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ABSTRACT

In this paper we develop a two-stage approximation algorithm for the
scheduling problem where the objective is to minimize weighted earliness
subject to no tardy jobs., The research was motivated by the fact that the
optimization problem is NP-hard and the only existing heuristic to this
problem can yield very poor objective function values, The computational
study revealed very promising results, both with respect to the quality of the

solutions obtained and with respect to the computational burden,






1. Introduction

This paper develops a two-stage approximation algorithm for the single
machine scheduling problem where the objective is to minimize weighted
earliness, As we pointed out in an earlier paper [2], such problems afise in
capacitated "just-in-time" environments.

Assume that the due dates for the jobs to be processed on a single
processor are known and that the customers accept delivery of their jobs
exactly at the specified due dates., The shop incurs a holding cost for early
jobs; jobs are not allowed to be tardy. An ideal solution for such a
scheduling problem would be to complete the jobs exactly at their due dates.
However, if the shop capacity is tight and the due dates for several jobs are
clustered together, then it may not be possible to schedule the jobs to finish
exactly at their due dates. As a result, the shop may need to schedule some
jobs early and incur a holding cost for earliness. Thus, the scheduling
préblem under consideration requires minimizing the total holding cost for
early jobs (or the total weighted earliness)vsubject to no tardy jobs.

Let Pi’ Ui’ di’ and Ci denote the processing time, weight, due date, and
completion time, respectively, for job i. Let N be the number of jobs. The
problem of finding the optimal values of C1, C2,....,CN can be formulated as
follows:

Minimize (di'ci)ui (1

1

™M=

i

subject to Ci—di_g 0 for i=1,2,...,N. (2)

We will call this problem the Weighted Earliness Problem (WE-Problem). The

problem with the added constraint that no machine idle time is allowed, that is:



for i=1,2,...,N, will be referred to as the Constrained Weighted Earliness

Problem (CWE-Problem). In both these problems and the rest of the paper, we
assume that jobs are not allowed to be preempted.

Note that the scheduling criteria introduced above are not regular
measures of performance (see Page 13 of Baker [1] for a definition of regular
measures). Most scheduling research to date has considered only the problems
with regular measures. For example, Baker [1] claims that nearly all
important scheduling criteria use regular measures of performance, Thus, this
paper develops a heuristic solution procedure for an important class of
scheduling problems which does not use regular measures,

In the next section, we briefly review some of the results developed for
the CWE- and the WE-Problem. In section three we develop a two-stage
approximation algorithm for the WE-Problem and section four states the

computational results. The paper concludes in section five.

2. Review of the CWE-~ and WE-Problem

Both the CWE- and the WE-Problem have been shown to be NP-hard; even for
the special case where all the weights are equal, that is U1=U2=U3:....=UN,
[4]. This implies that it is unlikely that these problems can ever be solved
without explicitly or implicitly enumerating all possible feasible solutions.
It is relatively easy to see that the CWE-Problem can be solved with any

standard dynamic-programming algorithm. The most effective DP algorithm that

can be used for this problem is probably the algorithm developed by Potts and



van Wassenhoven to solve the single machine scheduling problem to minimize the
total weighted completion time subject to no tardy jobs [31].

The WE-Problem is considerably more difficult. Chand and Schneeberger
[2] developed a dynamic goal programming algorithm to solve this problem.
Such an algorithm, however, is inherently very slow and the computational
overhead required prohibits solving problems which consist of more than 10 to
15 jobs.

The heuristic developed by Smith to solve the weighted earliness problem
subject to no tardy jobs [5], can be modified to solve the CWE-and the WE-
Problem [2]. The performance of this heuristic varies considerably from
possible best to possible worst cases. We developed several results to
identify problem instances where the modified Smith-heuristic is guarantéed to
provide optimal solutions to either the CWE- or the WE-Problem [2].

The computational study revealed that for some problem instances the
modified Smith-heuristic can be more than 50 percent away from the optimal
solution. 1In addition, the dynamic goal programming algorithm developed to
solve the WE-Problem cannot find solutions to most problems with more than 15
jobs, Therefore an improved heuristic is needed which provides adequate
objective function values and which is’such that even large problems can be
solved,

It should also be noted that an algorithm which solves the WE-Problem

will also solve the CWE-Problem but not vice versa.

3. Two Stage Approximation Algorithm for the WE-Problem

In this section, we develop a two-stage approximation algorithm for the

WE-Problem. The algorithm starts by scheduling the job in the last position



first, then the job in the second-to-the-last position gets scheduled, and so
on, until all the jobs are scheduled.
We will introduce the algorithm by first presenting a heuristic that

solves the following restricted WE-Problem P1:

P1: Given a collection of jobs, B, a job a€B, a job bEB and a value T, find a

sequence that minimizes

-Z (di'ci)ui
ieB
such that Cii T, Ci-dig 0 for all i€B; job b is in the last position, and

Job a is in the second-to-the-last position of the sequence.

Clearly problem P1 can be reduced to a WE-Problem where only the jobs in
{B-a-b} are considered. /The following heuristic for P1 draws upon ideas
developed by Smith. Let a, b, B, and T be the parameters for the job in the
- second-to-last position, the job in the last position, the set of jobs to be

scheduled, and the maximum completion time, respectively.

Heuristic for P1: HP1(a,b,B,T)

INITIALIZATION: Let S be the set of scheduled jobs: S = ¢

Further let T' = T

Schedule job b: Set C min{db,T'} and T' = C,_-P,

b b b
Schedule job a: Set C_ = min{d_,T'} and T' = C -P
» a a a a
STEP 1: Schedule job j: Set Cj = min{dj,T'} and T' = Cj'Pj
P./U, = min{P,/U, } if max{d,}> T'
T ey igs igs * "
where j is such that
Pj/Uj = mln{Pi/Ui}~ otherwise
1[di=max{dk}

kgs



STEP 2: S=SU{j}, Stop if S=B, otherwise go to Step 1.

Denote the objective function value for HP1(a,b,B,T) by VHP1(a,b,B,T).

Next consider Problem P2:

P2: Given a collection of jobs B, a job aeB and a value T, find a sequence

that minimizes

r (d,-C)U;
ieB

A

such that Cig T, C.~d,

;=945 0, C.=p.2 0 for all jobs i€B; and job a is in the

i'i

last or the second-to-the-last position.

Let VHP2(a,B,T) be the objective function value for an approximated
optimal solution to P2 with parameters identifying the job in the-second-to-
the last or the last position, the set of jobs to be scheduled, and the

maximum completion time, respectively. VHP2(a,B,T) can be obtained by

solving:

VHP2(a,B,T) = min{VHP1(a,i,B,T)} (3)
ie{B-alud
VHP1(a,i,B,T) if min{C,-P.}> 0
. 1 1=
L ieB
where VHP1(a,i,B,T) = (W)

L + o otherwise.

Hence, VHP2(a,B,T) can be obtained by computing vﬁi](a,i,B,T) for all ie{B-alu¢
and finding the lowest of all these values. However, the search can be

reduced considerably by making the following observation:



Let X = i[dig min {T-P_-4, d-P_}, and ie{B-all,
where A = min{p.}

. 1
1[di> T-P,.

Then: min VHP1(a,i,B,T > min{VHP1(a,i,B,T)}
i€B ie{B-a-x} U

which implies: VHP2(a,B,T) = min{VHP1(a,i,B,T)}
. ie{B-a-x}U¢.

Note that due to (4), a solution with time zero infeasibility, that is,

min{C.-P.} < 0
AR

will always have an objective function value of + o.

We can now present the main routine of the two-stage approximation
algorithm. The algorithm is based on the results of Chand and Schneeberger
[2]. From all the jobs feasible to be scheduled in the last position we
schedule the one with the lowest Pi/Ui ratio first, in the very last position
of the sequence. Next, from all the jobs feasible to be scheduled in the
second-to-the-last position we schedule the one with the lowest Pi/Ui ratio in

this position., 1In this way we are guaranteed an optimal subsequence as long as

Prir/Yri12 Priv1/ Ve (5)

where P[i] denotes the processing time of the job in position i.

Let S' = {i,S} and S'' = {j,i,S} be two optimal subsequences, which
satisfy condition (5). Consider the case where the next step in our algorithm
is to schedule job h and we obtain the subsequence S''' = {h,j,i,S} which

violates the condition for an optimal subsequence, that is, we are not



guaranteed optimality any longer. At this point we back off to the sequence
S!' and approximate the optimal decision concerning which job to schedule in
front of S' by solving P2(h,{K-S'},Ci-Pi), where K is the set of all jobs to
the N-job WE-Problem. Let the optimal sequence to P2 be {a,..., x, y}. If
y=h we schedule y such that we obtain the subsequence {y, i, S}. If x=h we
schedule x and y such that we obtain the subsequence {x, y, i, S}. Then we
proceed by scheduling the job with the lowest Pi/Ui ratio until the optimality
condition mentioned earlier is violated again, at which time we will again

solve P2. The steps of the algorithm are given below,

STEPS FOR THE TWO—STAGE APPROXIMATION ALGORITHM

INITIALIZATION Let K be the set of all jobs to the N-job WE-Problem.,
Let S be the set of all scheduled jobs:
S=¢

Let T = max {di}

igK

N+1

Let 1

Let X[j] be the parameter X of the job in position j.
STEP 1: Schedule job j: Cj:min{dj,T}, 1=1-1, T:Cj-Pj
(" P./U =min{P,/U,} if max{d>T
ildi>'T and ¢S igs

where j is such that <

P./U.=min {P./U.} otherwise
j ) 771
1|di:max{dk}
k¢S



STEP 2: If S = K stop

M PnY012 ey Vg 80 fo Ster T

otherwise S = {S-[1]-[1+11}

1

n

1+ 2
T= Ly Py

solve P2(j,{K-S},t)

where j is the job found in the first step of the algorithm.

Denote the job in the last position of the sequence that solves

P2 by b and the job in the second-to-the-last position of this

sequence by a.
Schedule job b:
set Cb:mln{db,T}, 1z1-1, T=C -P_
if b=j go to Step 1.
otherwise schedule job a:
set C_=min{d ,T}, 1=1-1, T=C_-P
a a a a
go to Step 1.

A

EXAMPLE

Consider the following five=job WE-Problem.

i P, U, d,

i i i
1 2 6 11
2 4 2 7
3 2 3 12
y 5 2 17
5 2 l 18




Solution

Step 1: Schedule job 5: C5 = 18, p5 =2, T=16
Step 2: go to Step 1.

Step 1: Schedule job 4: CH = 16, pu =5, T=1
Step 2: go to Step 1.

Step 1: Schedule job 1: C1 = 11, p1 =2, T=9

Step 2: Solve P2 witha =1, B= {1,2,3,4}, t = 16
find VHP1(a,i,B,T) for i = 4,3,0.

The following sequence solves P2: {2-3-1-4}

un

Schedule job U4: CU = 16, Py

Schedule job 1: C1 = 11, P,

-3
]

5y

2’T=9

"

go to Step 1.

- Step 1: Schedule job 3: C3 =9, p3 =2, T=17

Step 2: Stop

Note that for this example, the two-stage approximation algorithm found the
optimal solution.

A simple single pass heuristic identical to the modified Smith-heuristic
[2] can be constructed by simply restricting the algorithm to iterate between
the first and the second step without ever solving the second-stage problem

P2. We will include such a single pass heuristic in our computational tests.
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4, Computational Study

The objective of the computational study in this section is to analyze

and compare the performance of the developed Two-Stage Algorithm (TSA) with

the Modified Smith-heuristic (MSH) and the Dynamic Goal Programming (DGP)

algorithm [2].

The design of the experiment is identical to the one used in [2]. Hence
the results obtained in this section can be compared to results obtained in
the paper mentioned above. As in [2], the processing for all jobs is kept
constant (Pi:S). The weights and due dates were generated by using three
control parameters (0,8, and D) as described below, These parameters are

allowed to assume the following values:

0.0, 0.50, 1.0

o
Bz OuO, 012, O-u, 0061 0081 1-0

D= O, 25, 50' 75

o ¢ Control parameter for the variance in the Piégi - ratios. This parameter

is used to control the variance in the Pi/Ui ratios. The variance
increases with increasing 0. The lower limit (o = 0) implies that the
Pi/Ui is constant for all jobs. The modified Smith-heuristic will give
an optimal sequence for o = 0 [2].

B: Control parameter for the correlation of Piégi and di' This parameter is

used to control the correlation between Pi/Ui-ratios and the due dates.
If B is at its lower limit (B = 0) then Ri < Rj-* di > dj' The modified

Smith-heuristic will give an optimal sequence for B = 0 [2].
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D ¢ Control parameter for the due dates. The parameter D is used to control

the due dates; a small value of D implies that the due dates are
uniformly distributed over certain intervals of time and a large value of
D means the due dates are clustered towards the end of the scheduling
horizon., The upper limit for D will give identical due dates for all
jobs., The modified Smith-heuristic will give an optimal‘sequence for

D = 100 [2].

The due dates and weights were generated as follows. Note that N denotes

the number of jobs,
i) di = 5N + U(D, 100),

where U(a,b) denotes the uniform distribution between a and b. The term 5N
has been added to guarantee feasibility, It is easy to see that all due dates
are identical (equal to 5N + 100) for D = 100. For D = 0, the due dates are

uniformly distributed between 5N and 5N + 100.

ii) P, -1if x < 1.0 d,
1 - 1
= =14+ _
Ui 1if x < 1,0 100 + 5N
X:U(B, 1+B)o

By using formula ii), we can generate weights (Ui's) while controlling the
variance of Pi/Ui-ratios and also the correlation between Pi/Ui and di' For
o= 0, pi/Ui = 1 for all jobs; the variance of Pi/Ui-ratios increases with
increasing ¢, For B = 0, x < 1, and the correlation between Pi/Ui and di will
be negative. Note that because di < 5N + 100, Pi/Uij: 0 for all jobs.

We used N = 10 and 50 jobs in this experiment. For each combination of

parameter values, we generated 10 problems and solved each problem by using
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the DGP, MSH, and TSA for N = 10 and MSH and TSA for N = 50. In total we used
3x(5 x 6 x 7 x 10) = 1440 test problems.

Table 1.1 and Table 2.1 summarize the results with respect to the
objective function value and Table 1.2 and Table 2.2 summarize the result with
respect to the CPU-time,

It should be noted that the results obtained with TSA show a dramatic
improvement over MSH with respect to objective function value. In addition
the CPU-time for this procedure, although significantly larger than for MSH,

still allows solving scheduling problems with 50 and more jobs.

5. Conclusion

In this paper we developed a two-stage approximation algorithm for the
scheduling problem where the objective is to minimize weighted earliness
subject to no tardy jobs. The researqh was motivated by the fact that the
optimization problem is NP-hard and the only existing heuristic to this
problem can yield very poor results. The computational study revealed very
promising results, both with respect to the quality of the solutions obtained
and with respect to the computational burden.

It should also be noted that the approach taken in the development of the
two-stage approximation algorithm can be generalized to solve a variety of

difficult optimization problems.
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Table 1.1

Objective function value for N=10

0 a B=0.0 B=0.2 8=0.4 B=0.6 B=0.8 B=1.0 | Conments
average optisal solution value
0.0 78.7 78.7 78.7 78.7 78.7 78.7
0 0.3 40.7 2.9 70.8 77.9 8s.4 117.2
1.0 49.8 33.8 83.9 100.4 132.7 T742.4
0.0 112.8 112.9 t112.8 112.8 112.8 112.8
23 0.3 83.4 92.9 104.7 120.9 131.9 177.4
1.0 66.4 93.4 143.4 184.4 239.6 1146.4
oGP
0.0 244.2 244.2 244.2 246.2 246.2 244.2
30 0.3 174.4 199.6 220.9 2%2.3% a%a.1 413.0
1.0 133.1 201.7 32%.7 487.6 463.3 2498.7
0.0 380.3 380.3 380.3 380.3 580.3 380.3
73 .3 396.6 433.4 487.1 340.4 719.8 | 1082.8
1.0 301.3 431.8 901.8 1700.0 a913.8 88a1.4
average deviation from optimal Cin %1
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.3 0.0 0.0 2.1 0.0 0.0 0.0
1.0 0.0 0.0 5.1 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 0.3 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 3.7 3.8 7.6 3.9 0.0 MSH
0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.3 0.0 0.0 4.2 1.3 0.0 0.0
1.0 0.0 19.2 24.9 11.3 13.8 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
73 0.3 0.1 1.3 0.7 0.3 0.0 0.0
1.0 0.1 43.9 31.2 4.7 1.7 0.0
0.0 0.0 0.0 9.0 0.0 0.0 0.0
0 0.3 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
23 0.3 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 - 1.8 0.0 0.0 TSA
0.0 0.0 0.0 0.0 0.0 0.0 0.0
30 0.3 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 3.1 1.9 0.3 2.9 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
73 0.3 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.4 0.0 0.4 0.0 0.0
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Table 1.2

CPU-time for N=10 (in seconds)

0 a £=0.0 B=0.2 B=0.4 B=0.4 B=0.9 B=1.0 | Comnents
.0 0.072 0.071 0.072 0.072 0.072 0.072
o .3 0.033 0.038 0.061 0.043 0.043 0.047
.0 0.0%6 0.038 0.062 0.063 0.063 0.047
.0 0.171 0.172 0.171 0.173 0.173 0.172
23 .0 0.122 0.124 0.139 0.142 0.148 0.171
.0 0.121 0.132 0.144 0.151 0.1%2 0.171 oGP
.0 0.729 0.746 0.737 0.739 0.742 0.737
50 .8 0.453 0.478 0.739 0.726 0.741 0.832
.0 0.461 0.782 1.020 1.170 1.179 0.818
.0 4,312 4,309 4,299 4,293 4.287 4.29%
73 .S 3.998 5.310 5.437 5.541 5.243 4.178
.0 4.026 4.202 7.041 7.433 6.626 4,143
.0 0.004 0.006 0.004 0.006 0.006 0.006
0 .3 0.006 0.006 0.006 0.006 0.004 0.006
.0 0.006 0.006 0.006 0.006 0.006 0.006
.0 0.006 0.006 0.004 0.006 0.006 0.006
2s .5 0.006 0.006 0.006 0.006 0.006 0.004
.0 0.006 0.006 0.006 0.006 0.006 0.006 MSH
.0 0.00% 0.005 0.004 0.007 0.006 0.009
50 .5 0.009 0.003 0.004 0.008 0.007 0.00%
.0 0.006 0.003 0.00% 0.007 n 008 0.00%
.0 0.00% 0.00% 0.00% 0.00% 0.00% 0.003
78 .3 0.008 0.003 0.00% 0.009 0.009 0.003
.0 0.003 0.003 0.005 0.00% 0.005 0.00%
.0 0.039 0.039 0.039 0.040 0.039 0.039
0 .5 0.084 0.073 0.0644 0.0%8 0.0%2 0.039
.0 0.084 0.072 | 0.043 0.038 0.0%2 0.039
.0 0.030 0.030 0.030 0.030 0.031 0.030
28 .5 0.092 0.081 0.06% 0.049 0.046 0.030 TSA
.0 0.093 0.082 0.04% 0.049 0.043 0.030
.0 0.017 0.018 0.018 0.014 0.020 0.018
30 .9 0.097 0.090 0.073 0.0%3 0.036 0.018
.0 0.094 0.094 0.074 0.057 0.041 0.018
.0 0.014 0.013 0.013 0.013 0.014 0.013
73 .5 0.106 0.080 0.0%6 0.028 0.022 0.014
.0 0.107 0.077 0.039 0.029 0.023 0.013
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Table 2.1

Objective function value for N=50

0 a B=.00 g=0.2 8=0.4 B=0.64 g=0.8 f=1.0 Cosnments
average solution value for MSH
0. 18433 18433 18433 18433 18433 18433
0 0. 12741 12911 13833 18933 22398 30994

1. 9738 1109 17493 44718 462874 120490
0. 21482 21482 21482 21482 21482 21482

23 0. 14704 14899 1432% 23276 27321 37394
1. 11182 13103 23806 71473 98692 186813
0. 24330 24330 24330 24330 24330 24530

30 0. 16639 17040 19793 28208 32984 44774
1. 12390 18113 48234 129018 174481 318439
0. 27577 27577 27577 27877 ars77 27377

73 0. 18342 19225 22924 33227 38781 32622
1. 13947 29449 105144 2920644 391947 717399

average isprovement by using TSA Cin %]
0. 0.0 0.0 0.0 0.0 0.0 0.0
0 0. 0.0 0.0 0.2 0.4 0.0 0.0

1, 0.0 1.4 9.4 4.1 1.6 0.0
0. 0.0 0.0 0.0 0.0 0.0 0.0

23 0. 0.0 0.0 0.0 0.4 0.0 0.0 MSH
1. 0.0 0.9 3.1 6.0 1.0 0.0 =100%
0. 0.0 0.0 0.0 0.0 0.0 0.0

50 0. 0.0 0.2 1.0 1.3 0.7 0.0
1. 0.0 4.2 12.0 -~ 8.0 2.3 0.0
0. 0.0 0.0 0.0 0.0 0.0 0.0

73 0. 0.0 0.0 0.3 1.1 .0 0.0
1. 0.0 11.1 8.2 6.7 1.1 0.0
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Table 2.2

CPU-time for N=50 (in seconds)

D a 8=0.0 g8=0.2 8=0.4 8=0.4 B=0.8 f=1.0 Comnents
0.0 0.088 0.089 0.089 0.088 0.089 0.890
0 0.3 0.083 0.083 0.083 0.083 0.084 0.083
1.0 0.083 0.084 0.083 0.084 0.083 0.083
0.0 0.090 0.090 0.0%90 0.090 0.090 0.089
23 0.3 0.084 0.084 0.083 0.083 0.082 0.083
1.0 0.084 0.083 0.084 0.083 0.083 0.083 MSH
0.0 0.089 0.090 0.089 0.089 0.090 0.090
30 0.3 0.082 0.077 0.078 0.078 0.078 0.077
1.0 0.074 0.074 0.074 0.074 0.072 0.074
0.0 0.08% 0.084 0.088 0.08% 0.087 0.084
73 0.3 0.073 0.074 0.07% 0.074 0.074 0.073
1.0 0.074 0.078 0.073 0.077 0.074 0.074
0.0 0.182 0.183 0.182 0.181 0.183 0.183
0 0.3 23.430 12.157 2.324 0.718 0.4636 -0.172
1.0 23.419 13.032 2.633 0.742 0.674 0.170
0.0 0.18% 0.183 0.183 0.184 0.183 0.184
23 0.5 21.924 9.087 0.770 0.454 0.347 0.170
1.0 22.098 9.883 0.798 0.644 0.3537 0.172 TSA
0.0 0.183 0.183 0.183 0.182 0.184 0.184
30 0.5 17.333 2.482 0.739 0.388 0.510 0.137
1.0 13.887 a.701 0.784 0.434 0.534 0.136
0.0 0.174 0.173 0.174 0.171 0.172 0.174
73 0.3 10.138 1.143 0.528 0.454 0.374 0.138
1.0 10.073 1.203 0.327 0.43%3 0.373% 0.13%7
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