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ABSTRACT

Several studies have found long-horizon mean reversion for small firm portfolios and the
equally-weighted index for sample periods including the Depression. However, mean
reversion has not been documented for sample pertods which exclude the Depression.
Similarly, mean reversion has not been established in any time period for the value-
weighted index or for portfolios of large firms. These two characteristics of past findings
suggested that mean reversion may have been a peculiarity of the Depression years and,
particularly, of small firms during the Depression. We find highly significant evidence of
mean reversion in the value weighted index for the postwar period. We consider 7 different
predictors of returns, based on past returns, and find that the p-value against serial
independence is .007 (two-sided), after correcting for multiple testing. The estimated model
implies that 39.4% of a marginal return shock will eventually be reversed.

JEL Classification: G1Q, G14.
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1. Introduction

Is stock market mean reversion at annual and monthly frequencies an artifact of the
prewar era? Is it restricted to small firms? In the past ten vears, many stdies have
documented mean reversion in the equally-weighted stock market index in prewar data
(Fama and French ( i988), Kim, Nelson, and Stanz (1991). Jegadeesh (1991)). Fama and
French (1988) conclude that mean reversion remains detectable even when one extends the
data to stretch from 1926 o the present. However, these findings have generated
controversy.' But. one point of consensus in the literature is that to-date there has been little
evidence of mean reversion at monthly or annual frequencies in the postwar sample (1947
to the present).? Another special feature of the evidence on mean reversion is that mean
reversion has not been demonstrated for the value-weighted index or for large fim
portfolios during either the whole CRSP sample or the poétwar period.?

The inability of the literature to document mean reversion in the postwar sample
provides support for the contention of Kim, Nelson, and Startz (1991) that any mean
reversion which may exist in the CRSP time series of monthly returns is due to special
characteristics of the Deprcssion and may not be relevant for the current time period. The
lack of evidence for large firm portfolios or for the vatue-weighted index during any time
period suggests that mean reversion, when it exists, may due to the peculiarities of financial
markets involving small firms and may not have relevance for much of the capital invested
in the stock market. In this paper, we find highly significant evidence of mean reversion in
the US value-weighted index during the postwar period. Thus mean reversion appears to

be a current feature of the US market index, affecting large firms as well as small firms.

ISee Richardson and Stock (1989), Jegadeesh (1991). Kim, Nelson, and Startz (1991), Richardson and
Smith (1991, and Richardsor (1993), Lamoureux and Zhou (1996}, Bidarkota and McCulloch (1996).

-See Fama and French (1988), Richardson and Stock (1989), Jegadeesh (1991), Richardson and Smith
(1991). Kim. Nelson. and Stantz {1991), and Richardson (1993), Daniel (1994), Bidarkota and McCulloch
(1996}, Lamoureux and Zhou (1996).

*n Tables 2 and 4 of Fama and French (1988). none of the bias-adjusted slopes arc significant for decile 9
or decile 10 portfolios (large firms) or the value-weighted index. Also see Tables I and I in Jegadeesh
{19915 While not addressing mean reversion itself. Daniel and Torous (1995) find some evidence of
predictability in the value-weighted index using all past lags as predictors. These results are discussd in
more detail later in the paper.



Traditionally, mean reversion was thought to be an abnormal condition for financial
market data. Thus the profession has taken some comfort from the fact that evidence of
mean reversion had been restricted to the prewar, Depression vears. However, since the
wide adoption of ARCH methodology in the late 1980's, evidence of voladlity clustering
and predictability of volatility in the value-weighted index has been widely documented.*
Thus, there is rigorous as well as casual evidence to support the view that market
participants do not perceive the riskiness of the stock market to be the same in all months,
but, instead. view some months to be high risk months and other months to be low risk.
One would expect that the times of high risk should have high expected returns and low
risk periods should have low expected returns.’

As many others have argued before, basic economic theory implies that shocks to risk
will cause returns to have a mean reverting component: when a risk shock occurs that
increases the riskiness of the market, investors will demand a higher expected return to
remain in the market. Holding all else equal, this will cause the realized return on the
market to be below its unconditional mean at the moment the risk shock occurs and the
expected value of the future return to be above the unconditional mean. Similarly, a shock
which reduces the riskiness of the marker, will cause the realized return to be above the
unconditional mean (all else equal) and the expectation of the upcoming future return to be
below its long-term mean.

Given that the time series predictability of the riskiness of the returns on the value-
weighted index has been amply demonstrated for the postwar sample, theory suggests that
mean reve- ion should be present here as well, While there are other possible explanations
for the inability to document mean reversion in the postwar value-weighted index, we
approach this primarily as a problem of lack of power. The mean of stock market returns is

notoriously difficult to estimate, due to the low signal to noise ratio of the returns process

The survey article by Bollerslev, Chou. and Kroner (1992) cites many exampies.

“This should occur unless the equilibrium risk premium on market risk or some other component of the
discount function varies in such a way as 1o completely offset the effect coming from time-state varying
risk.



(see. e.g.. Merton (1980)). A standard model of stock market returns is that the retumn at
time t can be modeled as the sum of two independent components: r, = [, + & where J, is
potentially serially correlated and € is mean zero and serially uncorrelated. There is
controversy about the nature of the |, c&mponem. Some would argue that it is a constant
{at least in the postwar sample). Others would argue that it is mean reverting. But there is
general agreement that the variance of the serially uncorrelated process €, is much higher
than the variance (if any) of the y, process. The high variance of the serially uncorrelated g,
process makes the unconditional mean of the return time series r, hard to estimate and
centainly makes it difficult to test subtle hypotheses about the nature of the y, process.
Summers (1986) and Poterba and Summers (1988) argue that, in particular, it may be
difficult to detect slowly mean reverting processes using high frequency autoregressions.
Other evidence that power may be an issue is that séveral authors have demonstrated
the ability to predict the conditional mean of the value-weighted index in the postwar period
based on other instruments such as dividend yields (Fama and French (1988), Hodrick
(1992); and industrial production (Daniel and Torous (1995)). Thus it appears that
dividend vields and industrial production contain additional information that aliow one to
forecast the conditional mean of stock market return. Therefore, one might expect that, with
more powerful inference techniques, one might be able to find univariate predictability in
the returns on the value-weighted index. [n fact. Daniel and Torous find weak evidence of
univariate predictability in the value-weighted index in the postwar period. Daniel and
Torous calculate smoothed autocorrelations for all lags for the value-weighted index and
test the joint hypothesis that py = pa» = ... = py = 0 where p, is the nth order smoothed
autocorrelation. They report three different levels of smoothing, and can reject the null
hypothesis of serial independence for one of these levels at the 5% level.6 Rejection of the
Joint hypothesis py =pz = ... = py = 0 does not give specific information about the sign,

magnitude, or duration of the effect of shocks to the g, or r, process; so while the result

®For the equally-weighted index. Daniel and Torous reject the serial independence hypothesis for all three
levels of smoothing.
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implies predictability of the returns process. it does not necessarily signify the presence of
long-horizon mean r.eversion.

We increase the power of previous tests by employing a GARCH error specification to
correct for the time-varving volatility of the return series. Given the overwhelming evidence
of variance clustering in the value-weighted index and the need to increase the power of
inference techniques in investigations of stock market mean reversion. it seems natural to
incorporate GARCH techniques directly into the estimation procedure.

We find highly significant evidence of mean reversion i the value weighted index for
the postwar period. vIn particular, we find that the average of the previous 24 monthly
returns has a t-statistic of -3.26 when used to predict the return in the upcoming month.
The mean reversion present at this frequency has the effect of reversing, eventually, 39.3%
of a marginal return shock. We consider seven averaging léngths (12, 24, 36, 48, 60. 72,
and 84 months) and recognize that the estimation procedure has searched over seven
possible averaging leangths. To obtain the joint sfgniﬁcance of the -3.26 t-statistic, we
derive the joint distribution of the seven test statistics and find that the corrected p-value is
0.007 (two-sided) which remains highly significant. We also use the joint distribution of
the test statistics to transform the original seven estimates into seven independent tests. We
find that the joint significance of these seven independent tests is 4.33 x 10-5. Finally, we
employ a y° test similar to that in Richardson and Smith (1991) to assess the joint
significunce of the original seven test statistics. This x* test reports a p-value of 3.57 x 10-
*. We check the robustness of our findings by examining annual US data during the sample
period (1947-1995) using OLS. We then repeat the OLS analysis using annual returns for
the US prior to the CRSP sample {1885-1925) from the Schwert (1990) data set and for
several foreign stock markets from 1951-1995, and find that mean reversion at a two-year

frequency exists in these series as well, thus offering corroboration of the initial findings.



2. The Statistical Methodology
2.1 The Mode!

We investigate the predictability of returns by regressing the current retum on a

k
: ) Jki | .
regressor constructed by averaging past returns.” Define r:_,’ =T Z[ r., where k is a
g A e
number of past returns. We estimate the model
MiN]
n=Po+ B, +e. (N

where e, follows a GARCH process and k is a parameter of the model which is estimated
by maximum likelihood from a set of candidate values. Equation (1) expresses the
conditional mean of r; as an affine function of ff_k]' . It is well-known that it is difficult to
estimate the mean of the value-weighted index from the univanate time series (See Merton
(1980). Hodrick {1992)). Therefore only powerful estimation procedures have a chance a
detecting significant evidence of mean reversion. (See Summers (1986) and Poterba and
Summers {1988)). This consideration leads us to impose a fairly sparse parameterization,
since any highly general specification will tend to have low power to detect the
phenomenon in question. One of the features of estimating model (1) is that it has only

three free parameters in the mean equation and yet cannot bias point estimates or standard

errors toward falsely rejecting a null of serial independence. The model 1, = B, + B F:ﬁ’ +
e, can be rewritten as:
oo
I'[ = B() +J§ BJ r(_j + e[
with the constraints B) = Ba = ... = B and Bxy) = Bis2 = ... = 0. These two sets of

constraints cannot bias one toward finding predictability if the underlying data comes from
a serially independent process. Similarly, these constraints cannot induce sertally correlated
model errors. This is in marked contrast to procedures which use averaged returns on the
lefthand side of the regression equation and employ rolling overlapping regression
windows. Regressions.which use overlapping lefthand side variables require one to correct

for induced biases in both point estimates and standard errors.

“Jegadeesh (1991) and Hodrick (1992) also use averages of past returns to predict the current return.
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Further. retaining unaveraged returns as dependent variables has been shown to
Increase power against interesting alternative hypotheses. Jegadeesh (1991) shows that.
asymptotically, one maximizes power against an AR( 1) alternative by averaging to form the
right hand side variable while leaving the lefthand side vanable unaveraged. Daniel (1994)
also shows that using averaged variables to form the righthand side regressor in a tme
series prediction equation can improve power. However. Daniel finds that, for the class of
local alternatives, the same increase in power can be achieved asymprotically whether one
averages to form the dependent variable or the independent variable. Finally, Hodrick
1992) shows that restricting averaging to the righthand side has superior small sample
properties. This remains true even after one uses various procedures to correct for the serial
correlation induced when one also averages to form the lefthand side variable.

Methodologically. our paper is closest to Jegadeesh. (1991), which also investigates
mean reversion using a regression model with aggregated returns as the predictor variable
and disaggregated returns as the dependent variable. However, in the spirit of Richardson
and Smith (1991}, we derive the joint distribution of the univariate test statistics in any case
in which our estimation procedure searches over a set of possible averaging windows. In
contrast 10 Jegadeesh (1991) and Richardson and Smith (1991), we incorporate 2 GARCH
error specification when estimating parameter values. The addition of the GARCH
specification is particularly important, given the need to take reasonable measures to
enhance power in order to understand the mean behavior of the time series of stock returns.
{See Section 3.5.)

2.2 Estimation of the Lengrh of the Averaging Window k

To illustrate the value of using averaged returns as the RHS predictor, it is useful to

view the returns process as being the sum of two independent components:
n=th+g
where u; is potentially serially correlated and €, is mean zero and serially uncorrelated.

Since any predictability in the r; process must by definition come from the ., process, one



would have the greatest power to detect mean reversion if one could observe |, and
directly regress {4, on past values of the M, process. However, the W, series is
unobservable. Instead one can only see r; which can be viewed as an observation of j,
with error. By averaging past returns 1o form the righthand side variable in Equation (1),
we reduce the influence of the € process on the predictor (RHS) variable. However,
averaging also smears the variation in the |, process, tending to decrease the power of the
righthand side predictor. The optimal averaging length k* must balance the power gain that
comes from decreasing the impact of the &, series on the RHS predictor against the power
loss that comes from losing information about the exact arrival time of each u,. Our
estimation procedure chooses the k that maximizes the likelihood function of Equation (1).
2.3 Assessing Significance

In the context of a univariate regression model such as r, = Bo + B r:_k" + e, the k that
maximizes the model's likelihood function will be equivalent to the k that yields the largest
t-statistic (in absolute value) for the estimated . Thus our procedure for estimating k is
mathematicaily equivalent to searching for the largest magnitude t-statistic over N possible
righthand side regressors where N is the number of candidate values for k.

To assess significance, we derive the asymptotic joint distribution of the N t-statistics
under the null that the data are identically and independently distributed. We then correct for
the fact that the t-statistic on the estimated [ is equivalent to the largest magnitude t-statistic
sampled from a set of N correlated t-statistics.

Let B(k'l be the OLS estimate of B in Equation (1) for k set equal to k’. Also let tk) be
the t-statistic associated with ﬁ(k‘) . Proposition | derives the asymptotic distributions of

ﬁ(k) and (k) under the null. All proofs are in the appendix.



Proposition 1, Under the null that returns are iid, the asymptotic joint distribution of Pik;

satisfies
Ky

T Var(ﬁ{k) )=k P(ﬁ(kn .ﬁlkz) )=

and the asymptotic joint distribution of t(k) satisfies

-

Var(tiky) =1 (kptka)) =
ar(tik)) plteky)tka)) T

where ky < k- and p denotes correlation.?

Richardson and Smith (1991) derive results analogous to Proposition 1 for analyses
involving overlapping LHS observations. They find that the asymptotic joint covariance of
the estimated slope coefficients ﬁ(lq). fS(k:) .. under the null does not depend on any
sample estimates but instead is only a function of lag lengths ky, k3...., ky and the sample
size T. We find our estimators have this same property. In particular. the standard error of
individual estimated slope coefficient may be calculated without reference to any sample
estimates. One can assess significance by dividing the estimated slope coefficient ﬁ(k)

by VK/T which is the standard error of fi(k) under the null as derived in Proposition 1.°

3. Estimation and Mean Reversion Evidence
3.1 The Data, Averaging Window, and GARCH Specification

We use monthly data from January of 1947 to December of 1995.10 For each month, 1,
is set equal to the excess return of the value-weighted index where data for the value-

weighted index and risk-free rates are taken from the CRSP data files. We estimate k from

¥The main contribution of this proposition is in providing the correlations of the point estimates and their
(-stauistics under the null. These correlations are needed in order to properly correct for multiple inference,
Jegadeesh (1991) derives a generalized formula for the univariaie variance of the point estimates under an iid
null: our univariate variance result is a special case of his result.

Proposition 1 assumes that the daw are homoskedastic. However, there is significant evidence of
heteroskedasticity in the time series of stock returns. We corect for this by incorporating a GARCH error
specification and estimating parameters by maximum likelihood estimation, rather than QLS. Table 4
(discussed later in the paper) shows that the empirically observed standard ermors for the maximum
likelihood estimates closely match the values predicted by Proposition 1.

1'The actual data set starts in January 1926, As necessary, we use data prior to January of 1947 to form the

. . . _tk}
righthand side variable r:. -



the data by considering 12. 24, 36. 48, 60. 72. and 84 months as possible values of k.
Following Attanasto (1991) and Bodurtha and Mark (1991). we find 3rd order terms are
valuable in describing the heteroskedasticity in monthly returns and use an IGARCH(3.3)
specification for the error term.!! In particular, the 3-month squared residual is especially
impontant for predicﬁng volatility in model (1) and has a t-staustic of 2.74. Bollerslev,
Chou. and Kroner (1992) suggest that 3rd-order terms may be important in explaining the
volatility of monthly stock returns due to possible clustering effects in the quarterly
announcements of dividends and earnings. We find that estimates of B in Equation (1) are
stable with respect to changes in the particular GARCH specification chose for e,

3.2 Main Results

For the January 1947 to December 1995 period, Table | reports that the optimal value

. . : - (24)
for X is 24 months. the estimated slope coefficient on rl‘_I :

is -.66, and the t-statistic is -
3.26 which. in the context of estimating a single regression, corresponds to a p-value of
0.00!1.'* The probability under the null that at least one of seven t-ratios will have a
magnitude of 3.26 or greater, given that the t-ratios have the correlation structure specified
in Proposition 1, is 0.007: thus the finding remains highly significant after correcting for
multiple wnference.’® By construction, the seven candidate righthand side regressors are
highly correlated (see Table 2). Therefore, the seven test statistics are highly correlated,
and we have many fewer than seven independent tests being performed. However, one

would have to snoop over 45 independent tests in order to have a 5% chance of arriving at

a t-statistic of -3.26 due to random sampling error.'*

'"The IGARCH(3.3) specification states that the variance of ¢,. which will be denoted by h,, follows the
7 7 .

process hy = 0g + ephy.| + oohe2 + a3he.3 + me;_' +¢2c;, + 41_)3:3'_3 . where 0, ) ag, 03,

0). 02, O3 are parameters to be estimated. subject to the restriction that 0t + &g + 03 + 01 + ¢ + by =

l

“*All signiticance levels reported in this paper are with respect 1o 2-sided tests, except for x2 tests which are

I-sided.

i1.3.26 is the theoretical t-ratio obtained by dividing the estimated slope coefficient (-.66) by the asymptolic

standurd Jeviation of the slope coefficient under the null as derived in Proposition | (.20). Alternatively, if

one computes the empirical t-ratio using the maximum likelihood standard error, the value of t is -3.30

which corresponds to a joint p-value of 0.006.

* 1 cqual 10 45.6 satisfies the equation 0.95 = (1 - 0.001 124)P,

9-



Proposition 2 enables us to transform the original seven regression results into seven
independent tests.
Proposition 2. Let k be a positive integer. Consider a set of equally spaced lags k.
Ka.....ky such that k;; = nk.
Let ‘;’(kn) = B[knl - ﬁ(kn-l) forl<nsN
={3tkn1 forn=1.
Under the null that returns are iid, the asympiotic joint distribution of Y(k,) satisfies:

T Var(ike) ) = X p( k), Ykn) ) = O for men.

From Proposition 2, the estimates B{l:). f3r24> -ﬁuz). fmm -ﬁ(24), ﬁ(48) - fi(361.
6(60) - ﬁr48) . B{?Z) - B{ém . and f3(84‘; - [A3(72) are all uncorrelated and each has a variance
of 12/588 = 1/49. Therefore the t-statistic for ﬁm - Buz_) = (-0.658 - -0.012)/(V/T) = -
4.52. (See Table 3.) The p-value associated with -4.52 is 6.19 x 10-6, However, -4.52 is
the largest t-ratio from among seven tests. The overall p-value, correcting for the fact that -
4.52 represents the most extreme of seven independent t-statistics, is 4.33 x 10-5.15 [n
order 10 have a 5% chance of obtaining a t-statistic of this magnitude under the null, one
would have to snoop over more than 8000 independent tests. 6

The final test we use to assess the joint significance of the seven regressions estimated
by our procedure is a % test, as used in Richardson and Smith (1991). Let b be the (Nx1)
vector of estimated slope coefficients (ﬁ(k;) fi(kN) ), and let V be the asymptotic
covariance matrix of b, as specified in Proposition 1. Then bV-'b asymptotically has a x2
distribution with N degrecs of freedom. In our case, the value of this test statistic is 32.3
which corresponds to a p-value of 3.57 x 105,

While the joint significance of the results from Table 1 are highly significant, the joint
significance of both (i) the test based on the f((k) values and (ii) the chi-square test are even

greater; the joint significance of the first is 0.007 compared to 4.33 x 10-5 and 3.57 x 10-5

B 1 - 6.19x100)7 = 433 x 10-5.
'n equal to 8286 satisfies the equation 0.95 = (1 - 6.19 x 10-6)7,

-10-



for the other two tests. The difference derives from the fact that the first test statistic, the
largest magnitude t-statistic. ignores the information about the null hvpothesis contained in
B( k) for values of k other than 24..!" The other two test statistics use the information in
point estimates other than ﬁf:4) in order 1o evaluate the probability of the null. In our case,
these other point estimates, especially BA( 12) . contain information that leads the other two
tests to assess that the probability that the null hypothesis is true 1s substantially lower than
that found in the initial test. In particular, [3{24) is very high while ﬁ(m is not; these two
results imply that there is a very large amount of sample predictability coming from
monthly lags 13 through 24, much more than can be explained by chance.!8

The joint significance levels were computed based on Propositions 1 and 2, which
were derived for an OLS regression estimator under the assumption of homoskedacity. In

fact. the data are markedly heteroskedastic, but we have corrected for this through

-incorporating 2 GARCH error specification. Table 4 compares the theoretical 1-statistics,

attained by dividing the point estimates ﬁ(k) by the theoretical standard error derived in
Proposition 1. to the empirical t-statistics calculated by dividing the potnt estimates ﬁ(k) by
the observed maximum likelihood standard errors. The table shows that the theoretical t-
staustics match most of the empirical t-statistics quite closely. This provides us with some
confidence in applying Propositions 1 and 2 to assess the significance of the maximum
likelihood estimates.
3.3 Magnitude and Nature of Reversals

Since the estimated slope coefficient from Equation (1} is negative and has magnitude
less than 1, a shock to the return in month O causes osciilations in subsequent returns that

dampen over time. Figure 1 graphs the shifts to subsequent returns that occur in response

""More precisely. the only information the test uses about these estimates is that their univariate t-statistics
are lower in magnitude than the t-statistic corresponding to k=24,

!3The relationship between the three joint test statistics considered in this paper can be viewed as follows:
The first test calculates the significance of the largest magnitude t-statistic from a set of N correlated t-

A
statistics. The second test. involving the Y estimates, transforms the initial t-statistics into N independent
t-statistics and calculates the significance of the largest magnitude t-statistic from a set of N independent t-
statistics. The chi-square test calculates the probability of the sum of the squares of the N wansfonmed,
independent t-stansncs,

-11-



to 4 one-time shock in month 0, along with the cumulative percentage reversal of the initial
shock. for the parameters values set equal to their maximum likelihood estimates. The
oscillating pattern begins with negative returns for months 1 to 24 and then switches to
posttive returns for months 25 to 42 and continues to repeat in this manner, always with
dimunishing amplitude. '

Onz measure of the magnitude of the mean reversion in the data is the percentage of a
one-time shock to returns which is reversed in the subsequent cumulative return. For
infimtesimal shocks. the percentage of a time zero shock which is reversed in the
cumulative return from time 1 to infinity can be calculated from the formula B/(1+r+B,-B)
where B, and {3 are the coefficients in Equation (1).20 Setting parameter values equal to
those estimated in Table 1 and the risk-free rate equal to its sample average, the formula
implies that 39.3% of a return shock will eventally be reversed. From Figure 1. we see
that while a shock at tme 0 has the greatest effect on monthly returns at month 1, the
cumulative effect peaks at 24 months. At 24 months, 48.3% of the initial shock has been
reversed. compared to a final effect of only 39.3%. (Also see Table 5.)

3.4 Results for Yearlv Data

The monthly resﬁlts are confirmed by regression analysis on annual data. Here we
restrict attention to the two vear (24 month) averaging window estimated in the previous
subséction and estimate

f:=Bn"’ﬁf:.:|, + & (2)

: . . . (2 .
where r, is now the excess return®! of the value-weighted index in year t and rf_ ,) is the

average of the excess return over the previous two years. The results are presented in Table

. _{24
"“To understand the cause of this pattern, note that the value of rl(_] ! decreases from months | to 24 as an

. . . . . (24 . .
increasing number of negative returns enter into the average ] ' Thus the impact of the time-zero shock

lessens rom months | 10 24. By month 23, the previous 24 returns have all been negative when parameter
. . C e . . -(24) | .
values are ser equal to their maximum likelihood estimates. This means that fi1 Vs negalive at month 25

which. in wrn, implies that month 25 return will be positive. Also see Table 5.
“This formula assumes the risk-free rate is constant and is derived in Appendix B.
“1The excess return in year t was formed by compounding the monthly excess returns.

-12-
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6. The point estimare for B is - 46 and the t-statistic is -2.21 which has a p-value of 0.03.2
Twenty-three percent of any shock to annual returns is expected to be reversed in the
following vear.” but, from the R+ of the regression. this explains only 9.4% of the total
variation in annuaIAremrns, Thus if mean reversion is due to market over-reaction.
individuals would still bear a large amount of market risk in any trading strategy that
attemnpted 1o exploit this for profit, There are no significant GARCH effects in the annual
data: therefore, this analysis is conducted using OLS.

The difference in the estimated mean reversion coefficients from the annual OLS
regression (-46) and the monthly regression with GARCH emor specification (-.66)
appears to be due to outliers in the yearly data accurring in 1974 and 1975. Analyzing the
vearly data with an estimator which is robust (o outliers, the least absolute deviations
estimator (Bassett and Koenker (1978)), leads to an cstima;ed slope coefficient of -.56 and
a t-ratio of -2.18 (p-value = 0.035). Figure 2 plots annual excess returns against the
average excess return over the previous two years. The scatter plot has a visible downward
slope, illustrating the mean reversion effect. The two prominent outliers in the scatter plot
correspond 10 the returns in vears 1974 and 1975. An OLS analysis of Equation (2) which
includes a dummy variable for the 1974-1975 period leads 10 an estimated slope coefficient
on ¥ of .70, quite close to the monthly finding of -.66, and the t-statistic is -3.06; the t-
statistic on the dummy variable is -2.20.

3.5 Imporrance of Using GARCH

Variance clustering is a well-documented feature of monthly stock market returns (see,
e.g.. Bolierslev, Chou, and Kroner (1992) for a survey of findings concerning time-
varying volatility in stock returns). Some months contain a large amount of information
about the mean process relative to others. Modeling errors as a GARCH process increases

the power of the estimation procedure by appropriate up-weighting of informative

**The White (1980) t-statistic is -2.48 which has a p-value of 0.013.
=1A positive unit shock in year zero will shift i:i) up by one-half for 1=1.
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observations. We t';nd that this increase in power is necessary in order to detect the
evidence of mean reversion in the monthly data. The magnitude of the t-statistic on the
slope coefficient in r; = f, + B rl': ' s drops to -1.67 when estimated on monthly data
from January 1947 to December of 1995 using OLS, as compared 1o a t-statistic of -3.3
when an IGARCH(3.3) specification is used. One might be concerned that the mean
reversion results have been induced by choosing a special GARCH specification.
However, the OLS results on annual data make it clear that this is not the case. Also. the
results are robust across GARCH specifications in the monthly data. with t-statistics
bevond -2.3 obtained for a wide range of specifications.
3.6 Subsample Analysis

Equation {2} was also estimated on annual data for two subsamples: 1947 to 1971 and

1972 10 19935. For both subsamples. the estimated coefficient on rﬁ) is negative (-,37 for

the first subsample and -76 for the second subsample). The subsample analysis contains
no evidence contrary to a hypothesis of mean reversion. However, the number of
observations in each subsample drops to 25 and 24, making it difficult to obtain statistically
significant results. The t-statistics on these estimates are -1.22 for the first subsample and -
2.51 for the second.
3.7 Our of Sample Analysis: Foreign Stock Markets 1951-1995, US 1885-1925

Equation (2) was also estimated for several countries listed on the DRI Basic
Economucs database. For these series. dividend and risk-free rate information were not
available. Consequently, real stock index values were computed by dividing the nominal
stock index by the country's consumer price index. The series r, was then formed by taking
the percentage change of the value of this real stock index at time .4 The dara sample runs

from 1951 to 1995. Table 7 contains the results. The estimated slope coefficient is negative

=*The omisston of dividends from the returns series can cause results to be biased. One stylized fact about
dividend yields is positive autocorrelation: dividend smoothing. To the extent that percentage capital gains
and dividend viclds are not negatively comelated in time series, this will cause some bias toward finding
mean reversion in the percentage capital gain series, even if there is none in the unobserved retumn series.
On the other hand. strong nepative correlation between percentage capital gains and dividend vields can cause
bias against finding mean reversion in the price series.
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for all four countries: Canada, France. Japan. and the United Kingdom. The estimated
slope coefficient is significant for the U.K. (t-statistic -2.13) and nearly significant for
Canada (t-statistic -1.87). Figure 3 plots the returns on the British index against the average
lagged return from the past two vears for 1952 to 1995. The piot reveals a clear downward
slope. The observations corresponding to the years 1974 and 1975 appear as outliers with a
similar pattern to that seen 1n the US data.

Given that the time series properties of US stock returns during the Depression have
been intensively studied, we use the return series described in Schwert (1990) from 1885
to 1925 for an out of sample test.”S This return series includes estimates of dividends. Each
observation is the real annual return on the index which was computed as the difference
between the annual return on the Schwert index and the percentage change in the price
index for the corresponding vear; price index data is from McCusk (1992). Equation (2)
was estimated on annual US data for this period. Table 7 reports the analysis; the point
estimate for B is -.54 and the t-statistic is -2.38, corresponding to a p-value of 0.02.

3.8 Large Firms

To-date evidence supporting mean reversion has been lacking for large fim portfolios,
raising questions as [o'whether mean reversion is a broad macroeconomic phenomenon or a
special feature of small firms. The current paper's results on the value-weighted index
suggest that mean reversion is present, not-just in the returns of small firms, but in the
returns of large firms, as well. To verify this, we formed an equally-weighted portfolio
consisting of the largest quintile of firms based on the size designation in the CRSP files
tmarket value of equity). Equation (1) was then re-estimated for monthly returns and joint
test statistics across all seven lags were calculated. Equation (2) was re-estimated as well on

annual data using OLS. Table 8 finds highly significant evidence of mean reversion at the

“*The returns data assembled in Schwent (1990) from 1885 to 1925 uses the Dow Jones Index to measure
capital gains and the dividend yield on the Cowles portfolio to measure dividends. However, Dow Jones data
does not exist prior 1o 1885. So at this point the Schwert time series switches to a different data source,
causing a discontinuity in the time series properties of the data. In particular, the data source used to
measure capital gains prior to 1885 uses averaged price data which can artificially induce serial correlation in
rewurns {see Working (1960)). Also see the discussion of this point in Schwert (1990).
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24 month averaging horizon for the large firm portfolio: the point estimate of the slope
coefficient in Equation (1) is -0.74 and the t-statistic is -3.72, which has a joint significance
level of 0.001. The test based on the gamma statistics provides even stronger results; here
the jomnt signiﬁcm;ce level is 6.78 x 10-7. Similarly, the chi-square test rejects senal
independence with joiat significance of 2.75 x 10-7. These results provide direct evidence
for the existence of mean reversion in large firms.
3.9 January

Jegadeesh (1991) finds strong evidence that the mean reversion present in the equally-
weighted index is most pronounced in January. For the value-weighted index, the evidence
in Jegadeesh (1991) of a January effect in mean reversion is weaker. The largest magnitude
(-statistic concerning the predictability of January returns in the value-weighted index
across all lags and samples reported in his study is -1.81.

We find additional evidence supporting the conclusion in Jegadeesh (1991) that mean
reversion occurs most strongly in January. Table 9 reports the result from regressing the

-
-

January excess return in vear ton i:‘ ]’ for the value-weighted index in the postwar sample;

the t-statistic is -3.03. and the R2 is 16.3% (p<.004) which is exceptionally large given that
the dependent variable is a monthly retur. Table 9 also reports the results from estimating
Equation (2) with the January returns omitted from the lefthand side variable. The t-statistic
for the mean reversion coefficient is -1.51; this result can be contrasted with the results in
Jegadeesh (1991) which finds the largest magnitiude t-statistic across all lags and samples
for predicting non-January returns to be +0.88 (with a sign contrary to mean reversion).
There are some methodological differences between our work and Jegadeesh (1991).
The analvsis in Jegadeesh uses nominal returns; our study uses excess returns. Jegadeesh
reports White (1980) t-statistics. We report OLS t-statistics. To better compare our results
10 those in Jegadeesh (1991), we re-estimated our analysis using nominal returns for the

value-weighted index and calculated White t-statistics. When the lefthand side variable

“8See Table IT in Jegadeesh (1991), The t-statistic, which across all lags and samples reported in Jegadeesh
{1991} provides the greatest support for mean reversion, is -0.59.
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contains oaly the return in January, the White t-statistic becomes -3.16. When the lefthand
side variable is the annual return excluding January, the White t-statistic jumps-to -3.12.
providing strong evidence for mean reversion outside of January. While we find support
for Jegadeesh's conclusion that mean reversion is strongest in January. we also find that
approximately 59% of annual mean reversion occurs outside the month of January.

4. Conclusion

In the past ten years. several studies have examined serial correlation in the returns on
US stock indices. Some of these studies conclude that returns exhibit negative serial
correlation (mean reversion) over samples which include the Depression vears and World
War 1 (e.g. Fama and French (1988), Kim, Nelson and Startz (1991}, Jegadeesh (1991)).
However. these studies find little evidence of mean reversion in the postwar period. Also
no evidence for mean reversion has been found in portfolios of large firms or the value-
weighted index. These two characteristics of past findings suggested that mean reversion
may have been a peculiarity of the Depression years and, particularly, of small firms during
the Depression.

We find highly significant evidence of mean reversion in the value-weighted index
over the postwar period (1947-1995). Thus mean reversion appears to be a relevant feature
of the current stock market and does not appear to be restricted to small firms. We also find
that the negative serial correlation occurs at a higher frequency than that found in previous
studies that examined serial correlation in monthly data, We find that the average of the past
24 monthly returns is the best predictor of future returns; this differs from the findings of
earlier researchers, who report the cumulative past three 1o five year return to be the best

predictor.”” The results are economically significant in magnitude: 48.3% of a marginal

**This understates the difference somewhat. We use the average of the past 24 monthly returns to predict the
return in the current month. Thus the average timing of the returns n the predictor is 12.5 months away
from the return being predicted. Fama and French (1988) used past cumulative retuens to predict future
cumulative returns. Consider the case in which the past four year return is used to predict the upcoming four
year rewurn. Here the average distance in time between the RHS and LHS returns is four years. Jegadeesh
(1991 found that strongest predictability in the case in which the previous 84 monthly returns are averaged
to predict the return in the current month. Here the average timing of the returns in the predictor is 48.5
months from the return being predicted, which is similar to the Fama-French findings.
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shock to monthly returns will be reversed in the cumulative return over the following two
vears. Some of this reversal will also be reversed. But the final effect is that 39.3% of a
marginal shock is reversed in the subsequent infinite horizon cumulative return.

We auribute these findings to the enhanced power of utilizing a GARCH error
specification o correct for the well-documented heteroskedasticity in the monthly return
series. We then use annual data to test the ability of the average of the past 24 monthly
returns (o predict the rewrn in the upcoming vear. Since there is no evidence of
heteroskedasticity in annual returns, the estimation is conducted with OLS. Finally, a series
of out-of-sample tests (US data prior to 1926 and foreign stock markets) are conducted

using OLS on annual data. These results confirm the initial findings.
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Appendix A. Proofs of Propositions 1 and,2
T

T
_Z rll”"

m,, is the sample mean of the return series, and muk) is the sample mean of ?m

Let Er, =y, Var(r) = 6°. m, =}-[_Zl r. and mik) = '?

T
Lemma I, Letz; = !T—le {r -mol[f:ﬁ” - m(kp)} and z» =—Z [r - mo] - m(ka)].

Under the null that r, 1s ud. T Ezjz. — fi where k; < ka.

Proof of Lemma 1. First we shall establish some preliminary results:

Observation |, Forls-t12ka + |,

E{ [r - mg](r, - mo][ft_k]“ - m(k;)][f?_‘f“ - mtkg)]} ~Qatrate T, /

Observation 2. For s#t and Is-tl < ka + |,

Eq{lr - mllr - moJ[f(k” - mrkl;][ffk:) -miks)] { — O at rate T2, /
t-1 5.1

Observation 3. There are only order T terms in z,za such that Is-1l < ka+ 1./

Observation 4. E[(f'k“

ik :
S ma)E Y - k) - me) = &

k2

Proof of Observation 4.
K (k2
E[(r:_l” - m(k,))(r(. 2. m(kz)) | T - ] =
{ tky [ 1 z’ K mg
E1( mrm) b( . 'omikp) + R— (r[.j“mo) + 5 omkp -mky] g -

k2
Mo | -

Therefore.

E{(f_(kll

1k2) Yl s
Ly mikp)E -m(kg))fr[-mo]—i}nk +0+0. /

The lemma can now be proven:
T

T
Ezze =E[3 2 fre-mallfy” -mkn] 3 Z frs- mollil's - micy) ]

1_

T

From Observations 1 to 3, we can ignore terms in the summation such that t # s.
| _tk _(x2)

Ez\z» =T—5- E[T [re - mol [ ” -m(kn][r 2 -m(kz)]]

='I—f {[I'( mo] E[[ {M) m(k|)][r( 2 m(kzjl l r(-mO] }

From Observation 4,

2 ot .
TEz;z:— % E[r, - m)* = . This establishes the lemma. #
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Proof of Proposition 1. Let ﬁck; be the OLS cstimatc of Bm
T

A
Bfk)=l;l_) moi[f:k, mcka]/ Z[r'k' mm

Consider calculating é(k) for k=k, and k=k». Without |oss ot'generafi[\ k; < ki Letx be

T
. . k) K 2
a4 by | vector in which x, =-]f§ m(,][rl_]l -mikpl, X~ = %: ; g ] - muikp]”.

T T
> (k) 2 . . .
Z - m,][ r ]" - mika)], Xy =:]l.->:l [rl [3 - m(k>)". Consider the function v(x): ®
(= 1= -

L
T
— R where v(x) ={x;/X2, x3/x4]. Note that the sample estimates [ﬁ(k;) .ﬁ(k:) 1= y(x).
Let Ex — ¢ and Covix) — Z. Also let J = dy/dx. The variance of x goes to zero at rate T
t. From asymptotic theory for functions of random variables (e.g. Kendall (1980)),
Cov{Biks i Bikar ] — JEJ where J is evaluated ac x=6. Note that ¢ = [0, ok, 0, 6%/ka]
under the null. Also note that

[ 2
’/"‘ - |'/ -~ 0 1
=R * 0 . and J evaluated at x-¢ is kit 0 0, 0 :
L 0 0 I7x4 —m/x4 0 O kifo- O

k3>: )
' e . From Lemma 1: TZ;; = ¢%k,, TZ;3 = TZ3; = a¥/ky, and
0‘4| k||\",..;; k,5233

JII' =

TZ13 = ¢¥/ka. This establishes the first 2 results in the proposition: T Var(f‘}(k) ) =k and

A A k]
(Biky1 Bk ) = .
p(Bekyr Pk | Now

A
converges to Pkn/T/k asymptotically. The remaining 2 results concerning the asymptotic

Since the asymptotic standard deviation of Bik) is VKT , t

joint distribution of the OLS t-statistics immediately follow. i

Proof of Prdposition 2. Let [3 be the N by | vector(B{kJ) ﬁ(km ). Cov(c'ﬁ ,d'é )
— ¢'Zd where I is the asymptotic covariance matrix of B .Forn>1,

Yini = (e, - en_,)'ﬁ where e, is the nth standard basis vector. For n = 1, ?(n) = e,{Bﬁ .
Without loss of genera!ity, assume m < n. From Proposition 1, Z(n.n) = n/T and Z(n,m)
= mk/T. We proceed by considering 4 cases.

Case I: m=n, m> |. Here ¢'Zd = Z(n,n) - Z(n-1.n) - [Z(n.n-l) - Z(n-l.n-l)] = nx/T -
(n-D¥T - (n-D/T + (n-1)x/T = /T.



Case 2:m=n.m= 1. Here ¢'Zd = Z(1.1) = w/T.

Therefore. T Vart¥n) ) = K for all n.

Case 3:m € n+l, m> |. Here ¢'Ed = Z(m.n) - Z(m-1.n) - [Z(m,n-l) - Z(m-l.n-l)] =
mx/T - 1m-1/T - mx/T + (m-1)x/T =0.

Cased:n22.m=1 Here ¢Zd=Z(l.n)- Z(1,n-1) = (T - ()&/T =0,

Therefore. Cov(7im) .‘?’(nl ) = 0 for m=n. i



Appendix B. Percentage Cumulative Reversal
This appendix derives the formula used to in Section 3.3 1o calculate the percentage of

a one-time marginal shock which is reversed in the subsequent infinite horizon cumulative

return. Consider the model r, - ry = By + B r._j + e, where r; is the risk-free rate

tassumed to be constant), and consider a one-time shock of size u that occurs at time 0. The
mode! implies that the unconditional expectation of r is (re+{0)/(1-B). Therefore, a one-time
shock u that occurs at time O implies that r = (rpePo)/(1-B) for t < O and r, = u +
(re+Bo)/ (1B

Let R(u.T) be percentage of the time zero shock which is reversed in the cumulative

return from time 1 to time T. Along the path with no time 0 shock, the cumulative return

, r T .
from time | to time T is (1 + %‘—f—g‘-’-) . Therefore, the part of the cumulative return from

: T
time 1 to time T that is attributable 1o the time 0 shock is the difference exp{ E.I In(141)} -

(1 r,‘ g“ ) . However, this value occurs at time T, while the value of the initial shock u
ocurs at time 1. Therefore, R(u.T) equals

T .
exp{lz:I Intl+r)} - (1 + r-r{%i)T

U( rf"'ﬂﬂ)

K
Let q = r; - trp+Bo)/(1-B). The model can be expressed as q; = B}k-_Z Qe + € and the one-

time shock implies q, = 0 for t < 0 and q; = u for t = 0. Note that Z qQr - Bq‘ = 0.

o] -k
:\Jsolgw ch'x:z.:w B = go. Hence, Z q - ﬁz Q= Qo Let S = Z q¢. Since qo...u we

have the equation (1-B)S = u which has the solution S = u/(1-B). Let Q(u,T) =l§] q.. Then,
T1im Qu.T) =S - qo = u/(1-B) - u = uf/(1-B).

We are interested in lin}) R(u,T) and can evaluate the limits in either order. By
u—

T

. Lo . l - dQu.T) . . .
I'Hopital's rule, &lino Riu,T) = T H?}O 7 Qdu . Since Q(u,T) is continuously

differentiable in u and #an Q(U'T)tuB/(I-B)‘—}-ﬂm R(uT) = Y E 5F
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Table |
Estimation on monthly data from January 1947 to December 1995 of

1k
=P+ Bt +e

Vari{e, = h,
hy =0 + Oyhyy + 0ahs + ashes + O + 00l + 0385
o +0+03+0; +9+0:3=1 (IGARCH constraint)
ke {12.24.36. 48, 60, 72, 84}
r,is the excess return on the value-weighted index in month t.
k is the number of lagged excess returns used to form predictor in mean equation.

Reported value of k is the value that maximizes the likelihood function.
All significance levels are two-sided.

Mean Equation

Variable Bo B k
Hzﬁmme 011 -.60 23
T-Statistic 5.11 -3.26°

P-Value (univariae) .00 0011

Variance Equation
Variable O o) 0 0o 0 9> 93
Esumae | 8.01 60 10 03 074 ~018 22
x10-3
T- 2.19 22 10 1.61 -.24 2,74

Statistic

P-Value .03 82 92 Al .81 .006

“This is a theoretical t-ratio formed by dividing the point estimate by the asympiotic standard deviation of
the estimate under the null as derived in Proposition i. The empirical t-ratio reported from the maximum
tikelihood procedure is -3.30: the two numbers differ by only four one-hundredths.

*"This p-value correspords to the theoretical t-ratio, -3.26; the p-value for the empirical t-ratio, -3.30, is
.00098.



Table 2
Correlation of Buki Estimates Under the Null

Bulh B(I:_-h ﬁu36) BHS; Blﬁm 6172) éf&h
["5{ 1 1 107 577 .5 A47 408 378
[3.341 1 816 707 632 571 3335
ﬁl.‘sm 1 .866 73 707 655
j[%_, ! .894 816 156
jm{)s 1 913 845
ﬁm! | 916
_%4, : !

This table calculates the correlations under the null hypothesis that monthly excess returns
are seriallv uncorrelated.




Table 3
Results for the Seven Independent Test Statistics ?( 12) 1o (84)

Point estimates and t-statistics for ~}4k1 where k) is defined as follows,
Uikpt = Pk - Brkap forl<nsN
= Bikn forn=1.

The point estimates for f(k) come from maximum likelihood estimation of Equation (1)
where k is treated as an exogenous model parameter. The standard errors used to form the
t-statistics are derived in Proposition 2.

k B ¥ t-Statistic on ¥
12 T0.01 -0.01 -0.08
23 -0.66 -0.65 . -4.52
36 -0.60 0.06 0.40
48 0.42 0.18 : 1.29
60 -0.02 0.39 ; 275
73 -0.01 0.01 0.09
]1 071 0.22 ) 1.55




Table 4
Theoretical Versus Empirical T-Statistics and Standard Errors

The model
r=fPo + Bf:_k]’ T €
Varle) = by

hy = O + O hyy + bz + O3l + bre;, +00e . +0se,

o +0-+0:+Q+02+03=1 (IGARCH constraint)
was estimated for values of k in the set {12, 24, 36, 48, 60. 72. 84} on monthly data from
January 1947 to December 1995 where
r, 1s the excess return on the value-weighted index in month t.
k is the number of Jagged excess returns used to form predictor in mean equation.

B and "Empirical Standard Error” are the maximum likelihood estimate and the maximum
likelihood standard error. "Theoretical Standard Error" is calculated from Proposition 1.
The "Theoretical T-Statistic" is the point estimate divided by the theoretical standard error.
The "Empirical T-Statistic” is the point estimate divided by the empirical standard error.

R Empincal | Iheoretical | Empinical | Iheoreucal
k SE SE T-Statistic T-Statistic
12 -0.01 13 14 20.09 ' -0.08
24 066 .20 20 330 [ -3.36
16 -0.60 2% 25 311 14
NES 0.42 32 29 -1.30 “1.46
60 -0.02 37 32 007~ -0.07
72 -0.01 31 35 003 . 003
84 0.31 33 38 0.64 0.56




Table 5

Response to A One-Time Shock

This table demonstrates the effect of an infinitesimal one-time shock at time 0 to the

subsequent path of the expected returns process in the model r, - ry = f§, + B" AL e,
where B, and P are set equal to the values estimated in Table 1 and the risk- free rate is
assumed to be constant and set equal to its sample average. Along the path in which there is
no time O shock, the return is (r+f,)/(1-B) each month. Let g, = 1, - (rj+fB0)/(1-B). For t >
0. q. 15 the shift that the time O shock induces to the return in month t.
Column 2 in the table reports Iu-n0 qv/u where u is the time 0 shock.

Uu—

. . _— 24
Column 3 reports the sum of the previous 24 values of ]mb q/u which is analogous 10 r:_,
u—r

for an infinitesimal shock,
The cumulative reversal measures the percentage of a time zero infinitesimal shock which
has been reversed by the cumulative retum from time 1. The percentage of a time zero
shock u which has been reversed by month T is

RiunT) =

T +
exp{é‘:} In(l+r)} - (1 + g B°)

u(l+-——

where (1 + ——

fBo
1-p

) is the cumulative

return from time 1 to time T in the case in which there was no time O shock.

Column 4 reports lim0 R(u.T). Time is measured in months.
U=

t ShIt o, Shift 107 2" Cumulative Reversal
s ) e
L= (percent of initial shock) (percent of initial shock) (percent of initial shock)
I 27 4.2 2.7
2 2.7 4.1 5.4
3 -2.6 39 7.9
6 2.4 3.6 15.2
9 2.2 33 219
12 2.0 3.1 28.1
15 -1.9 28 33.8
18 1.7 26 39.0
21 1.6 24 43.8
24 1.4 2.2 48.3
27 1.1 -1.7 44.6
30 0.8 -1.3 41.9
33 0.6 -0.9 399
36 0.4 -0.5 38.7
42 0.01 -0.02 37.8
48 -0.2 0.4 38.6
54 -0.1 0.1 39.6
60 0.0;’ -0.03 39.7
72 0.03 -0.04 39.3
84 -0.01 0.02 39.3




Table 6
Annual Results

Panel A:
Estimaton using OLS on annual data from 1947 to 1995 of

L2
=R +Bi ) +e.
r; Is the excess return on the value-weighted index in veart.

Annual excess rewrns are formed by compounding monthly excess returns.

Variable Bo B
Estimate 0.12 -0.46
T-Statistic 4.23 -2.21
P-Value (2-Sided) .000 .03
R:=.094
Panel B:

Estimation using OLS on annual data from 1947 to 1995 of
r( = B() + ﬁ[l.:_:ll + B:I7475l + e[.

17475 is a dummy variable indicating whether vear t is in the period 1974-75.
r1s the excess return on the value-weighted index in year (.
Annual excess returns are formed by compounding monthly excess returns.

Varable Bo B, B
Estumate 0.15 -0.70 -0.27
T-Staustc 4.92 -3.06 2.20
P-Value (2-Sided) .000 004 .03
R-==.180

Panel C:

Estimation using Least Absolute Deviations on annual data from 1947 to 1995 of
n=Po+fB¢

ry1s the excess return on the value-weighted index in year .
Annual excess returns are formed by compounding monthly excess returns.

Variable By B
Estimate 0.13 -0.5
T-Statistic 3.88 -2.18
P-Value (2-Sided) 000 035




Table 7
Out-Of-Sample Analysis: Foreign Stock Markets. US Market Prior to 1925

Panel A:
Estimation using OLS on annual data from 1951 to 1995 of
(2}
n=Rc+ PR +e
r is the the real return as reported in the DRI Basic Economics database in vear t.
The real return for year t is percentage change in the real stock price in vear L.

[Country B T-Statste Significance

(2-Sided)
Canada -(0.39 -1.87 .06
France -0.17 -0.73 47
Japan -0.23 -1.11 .27
UK -0.48 -2.13 .04
Panel B:

Estimation using OLS on annual US data from 1885 to 1925 of

ftzﬁo‘*ﬁft;) +e

1, is the real return on the index described in Schwert (1990) in veart.
The real return for year t is computed as the nominal return for year t minus the percentage

change in the price level in year t.

Variable Bo B
Estimate 0.16 -0.54
T-Statistic 3.47 -2.38
P-Value (2-Sided) .001 0?2




Table 8
Large Firms

This tble replicates many of the items reported in Tables 1. 3, and 6 for an equally-
weighted portfolio consisting of the largest quintile of firms by market value of equity.
Each of the procedures below is esumated from January 1947 to December 1995.
Procedures | through 3 are estimated on monthly returns.

Procedure 1: All paramerers of Equation (1) are estimated jointly by maximum likelihood.
The reporied B corresponds to the value of k that maximizes the model's likelihood
function. The standard errors used to form the t-statistics are derived in Proposition 1.

Procedure 2: vk) is calculated for seven averaging horizons ranging from 12 months to 84
months. The value of y with the maximal t-statistic is reported below. The standard errors
used to form the 1-statistics are derived in Proposition 2.

Procedure 3: For each of seven averaging horizons ranging from 12 months to 84 months,
k was held constant and the remaining parameters of Equation (1) were estimated by
maximum likelihood. A chi-square test was performed on the seven resulting estimated
slope coefficients for the covariance matrix derived in Proposition 1.

. (2 . . .
Procedure 4: The equation r, = [, + Bf;. I’ + ¢ is estimated using OLS on annual data.

Portfolio Largest Size Quintile | Value-Weighted Index |
k esiimate 24 24
esumate -0.74 -0.66
GARCHpB  t-statistic -3.72 -3.26
(monthly data)  joint significance (2-sided) 001 007
estimate -0.71 -0.67
Y t-statistic -4,98 -4.52
joint significance (2-sided) 6.78 x 107 4.33x 10
x> test statstic 434 323
joint significance 2.75x 1077 3.57x 103
estimate -0.48 -0.46
OLS B t-statistic -2.36 -2.21
(annual data) R2 106 .094
sientficance (2-sided) .02 .03




Table 9
January

Estimation using OLS on annual dara from 1947 to 1995 of
o
=06+ B‘-',(._l) + e
for 2 samples: one in which the lefthand side variable includes only the return in the month

of January and a second in which the lefthand side variable excludes the January return. All
data are excess returns on the CRSP value-weighted index.

LHS B ~ 1-Statistc Significance
(2-Sided)
January Only -0.19 -3.03 004
Feb-Dec. -0.27 -1.51 14 ]




Figure |
Mean Reversion, Annual U.S. Returns
Annual excess returns, CRSP value-weighted index. 1947-1995. Y-axis is annual excess
return in vear t. X-axis is average annual excess return in vears t-1 and t-2. Annual excess

returns ure formed by compounding monthly excess returns.

Solid line is the OLS fitted regression line.
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Figure 2
Mean Reversion, Annual U.K. Returns
Annual real returns. UK. stock index, 1951-1995. Y-axis is annual real return in vear t.
A-axis 1s average annual real return in vears (-1 and 1-2. Annual real returns are formed by

compounding monthly real returns.

Solid line is the OLS fitted regression line.
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Figure 3
Response to a One-Time Unit Shock

Effect of a time 0 shock on subsequent monthly and cumulative returns, based on
maximum likelihood estimates of Equation (1), value-weighted index. 1947-1995. and a
monthly risk-free rate of .39%, the average value during 1947-1993.

The doued line displays the subsequent monthly reversals of the initial shock. The solid
line displays the cumulative reversal. Both are expressed as percentages of the initial
shock. The asymptote for the cumulative reversal is -39.3%.
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