigenvalues
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i GI I
) b, Tp"z-l-%rxnz—f—Pb*
+ks—9("2(l+mn)
=0. (5.13)
GIp El, GI EI o b2 412
Fakat T S k=i

As a third example we investigate the formation of stationary waves at
high rolling speeds, and for this consider the situation on a road wheel
(Fig. 15). The stationary wave affects the belt and the side walls and it
decays along the circumference. As a simplification we neglect the deflec-
tion u in the direction of the circumference and also the bending effect

(EIy) of the belt. Then using (4.8) and (4.10) the equations of motion for
y
v become:

—3—.30(1"/ +1’)+%£v+920(v"—v~a)—}—kav:O

or

(5.14)

A

Fig. 15. OStationary wave on the road wheel.
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The solution to this differential equation is either a decaying exponential
function for O < Ql or for () < @ < o 1t is an undamped vibration. The two
critical angular velocities are determined from

T, ka+ 'E;,‘E—Tzﬂ
'Ql = -2 and. !22: **—u . (5.15)

0a* 0

For a Michelin belted tire of 135-13, size, described in Section 6, 0 = 126
sec~l (which corresponds 124 km/h) and @ = 2350 sec™! (2300 km/h). The criti-
cal angular velocity Qp 1s meaningless, since the belt breaks between 200 and
250 km/h by cracking from the edge.

The introduction of a damping factor into the equations of motion (5.14)
causes the solution for the stationary wave to decay along the circumference.
The belt with a base or foundation (three-layer belt) has only little damping,
but the two-layer belt utilizes the damping in the intervening rubber so that
 we have, analogous to (2.2)

T=T,+EFe¢+ke, (5.16)
We use for the hysteresis in rubber an equivalent damping factor

4d 4EF
= —— = 017
kq ndo 10nw’ (5-17)

where the quantities d,A, and B are given in Fig. 16 and d/B has been set equal
to l/lO. The frequency has been denoted by w and is for hysteresis calcula-
tions independent of damping. If one takes the substantial derivative of the

strain

De 0e |, 0¢ v’
_— _— = — .].
Dt o + 8(;2!2 a Q (5.18)

JE/dt = 0 since we have a stationary state, then the equations of motion become
32—

_(T" Q.Qz)v"-I-l%v'—}—(ka—i—%g—g!)z-%)v:@an. (5.19)

An approximate solution for @ < @ is

v=Ae*Nsinwg, (5.20)

with the constants

1 kq
ao 02— - 02— 20
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Fig. 16. Assumed hysteresis of a belt which
is not attached to a tire.

The ratio of two consecutive amplitudes is

D =2 — g, (5.22)

n

These effects on the belt assume a maximum in the first wave behind the
area of contact. In order to determine the extreme amplitude Apgyx we might
fix as a good approximation for the initial conditions at point P (Fig. 15)

l , a L
v, = 0 and wv,= (1 + R_’I‘) (7 +€) . (5.23)

Hence we get

Am='%'{.(1_%>:(1+}%)(%+5)%(1_!23), (5.24)

The additional belt force AT due to the formation of the wave is then
AT = E Ffmes (5.25)

a

6. Measurements 9£ Radial and Axial Vibrations 92 a Michelin Belted Tire

of Size 135-~1% and Comparison With the Theory. The theo;& of the belted tire
described in the previous sections has been compared with measurements? of
radial and axial vibrations on a Michelin X tire 135-13 of German manufacture.
Although radial vibrations have already been investigated by Chisea, Oberto,
and Tamburini [10], the axial vibrations which are essential for the driving

2The measurements were performed within the above-mentioned Diplomarbeit.
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properties have not yet been determined. The main concept was to calculate
back certain characteristic parameters from the measured frequencies and to
compare them with the terms developed from the theory of the belted tire.
The different stiffness of the belted tire and elastic dependence upon the
belt pretension were to be determined.

The tire was mounted on the rim and attached to a steel frame. By loosening
a nut the tire could be rotated about arbitrary angles. For measurements of
radial vibrations the exciter was mounted on a channel, while for measurements
of axial vibrations it hung on a structure (Figs. 17 and 18). In the middle
of the tire on Fig. 17 one may recognize the accelerometer,3 which was
cemented onto the tire. For axial vibrations it was attached to a piece of
wood which again was cemented to the tread of the tire. During the measure-
ments of the amplitudes the point of excitation was changed by rotating the
tire in steps of 15°. Having determined the natural frequencies (resonant
points) by measuring the acceleration at s point opposite to the exciter one
can measure the amplitudes along the circumference. It was assumed that the
tire was completely axisymmetric.

Fig. 17. Experimental equipment for measurements of radial vibrations.

SEquipment used for measurements: On the side of the exciter a simusoidal wave
generator with attached force amplifier and electromagnetic exciter. On the
measuring side a piezoelectro transducer with amplifier and integration net-
work. 1In order to determine the points of resonance the phase was observed

by a dual trace oscillator.

2k



Fig. 18. Experimental equipment for measurements of axial vibrations.

Measurements have been performed several times and average natural fre-
quencies have been determined. The accuracy was 2-3% of the scale value. Fig-
ures 19 and 20 show the wave forms for radial and axial vibrations. In addi-
tion, frequency-amplitude diagrams have been determined for the point opposite

to the exciter.
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Fig. 19. Wave forms and resonance curve for radial vibration.
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Fig. 20. Wave forms and resonance curve for axial vibration.

After measurements of vibration the available characteristic tire data
have been obtalned in a relatively rough way. Then the tire was cut and the
width of the belt, ply thickness, thickness of the side wall, and so on have
been determined from a section. Elastic constants have not been measured.
The values gotten in this way are given in Fig. 21. In order to determine
the characteristics of the belted tire from the measured natural frequencies
and the approximate belted tire theory one needs considerable mathematical
work. Although it is relatively easy to get the frequencies from the char-
acteristic data (one has only to use the eigenvalue equations), it is much
more difficult to calculate the characteristic quantities back from given
frequencles, since the equations to be solved are nonlinear. Some of the
characteristic data, however, can be estimated simply. For example one can
calculate the stiffness kg by using the natural frequency of a rigid ring
having the mass of the belt and then determining the equation for this fre-
quency by Rayleigh's method. For a rigld ring on an elastic foundation, one
obtains

k,+k,=2p 0. 6.1
0 Wy
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With the mass of the belt measured to p = 1.59}(10"5 kpem=2 sece, the measured
frequency ay = 516 sec-l and the calculated k; = 1.% kp cm=2 Eq. (6.1) yields

kg = 7.16 kp cm™2.

5em —-— - -
75 m—
. v i

Mﬁ zwel Schrdgbewehrungen

Fig. 21. Dimensions of the belted tire used in these experiments.

The determinant for the frequency of the radial vibration n = 1 of the
elastic ring 1s

EF ’, EF
— + ki — ool o
=0
EF EF . ’
- —r Tk —o0]
or after multiplication
EF
o bt ke =20 0) + (K, — 0 0}) (k, — g?) =0. (6.2)

Different values of the stiffness kg in (6.2) leads to EF and the curve shown
in Fig. 22. Since EF must be positive, only values greater than 7.16 are pos-
sible - for kg. In the same way the transverse stiffness kg can be obtained
assuming that the rigid ring undergoes parallel vibrations out of its plane.
One has the relationship

With the measured matural frequency wy = 245 sec™l we obtain kg = .99 kp/cme.
Finally one can also find the torsional stiffness for one form of vibration,
where a rigid ring vibrates about one of its diameters. One has the equation
1 _
k’ + a—sz = @ (()g . (6.4‘)
With the measured w = 276 sec™L and the kg = .99 calculated above we get

kp = 162 kp cm/cm rad. If kg varies one finds the curve shown in Fig. 22.
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Fig. 22. Calculation of characteristic quantities.
(a) Elasticity of the belt vs. radial stiffness.
(b) Torsional stiffness vs. lateral stiffness.

But now the possibilities of simplecalculations using stiffness data are
exploited. Important quantities like the pretension of the belt, its cir-
cumferenclal stiffness and the bending stiffness for radial bending cannot be
determined directly. For these calculations a computer program was set up
which could solve four nonlinear equations with four unknowns by an iteration
technique based on Newton's method and generalized to four dimensions. The
radius of convergence in this case has been calculated by trial and error
and appear to be extremely small. The calculations were handled as follows:
one started off with an assumed set of characteristic parameters and the re-
sulting frequencies of radial vibrations wy to W5 were determined by means
of the eigenvalue Eq. (5.8). The unknown quantities (EF), T, (EIy), and kg
were temporarily assumed in a rational way. The solution to the nonlinear
equations were programmed such, that

®n,calculated ~ ®n,measured

The four equations were solved iteratively by a proper variation of the above-
mentioned four quantitles. Because of the small radius of convergence this
could not be accomplished in only one step. Therefore the interval of the
difference of the w-values was divided into one hundred parts. Then the equa-
tions, beginning with the calculated values, were evaluated in 100 steps, up
to the measured values. Figure 23a-d shows this procedure of calculation.

The scattered distributions are due to errors resulting from the discrete-
step method and also due to the minor influence of (EIy). The procedure

broke down after 83 steps and no longer converged. A complete calculation

of the characteristic data from the measured frequencies was therefore not
possible. The remaining error, however, is very small, namely less than
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2.7% per frequency. The characteristic data achieved at this limit are
already in very good agreement with the measured natural frequencies:

h=1005Hz, f,=1156Hz, f,=1345Hz, f,=1542Hz.

It is interesting that the guantity kg may fall below the limit 7.16 kp/cm?,
which can only be explained by the fact that kg has less influence on higher
wave forms than for n = 1.
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Fig. 23. Solutions to the nonlinear system of equations for four unknown char-
acteristic quantities dependent upon given frequencies. (a) Bending stiffness

of the belt about the y-axis; (b) Elasticity of the belt; (c) Radial stiffness;
(d) Belt tension.
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Until now only three characteristic quantities of the tire (radius a,
mass p, and the more accurately calculated gquantity kr) have been used.
The other four stiffness factors have been found with the aid of the meas-
ured natural frequencies and the eigenvalue equations. Now, in contrast,
we wish to calculate the tire parameters from the dimensions given in Fig.
21 and the theoretical considerations in Sections 2 and 3. One finds with
s/bg = 0.84 the value 29, = 115°, from this with (3.8) kg = 7.63 kp/cm?.
From (3.6) and the approximate y = 45° we get kg = 1.01 kp/em®. Using (3.8),
then kp = 107 kp cm/cm rad. With d = .18 cm, vg = .5 and tan B = 0.315, we
obtain from (2.19 the value A = .75 and from (2.27) the reduced width of
the belt b* = 5.6 cm. From (2.7), using the reduced belt width and
Eg = 150 kp/cmgithe circumferential stiffness (EF) = 6.0x104 kp, and from
(2.29) the bending stiffness (EIx) = 1.5x102 kp em®. Then we get from (2.30)
the bending stiffness in the normal direction (EIy) = 706 kp cm?. TFrom
(3.5) the belt tension becomes Tg = 195 kp. Finally we calculate from (2.31)
the torsional stiffness (GIp) = 3230 kp em®. For the calculation of the
eigenvalues from (5.8) and (5.13) all necessary numerical values are arranged

once again in Table 2:

TABLE 2
a = 27.3 em Ty = 195 kp
b 7.5 cm (EF) = 6.0 ‘10" kp
P 1.25 kp/cm® (EI,) = 1.5 °10° kp cm?
kr = 1.30 kp/cm® (EI,) = 7.06'10° kp cn®
k, = T.63 kp/cn? (G I,) = 3.23'10° kp cnm®
kp = 107 kp/em/rad p = 1.59°107 kp sec?/cm?
ks = 1.01 kp/cm?

With these values the natural frequencies fy were calculated (Table 3).
The calculated and measured frequencies agree with acceptable accuracy. For
the higher axial frequency ?3 the effect of the torsion of the belt seems
to be greater than expressed in the Egs. (3.8) and (2.31). For ?5, however,
one can conclude from the small resonance amplitude (Fig. 20) that large
material damping i1s present.

TABLE 3

Radial vibration
calculated f, Hz 83.7 105.5 119.0 134.0 150.0
measured f, Hz 83 98.5 115 136 158

Transverse vibration
calculated £, Hz 40.0 ho.7 6k.2 110 162

measured f, Hz 39 Ly 76 11k 149
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One can conclude that calculation of the characteristic parameters from
the measured eigenvalues is a very effective tool for determining the tire
characteristics. The natural frequencles describe the system much more
accurately than is done by measurements of static deformation. The example
of vibration of the belted tire showed that the theory developed allows a
rational prediction of mechanical properties.

T. Summary. In this paper the mechanical characteristics of the belted
tire are modeled using the circular beam under Internal pressure on an elastic
foundation. To demonstrate the valildity of the assumption that the belt can
be handled like a ring, the belt elastic properties are investigated experi-
mentally and analytically. It appears that the steel-cord plies transmit
the forces resulting from the deformations. Along the boundaries the steel
wires carry forces to the surrounding rubber. In the layer between the
oblique reinforcement very large shear deflections in the rubber arise. This
phenomenon is restricted to a region near the boundary, so that the elastic
properties of the belt can be calculated using a reduced width of the belt,
like those of a reinforced beam.

The elastic stiffnesses are determined neglecting the circumferential
curvature of the radlally-reinforced side membrane. After that the equations
of motion for this model are derived for the tire at rest as well as for
the rotating tire. To illustrate the application of these equations three
examples are worked out: (a) the static properties under side loads, (b)
vibrations under vertical disturbances, (c) the formation of stationary
waves at high rolling speeds.

To check the theory the radial and axlal vibration characteristics of a
Michelin~-X-135-13 tire have been measured. The tire belt characteristics
were calculated from the natural frequencies and compared with those obtained
from the dimensions of the tire. They agreed satisfactorily, so that the
model of the belted tire on which the theory is based is technically useful.
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