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I. Introduction

In order to introduce the topic of time series analysis with emphasis
on forecasting, it is necessary to clarify and define several concepts. A time
series will, for our purposes, be narrowly defined as a family of real-valued
random variables {X(t),teT} where the index set T is the set of all integers.
That is, T = {...,-1,0,1,...}. It will be assumed that every finite collection
{X(tl),...,X(tn)} is a set of random variables with a specified joint distribu-

tion function Ft c (X(tl),...,X(tn)). This distribution function must
l’ '.., n

satisfy two consistency requirements. First, if Ogs wees O is any permutation

of 1, 2, ..., n, then
Ftl’ S (X(tl),...,X(tn)) = Ft c (X(tOL )"°"X(ta )).
n Ops oees o 1 : n
Second, for any integer m<n,
Ftl’ s (X(tl),...,X(tm)) = X%i?)+m Ftl’ ., tn (X(tl),...,X(tn)).

j=m+1, ..., n
ﬁnder these definitions and festrictions, our discussion is necessarily limited
to real-valued time series defined over a discrete time domain. The class of
all such time series is sufficiently large, however, to include any time series
appearing in the economic sector of the real world. In particular, this class
includes all time series that would appear in a simulation model of the automo-
bile industry.

The definition of a time series given above leads to the equivalence
of the terms "time series" and "stochastic process'. The theory of stochastic
processes has developed rapidly over the past thirty years. During this period,
time series analysis has utilized two‘distinct, but overlapping approaches. The
first of these approaches is restricted to what may be termed the frequency

domain. The object of time series analysis in the frequency domain is to obtain
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estimates of what is called the spectrum in order to determine whether a given
time series exhibits certain fundamental rhythms or harmonics. This method of
"hidden periodicities" has given way in recent years to utilizing the spectrum
as a broad characterization of any time series regardless of the existence of
harmonics. Time series analysis in the frequency domain, usually called spectral
analysis, has been utilized most effectively in physics, engineering, and other
non-economic areas. In fact the early theoretical developments in time series
analysis by Kolmogorov1 and Wiener2 were based mainly on spectral analysis.

The second approach to time series analysis is restricted to the more
familiar (at least to economists) time domain. There are several important
reasons for the fact that most applied economic time series analysis have taken
place in the time domain. The first of these reasons has already been suggested.
The time domain is simply a more familiar setting for economists interested in
time series analysis. A second reasoﬁ is that spectral analysis does not provide
ready answers to questions related to forecasting. While spectral analysis may
have merits for characterizing a given time series in a general way, the spectrum
has no direct connection.with time series forecasting. Since forecasting is
often an ultimate goal, as in the automobile study, the decision is usually made
to conduct economic time series analyses in the time domain, where statistical
results are immediately applicable to forecasting. A third reason for preferring
analyses in the time domain over spectral analysis is particularly pertinent to
the automobile study. Within a simulation model for an industry, manageriél de-
cision rules must be formulated in an unambiguous manner. These rules can be
implemented only after the input of various estimates and forecasts based upon

time series analysis. From the standpoint of operating the simulation model,

lKolmogorov, A. N., "Aufangsgrvude der Theorie der Markoffschen ketten
mit unendlich vieleu moglichen Zustanden," Mat. Sbornik (N.S.), 1 (1936), 607-10.

2Wiener, N. Extrapolation, Interpolation, and Smoothing of Statiomary
Time Series. New York: Wiley, 1949.
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both the decision rules and their inputs must be capable of unambiguous descrip-
tion in terms of an algorithm. It is precisely this requirement of a simulation
model that leads to the rejection of spectral analysis as a procedure for provid-
ing these inputs. Spectral analysis yields primarily graphical results which re-
quire a great deal of visual (and therefore subjective) interpretation. This
lack of objectivity leads to considerable ambiguity in practice regarding the
interpretation of sample spectrums. To be sure, graphical results abound within
the field of time series analysis in the time domain also, but these results are
not usually interpreted visually. A fourth reason for preferring analyses in

the time domain over spectral analysis is that the latter is strictly valid

only for stationary time series. The concept of stationarity will be fully de-
scribed in the next section but it suffices to state now that many economic time
series exhibit non~stationarity, effectively limiting the usefulness of spectral

analysis within an economic simulation model.

II. Time Series Representations or Models

Time series may be characterized according to several different prop-
erties. Many of these properties are summarized in detail in Doob3, a valuable
reference source for the theory of stochastic processes. One of the most fre-
quently discussed properties of time series is that of statiomarity. A strictly
stationary time series is defined to be any time series possessing the property
that every finite collection of random variables'{X(tl),...,X(tn)} has the same
joint distribution function as {X(tl+h),...,X(tn+h)} for any integer h. A con-
sequence of this defiﬁition is that if the above collection of random variables
has a multivariate normal distribution function, then the time series is strictly
stationary.if and only if the expected value of X(t) is independent of t and the

covariance of X(t,) and X(tk) is a function only of the difference tj - t. . This

j k

3Doob, J. L., Stochastic Processes. New York: Wiley, 1953.




by
characterization of multivariate normal distributions by their second-order, or
covariance, properties leads to a less restrictive distinction between types

of time series. A weakly stationary or second-order stationary time series (not

necessarily normally distributed) is defined to be any time series such that the
expected value of X(t) is independent of t and the covariance of X(t) and X(t+h)
is a finite-valued function only of h. For future reference it is convenient to

introduce the notation

YX(tj,tk) = C(X(tj), X(tk))

for the covariance of the random variables X(tj) and X(tk). If the time series
of interest is weakly stationary, we shall write

Y, (B) = C(X(E), X(t+h)

as the covariance of the random variables X(t) and X(t+h). It is important to
note that many economic time series are non-stationary since their expected
values are not constant. Other types of non—stationafity are possible of courée,
including the possibility that yx(tj,tk) is not a function of tj - t, and the
possibility that this covariance function fails to exist. These three types of
non-stationarity will be referred to as non-stationarity in the mean, in the
covariance, and in the variance, respectively.

Within the class of weakly stationary time series, further characteriza-
tion is possible in terms of linear representations. The first type qf linear
representation for a weakly stationary time series is called a moving average.

A weakly stationary time series {X(t),teT} possessing an expected value M = E{X(t)}

is said to be a moving average process of order q if there exists a sequence of

real numbers bo =1, bl’ b

g9 tees bq such that

q
(1) X(t) =M+ )] b, e(t-j) ; teT,
j=o
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where {e(t),teT} is a weakly stationary time series with zero expected value

and a covariance Yg(h) which is zero for all h#o. Usually M is set equal to zero
without loss of generality. A second type of linear representation for a weakly
stationary time series is known as an autoregressive process. A weakly station-
ary time series {X(t),teT} possessing an expected value M = E{X(t)} is said to

be an autoregressive process of order p if there exists a sequence of real numbers

a = 1, 315 8y cees ap such that

p
(2) ) a,[X(t=j)-M] = e(t) ; teT
j=o ’

where {e(t),teT} has the same properties as given above. A time series {X(t),teT}
whose covariance yx(tj,tk) is a function only of tj - tk but'yet whose expected
value is a function of t is non-stationary in the mean as we said before. A time
series exhibiting such non-stationarity may still, however; possess a representa-
tion given by (1) or (2). In this event, we shail still refer to these representa-
tions as a moving average process and an autoregressive process, respectively.

In examining representations (1) and (2) with M = 0, the theory of
ordinary linear difference equations plays a major role. Since (2) is (apart
from its stochastic nature) merely a linear difference equation of order p, a
general solution for X(t) as a linear combination of e(t), e(t-1), ... can be
found. This suggests, then, that any representation of the form (2) can be in-
verted into a-representaﬁion of the form (1). Since this suggests the possible
equivalence of a moving average representation and an autoregressive represeﬁtation,
it is worthwhile to examine this possible equivalence in detail. Such a detailed
examination is beyond the scope of this paper, but we certainly should state those
conditions under which a moving average process permits an equivalent representation
as an autoregressive process. A sufficient condition for this equivalence is that

the variance of X(t), given by yx(o), be finite.4 From (1), this requires

“Ibid., 95.
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@) v ] bi<o,

j=o0
where Ye(o) is simply the variance of e(t). While for finite values of q this
may appear to be a trivial condition, one last property of the representations
(1) and (2) indicates the non-triviality of condition (3). This property is that
a moving average process of finite order q is equivalent to an autoregressive
process of infinite order and that an autbregressive process of finite order p
is equivalent to a moving average process of infinite order. Depending on
whether p is finite, then, we may have to let q approach infinity in (3) and
convergence of the sum in (3) must be verified before deciding on the equivalence
of the representations (1) and (2).

Given an equivalence between the representations (1) and (2) when
{X(t),teT} is weakly stationary and where either p or q (or both) must be infinite,
it is apparent that the number of pérameters needed to characterize the time series
of interest (al’aZ""’ap’bl’bZ""’bq) may be large, depending upon which repre-
sentation is of direct interest. Therefore, in the interest of parsimony, a
third linear representation for a weakly stationary time series has received an
increasing amount of attention in recent years. Specifically, a time series

{X(t),teT} is said to possess a mixed autoregressive moving average representa-

tion of order (p,q) if there exist sequences of real numbers a = 1, aps ees ap,

b0 =1, bl’ cees bq such that

o

| ~1.0

%) ) an(t-j) =

bje(t~j) ; teT,
j=o0 J

o
where {e(t),teT} is a weakly stationary time series with zero expected value and
a covariance Ye(h) which is zero for all h#o. Representation (4) therefore in-
cludes representations (1) and (2) as special cases while avoiding the practical

problems associated with a proliferation of parameters.
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Representation (4) can be simplified by the introduction of linear
operations. Specifically, let B be the backward shift operator and let V be the

backward difference operator so that

BX(t) = X(t-1) and VX(t) = X(t) - X(t-1) = (1-B)X(t).
Then if
p o q .
(5) 6. = ) a,B) and © (B) = ] b,BJ,
P j=o 3 q jmo 3

the representation (4) may be rewritten in the form

(6) @p(B)X(t) =0 q(B)s(t)' ; teT.

Keeping the representations (4) and (6) in mind, it is helpful to recall
that we are still considering time series.{X(t),teT} that are weakly stationary.
For some time series, it is clearly unrealistic to assume, a priori, that the
property of weak stationarity holds. Box and Jenkins,5 in a series of papers
beginning in 1962, have suggested generalized forms of (4) and (6) for the linear
representation of a_broad class of time series exhibiting non-stationarity. To

. R . .
motivate their generalization, consider the autoregressive process of order omne

given by setting p = 1 and q = o in (4):

X(t) + alX(t—l) = ¢(t) teT

we

The equivalent moving average representation is then

X(t) = e(t) - aje(t-1) + aje(t-2) - aje(t=3) + ...
In order for {X(t),teT} to be weakly stationary, it is necessary that the variance
of X(t) be finite. This requires that Ial|<l. If !al|>l, the process {X(t),teT}

is said to diverge and is clearly non-stationary in variance. If ]al[ = 1, the

5Box, G. E. P., and Jenkins, G. M. Models for Prediction and Control
IIT Linear Non-Stationary Models, Technical Report No. 79, University of Wisconsin
Department of Statistics.

6Watts, D. G. An Introduction to Linear Modeling of Statiomary and Non-
Stationary Time Series, Technical Report No. 129, August 1967, University of
Wisconsin Department of Statistics.
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process is still non-stationary but in an interesting way. For, if a. = +1, the

1

process oscillates with an unbounded range. A more important case is when a; = -1.
In this case,

X(t) = e(t) + e(t-1) + e(t-2) + e(t-3) + ...
is the realization of what is termed a random walk. In fact, it is seen that the
first backward difference given by

X(t) - X(t-1) = e(t) = (1-B)X(t)
is weakly stationary and, in fact, equivalent to a process with a covariance yg(h)
which is zero for all h#o. While the original process {X(t),teT} has no variance

(or higher central moments in general) its behavior is not divergent when a. = -1,

1
but is said to be "homogeneously" non-stationary. This terminology was first
introduced by Box and Jenkins.7

The above motivation suggests a generalization of (6) to a more com-
plete representation given by
M o B A-HX(E) = 6 Be(t) 5 eeT,

which of course includes both stationary and non-stationary time series. Repre-

sentation (7), following Box and Jenkins, is called an integrated autoregressive

moving average of order (p,d,q).8 If d = o, (7) repreéents "well-behaved",

weakly stationary time series. If d > o, (7) represents 'homogeneously" non-
stationary time series possessing infinite variances. This latter possibility

is one which has frequently caused concern in the analysis of economic time series.
It has been argued that time series possessing infinite variances cannot be poss-
ible in the economic sector. If this is indeed the case, then careful analysis

of any given time series should reveal whether it possesses a representation in

(7) with d = o. The truth of this argument, therefore, does not prohibit us from

7Box and Jenkins, Op. cit.

8Box and Jenkins, Op. cit.
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at least considefing the possibility that d > o in (7). Alternatively, it has
been shown in some recent work by Harrison9 and Coggerlo that several time series
from the econoﬁic sector exhibit behavior typical of time series represented by
(7) with d > o. |

Given that a time series, either stationary or non-stationary, can be
rebresented by (7) for some set of parameters 15 By +ees ap, bl, bz, cees bq, p, d,
and q, it is necessary to estimate these parameters. Specifically, a sequence of
realizations X(1), ..., X(N) of this time series must be utilized to estimate
p, d, q, aps gy cees ap, bl, b2, cees bq before forecasts of future realizations
X(M1), X(N+2), ... of this time series can be calculated. The logical approach
to take at this point might therefore be to discuss estimation procedures before
examining forecasting procedures. It is convenient for the purposes of the auto-
mobile study, however, to reverse our approach and discuss forecasting procedures
first. This approach is taken in light of the evolutionary manner in which
economic simulation models are usually constructed. A modular approach is usually
taken in constructing such models, beginning with a relatively simple model and
then adding sophistication to the model as familiarity with its workings is
attained. This incremental or modular approach is ideally suited to the incor-
poration of a time series analysis program within the simulation model, since the
problems of forecasting and estimation can be totally segregated. Initially, a
simulation model will have a forecasting segment in which the time series model (7)
is specified a priori. As the simulation model attains a higﬁer level of sophisti-
cation, the appropriate model will no longer be specified a priori but on the

basis of information flowing from a separate estimation segment within the simulation

9Harrison, P. J. "Exponential Smoothing and Short Term Sales Forecasting,"
Management Science, 13 (1967), 821-842.

0Cogger, K. 0. "Statistical Foundations of General Order Exponential
Smoothing with Implications for Applied Time Series Analysis'" Unpublished Ph.D.
dissertation, The University of Michigan, to appear.
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model. Forecasting procedures will therefore be the subject of Section III and

estimation procedures will be developed in Section IV.

III. Forecasting

Initially, the auto study simulation model will utilize a time series
forecasting technique based upon a single\model from (7). Regardless of the time
series under consideration, the parameters p, d, q, aps 8gy +ees ap, bl’ coes bq
will remain fixed. For this particular time series representation, the expected
squared forecast error will be a minimum only when the time series under considera-
tion possesses the chosen representation. It is important, then, to choose a
representation which will achieve reasonably accurate forecasts regardless of
the actual time series representation. It has been shown by Harrisonll and

Cogger12 that model (7) when p =0, d = q =1, b, = -8, |B[<l is one such repre-

1
sentation that achieves this type of "robustness" under misspecification.
with these parameter values, model (7) may be written in the form

(1-B)X(t) = (1-8B)e(t), | ,
which can be written as
(8) X(t) - X(t-1) = e(t) - Be(t-1)
afte; removing the backward shift operator B. The basic problem is to find a
forecast, given by it(z), of some future value X(t+&) given only the realizations
X(t), X(t-1), ... such that the mean squared forecast error given by

EIX(t+2)- X, (1)1 |
is a minimum for any % > o. While this problem seems formidable, it is actually

quite easy to solve given (8). From (8), which is an ordinary difference equation,

the time series {X(t),teT} has an alternative representation of the form

(9) X(t) =M+ e(t) + (1-B) ) e(t-j),
j=1

11Harrison, P. J., Op. cit.

12Cogger, K. 0., Op. cit.



-11-
where M is a constant. Representation (9) is simply the sum of the solution
(given by M) of the homogeneous difference equation (X(t)-X(t-1)=0) and the
particular solution of the non-homogeneous difference equation (X(t)-X(t-1) =
e(t)-Be(t-1)). The forecast of X(t+2) which achieves,minimum mean squared error
is knowﬁ to be simply the conditional expectation of X(t+£) given X(t), X(t-1), ...
which is given by

(10) X, (1) = E{X(tH) [X(6) X (t-1), .00} = M + (1-8) ] e(t-3).

j=o

For a complete discussion of this well known property of conditional expectations,

the reader is referred to Doob13 for an advanced discussion and Malinvaud14 for

a less theoretical discussion. Frdm (9) and (10), it is seen that

n -1
(11) X(t+r) - Xt(z) =(;(t+£) + (1-B) Z e(t+e-3) 3 2 2 2
. =1
[e(t+L) ; 4= 1.
The mean squared forecast error for any & > 1 is given by

(12) EX(H)X (017 = 2 @+ -8 3131,

since the time series {e(t),teT} has been assumed to be uncorrelated with mean

Zero.

The form of the f-step ahead forecast given by (10) is not utilized

in practice. Instead, such a forecast is usually given in terms of X(t), X(t-1), ...

since these are the observable random variables. To calculate this more useful
form of a forecast, we start with the original representation (8) in the form
(13) X(t) = X(t-1) + e(t) - Be(t-1).

The observation to be forecast can then be expressed as

(14)  X(t+2) = X(t+2-1) + e(t+p) - Be(t+i-1) ; & > 1.

The forecast of X(t+4) made at time t, which we have denoted by it(%), ig now

found by taking conditional expectations at time t on both sides of (14) using

the relations

Bpoob, J. 1. Op. cit.

14Malinvau.d, E. Statistical Methods of FEconometrics. Chicago; Rand
McNally and Co., 1966.
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E{X(+0) |X(t),X(t-1),...} = X (&) ; &1

E{X (t+2-1) |X(t),X(t-1),...}

Xt(z—l) ; 132

E{X(t+2-1) [X(t),X(t-1),...} = X(t) ; =1
(15) .

E{e (t+0) |X(t),X(t-1),...} = 0 ; 231

E{e (t+2-1) | X(t) ,X(t-1),...} = 0 ; 232

E{e (t+2-1) |X(£) ,X(t-1),...} = e(t) 3 #=1

Whence we obtain the forecast Xt(z) entirely in terms of previous forecasts and

A

of known values of the series, since from (11) it is seen that e(t) = X(t) - Xt—l(l)'
Specifically, (14) and (15) reveal that

. X, = X(0) = BIXEOK,_ (D] = A-BX(E) + 8K 1) 3 2=1
16) . N :
X, (2) = X _(a-1) s 0»2.

The form of (16) reveals several important properties of time series
forecasts based upon representation (8). First, the forecasting procedure is
(computationaily) extremely efficient. It is recursive in nature, allowing fore-
casts to be quickly revised in the light of new observations on the time series
of interest. A new forecast is obtained simply as a weighted average (depending
on the value of B) of the most recent observation and the most recent one step
ahead forecast. Second, the forecast is constant for all future'time periods.
This second property is a necessary consequence of representation (8) since the
underlying time series is assumed to have a constant expected value M. Third,
the forecast implicitly assumes that an infinite number of past realizations of
the time series are available for forecasting purposes. This property follows
from the fact that the conditional expectations in (15) are based upon X(t),
X(t-1),... ad inf.

This last property deserves special attention, since in the automobile
study's simulation model any time series will be observed for only a finite number
of time periods. To apply the forecasting procedure (16), suppose that an initial

forecast is used to determine a forecast at time t = 1. Then
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X, @) = x(1) (1-B) + BX (1)

i

A~

where Xo(l) is determined in some arbitrary manner. By recursively updating the

forecast as new observations become available, (16) finally reveals that

N N-1 N
an x @ = a-p ] xe-) + % @)

j=o
is the forecast of X(N+1) based on the available realizations X(1), X(2), ...,
X(N) and on the initial forecast Xo(l). As the number, N, of observations in-

creases, the effect of the arbitrarily specified value for Xo(l) becomes negligible

(since |B|<l, lim SN=0). The effect of Xo(l) is significant if N is small, however,
N0 v ~
and it is important to eliminate its effect upon XN(l) in this case.15 Taking

expected values on both sides of (17), it is seen that

BIX (D) = (1-8) a-" + 8% (1)
)

where M is the expected value of X(N-j) for all j20. But then
E XN(];)—BNXO(I)} =M

1-8%

Therefore for any value of N and any initial forecast Xo(l), we may correct the

forecast ﬁN(l) in such a way that it will be an unbiased estimate of M for the
time series {X(t),teT}. Specifically, it is recommended that ﬁo(l) be equated to
zero in the forecasting procedure described by (16) and that ﬁt(z) be adjusted by
a factor of (1—Bt) for all t>1. For large values of t, this correction will not
be needed but for small values of t its use will insure unbiasedness in the re-~
sulting forecast.

To summarize the institution of this forecasting procedure in the auto-
mobile simulation model, we now recall the pertinent steps that must be carried
out. It is assumed that N realizations of a time series have been observed

and denoted X(1), X(2), ..., X(N). It is further assumed that a forecast is

required for any futurc realtizatlon X(N+L) where 8-0.  We have denoted this

15Wade, R. C. "A Technique for Initializing Exponential Smoothing
Forecasts," Management Science, 13 (1967), 601-2.
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forecast by XN(Z). Recursively, the following steps are carried out.

Step 1: Xl(l)

[t}

(1-g)X(1)

Step 2: X (1) = (1-B)X() + BX_ (1) ; t =2, 3, .0,

P

XN(l) s 421

1-8%

i

Step 3: XN(R)

Step 3, of course, is not necessary for large N but should always be made for
the small sample sizes (Ng20) extant in the automobile study.

Finally, it is necessary to choose a value for the parameter B. Since
we wish the forecasts obtained by this forecasting procedure to be as accurate
as possible (in the sense of minimizing the-ﬁean squared forecast error), the
choice of a value for B is important. A value of B=.5 is recommended for several
reasons. First, the above forecasting procedure is based on the model (7) when
(p,d,q) = (0,1,1). If the time series under comsideration is truly represented
by this model with f=.5, the forecast is known to possess minimum mean squared
error. If the true value of B is not .5, this forecast will possess a larger
mean squared error thén is theoretically possible. The increase in mean squared
error will be, however, less than 33-1/3% for any true value of B in the range
0<Bgl, a considerably wide interval. Second, suppose the time series under con-
sideration cannot be represented by model (7) with (p,d,q) = (0,1,1) for any
value of B.  Then our choice of a value for B (given that we still insist upon
.using the above forecasting procedure) should be based on the principle of provid-
ing a reasonable amount of protection against the existence of alternative repre-
sentations for the time series of interest. One commonly assumed time series

model is given by the condition (p,d,q) = (1,0,0) with -1l<a.<0. Such a time

1
series representation is called a first order Markov process and the above fore-

casting procedure will not achieve the minimum mean squared error that is theo-

retically possible. For a value of B=.5, however, the mean squared error of the
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above forecast will be increased over this minimum by less than 307, however.
The above properties of the chosen forecasting procedure are discussed in detail
in Cogger.16 The robustness of this forecasting procedure under misspecification
of the true time series representafion renders it quite valuable when this true
representation is unknown as it will be in the automobile study.

The simple forecasting procedure described in steps 1-3 is called first

order exponential smoothing. It is called "first order" because the expected

value of the underlying time series is constant. The term "exponential" refers
to the geometrically declining weights attached to previous observations in the -
forecast (17). This particular forecasting procedure, of course, is only one of
many that can be derived from the integrated autoregressive moving average repre-
sentation (7). Accordingly, we shall now consider more general time series fore-
casting procedures derived from (7).

The first generalization we wish to discuss is the time series forecast-

ing procedure known as general order exponential smoothing. To motivate our dis-

cussion, it is convenient to reconsider steps 1-3 for first order exponential

smoothing in the form:

Step 1': SEll

[1]
S¢

(1-g)X(1)

(1],
t-1°2

Step 3': X (1) = Slgl]/[l—BN] s 3l

Step 2':

(1-B)X(t) + BS t=2,3, ..., N

This notation is more suitable for the discussion which follows, and we shall al-

[1]
t

X(1), ..., X(t).

ways refer to S as the first order exponentially smoothed value of the data

These steps suggest an immediate generalization, however. Suppose we

define SEP] as the p-th order exponentially smoothed value of the data

16Cogger, K. 0. Op. cit.
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X(1), ..., X(t) given by applying steps 1'-3' not to the original data but to
the (p-1)-st order exponentially smoothed value of the data. More precisely,
let SEP] be defined by

a8 slPl - g”(l-s)x(t) +asl]pe1 g e

2 (1-8) S£P-l] + Bsifi ;P22 5 t31

. 0 ; p2l ; t=o.
To see that this definition can lead to useful results, (18) can be solved recur-

. 17
sively for t =1, 2, ..., N to obtain

[ ] N"'l . -+ _1 -

19) s =-m)P ] o8 [P x(w-3) 5 pel; Wl
j=o p-1 :

(Note that if p=1, (19) reduces to the previously defined first order smoothed

value of the data.) We now assume that the expected value of X(N-j) is a poly-

nomial in j of degree n-1. Hence, this expected value may be expanded in a

Taylor series about the point N in the form

(20) EIX(-3)} = nZi D

where the Aé ], for any fixed value of N, are unknown constants, The important-
question to be answered at this point is whether the exponentially smoothed values
of the data in (19) éan be used to estimate the unknown parameters Aék] for
k=0,1, ..., n-1. The answer to this question is in the affirmative, as shown
in Brown18 for the asymptotic case (N tending in the limit to infinite) and in

Cogger19 for any value of N. To show this, we take expected values on both sides

of (19) and utilize (20) to get

g rown, R. 6., Op. cit.
18

Ibid.

lgCogger, K. 0., Op. cit.
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- — k ] q
ey wslPl - “21{(-1)1‘(1—3)1’ Nzl '8 (;!+P—l).)rAlgk] L sl s

N v AT 1
K=o k:(p-1): j=0 je J

Defining the nxl vector §N in the form

-

I

(22) 8= | sy
[2]

SN

“ [n]
SN

b -

and the nxl vector éN in the form

@ ay- [ ]
3

:[n—l] |

Ay

b -l

and the nxn matrix M(N) with elements in the p~th row and (k+1)-st column given -

by

- (-l)k(l—B)p N jkBj (_‘?‘i"p-l)!

R SR T
pok+l k!(p-1)!: =0 j

(24) M ; l¢psn 5 oskgn-1,

we now rewrite (21) in the matrix.form
(25) E{§N} = M(N)éN ; Nx1.
But then an unbiased estimate of the elements of éN is given by
(26) A =¥, 5 WL,
where M(N)_l is merely the inverse of the matrix M(N). Defining
(27) 2=11

:

in-l/(n—l)!

as an nxl vector, it is clear from (20) that

N-1 k,[k]

E(XQH)} = | FA o g Ay
= k'
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and therefore an unbiased estimate of the mean of the time series at time N+&
is given by

= L"™M(N)~ ; N21.

(28) (1) = 1'Ay s,
Alternatively, (28) describes the %-step ahead forecast of the time series based

on the observations X(1), X(2), ..., X(N). The above forecasting procedure is
called exponential smoothing of order n (or, sometimes, simply general order ex-
ponential smoothing).

We have yet to show that general order exponential smoothing minimizes the
 mean squared forecast error for any time series represented in (7). The time series
representation in (7) for which this property holds is given by setting p=o, d=q=n,
and bj = (?)(qs)j; j=o, 1, ..., n. That is, the forecast given by exponential

smoothing of order n achieves minimum mean squared error for a time series possess-

ing the linear representation

o ,
(29) V() = ) (?)(—B)J e(t-3)

j=o

where the e(t) are uncorrelated with mean zero. A detailed proof of this result
is beyond the scope of this paper but may be found in Cogger.20

Exponential smoothing of order n is perhaps one of the most widely used
forecasting procedures based on (7). Its wide use has been promoted by the ease
with which time series forecasts may be made (cf. (18), (22), (24), (27), and (28)).
The only apparent difficulty with the procedure is the complexity of the matrix
M(N) for large values of n. This problem has been recently resolved.21 A recur-
sive method of evaluati#g this matrix for any set of values for n, N, and B is given

by

2OCogger, K. 0., Op. cit.

21Ibid.
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+N-2

™ - - O

Mp-l,l P22 3 k=o

RO, M /W8] 5 p1 5 Il

The relationships in (30) are easily verified by substitution from (24).
We now consider representation (7) in its completely general form given
by

(31) E a,vd X(t-j) = § b,e(t-j).
j=o j=o 1

For given values of p, d, q, ays vy aP, bl’ ooy bq the representation (31) may

be written alternatively in the form

(32) x(t) = m(x) + Z' Wke(t—k)
k=0

where m(t) is the solution of the homogeneous difference equation given by

33§ a9 29 = o,
j=o 3 -
which are needed in what

follows may be obtained by equating coefficients of Bo=l, B, B2, «+. in the ex~

and where the first few cofficients Wo=l, Wl, WZ’ .

pression

o P
k _ 31 -md i
(34) ) ¥B = § b.B /1= ) a;B l.

k=0 j=o j=o
This follows from (7) by noting that if
o (B) (1-B)X(t) = 6 (8) e(x),
then
8 _(B) K

X(t) = [—-—~9———~——a] e(t) = ) ¥.B.
o, (B) (1-B) k=o

But then from (32), it is seen that

(35)  E{X(£+0) [X(6),X(t-1), ...} = m(et) + ] ¥ e(tsa-k) = ﬁt(z).
k=%
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Combining (32) and (35), the minimum mean squared error of the 2~step ahead

forecast will be given by

(36) E{X(tH) - X (1)} = = v_(0) Z v el
k...

The above results enable us to determine the variance of the 2-step
ahead forecast. The form of the forecast itself is most easily found in a dif-

ferent manner. Accordingly, we rewrite (31) in the form

P d ptd q
GB7) ] a ¥ X(t-§) =X(t) - ) ¢ K= = ] bee-)).
j=o j=1 j=o

This form assumes that p+d:1, an assumption that will be maintained throughout

our discussion. But then

phd
(38) X(t+1) = Z o, X(tH-3) + Z b, e(t+e-3).
j=1 jo 1

We now take expectations, cdnditional on X(t), X(t-1), ..., on both sides of

(38) (recalling (15)) to get

. pH+d
(39) x.(0) = B Z ) x(t+z-3)]x(t) X(t-1), ...} + E{ § bjs(t+2—j)lX(t),X(t—l)...}
J"'l =0 .
where :
p+d -1 pHd
(40) E{ Z 3, X(t+2—3)|... = Z 2, X L) + Z 0. X(tH-]) 5 phdsLs2
j=1 i=
p+d
) 0. X(t+1-1) ; prdae=1
=
pHd ~
L\ ) o X (-1) 3 prd<g;032
J=

and where

q | i
(41) E{ ) bje(t+£—j)|...} = | Z be(the-1) 5 leisq

j=o \j=z

.o sy A>q .

~
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A~

X(t+2-j) - X

Since, froﬁ'(32) and (35), e(t+2-3) -1 (1) for jz&, (39)-(41)

t+4-j

completely determine the minimum mean squared error forecast Xt(k) in terms of

previous observations X(t), X(t-1), ... and of previous forecasts Xt~1 (1),

Xt-2 (1), ... for any values of p, d, and q such that pt+d1.

For the case p+d=o, (31) may be written as

q
(42) X(t) = ) bye(t=1).

J=o
But then

q
(43) X(t+2) = ) bie(eti-).

j=o

Taking conditional expectations on both sides of (43) it is seen that
Vad

. q
(44) X Q) = ( z b.e(t+2-j) 3 lstsq
t Lo
=4
o 3 2>q,

which is the same as the expression in (41)

Hence, equations (38)-(41) and (43)-(44) enable forecasts to be made
for any set of values for p, d, and q. One last point to be considered is the
need to calculate "initial conditions" for the forecast erfors

A

e(t+2-3) = X(t+2-3) - X (1) for jz8& found in (41) and (44). The recommended

t+0-j-1
procedure is to set these equal to zero or, equivalently, equal to their expected
values. For a large number of observations, of course, these "initial conditions"
will have a negligible effect upon the forecast ﬁt(z), and for any value of t21,
the forecast will be an unbiased estimate of X(t+2). If the particular representa-
tion in (7) corresponds to general order exponential smoothing, of course, these

initial conditions may be eliminated in a more rigorous manner, and the necessary

forecasts may be calculated, as before, without the use of equations (38)-(44).

IV. Estimation of Forecasting Parameters

Suppose that N consecutive realizations X(1),X(2),...,X(N) of a time

series {X(t),teT} represented by the model (7) have been observed. In order to
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implement the forecasting procedures described in Section III? appropriate estimates
of the unknown parameters al,az,...,ap,bl,bz,...,bq must be obfained. In addition,
the order (p,d,q) of the process must‘be determined.

Each of the three estimation procedures described in this section is based
on the assuﬁption that (p,d,q) is known. For this given order, each procedure
yields estimates of the unknown parameters as well as a statistical measure of the
goodness-of-fit of the available realizations to the model (7). These estimation
procedures do, however, permit the determination of the proper order (p,d,q) in the
following manner. First, estimation procedures are instituted for a large number
of possible orders of the process. Empirical evidence has suggested that most
economic time series can be modeled reasonably well by one of the following orders:
d=0,1, or 2 and p=q =0, 1, or 2. These nine different orders are therefore
recommended for use in economic simulation models. Second, a statistical measure of
goodness-of-fit is calculated for each of these nine different orders. Finally,
the order (p,d,q) which yields the best fit of the available realizations to the
model (7) is specified as the appropriate order of the process, and the corresponding

estimates of the pa?ameters al’aZ""’ap’bl’bZ""

,bq are then used to carry out
the forecasting procedures of Section III.

Each of the three estimation procedures to be presented are based only
upon realizations of VdX(t) where d, as indicated previously, has been specified.
For notational convenience, we therefore define

Y(t) = VdX(t)

as the d-th backward difference of X(t), and rewrite the model (7) in the form

P q

45) ) a,Y(t-3) = ) bye(e-3).
j=o j=o0
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Estimation Procedure A(q?o)22

The first estimation procedure to be discussed was first derived by Mann
and Wald for gq=o in (45). In this case, (45) may be rewritten in the form
(46) Y(r) = —alY(t—l) - azY(t—Z)—...—apY(t-—p) + e(t).
But (46) is similar in appearance to equations appearing in ordinary multiple
regression theory and it might therefore be suggested that appropriate estimates
of the parameters a, could be obtained by treating (46) as a classical least-squares
regression problem where Y(t) is the depeﬂdent variable and Y(t-1), Y(t-2),...,
Y(t-p) are the independent variables. Estimates of aj obtained in this manner do not
possess the usual statistical properties of least squares estimates, however, since
the random variables Y(t) are not independent.

Mann and Wald, however, showed rigorously for the first time that
asymptotically (large N) the statistical properties of least squares estimates of
aj in (46) are the same as those of least squares regression eétimates in multi-
variate normal systems. Summarizing Mann and Wald's results, we note first that
if N realizations of X(t) are available, then only (N-d) realizations of Y(t) are
available, and these are denoted by Y(1),Y(2),...,Y(N-d). Second, estimates
;l’;Z""’;p of the parameters al,az,...,ap are given by those values which

minimize the sum of squares
N-d

G s= ] [@® +a Y(t—l)+...+apY(t-—p)]2.
t=p+1

Differentiating S with respect to a;,a

ye+e,a_and equating to zero yields the
2 P 4

following matrix formulation of the normal equations:

48) (¥'V)a = 'y,

22Mann, H. B., and Wald, A., "On the Statistical Treatment of Linear
Stochastic Difference Equations,' Econometrica, 11 (1943), 173-220.



where

(Y'y) =

o >
I

m>o.-

| P

TY? (e-1)

JY (£-1)Y (t-2)

1Y (t=1)Y(t-p)

fucon

, and Y'Z =

24—

Y (t-1)Y(t-2)

XYz(t—Z)

.
-
e

)Y (t-2)Y(t-p)

B JY(t)Y(t-1)

- )Y (t)Y(t-2)

- TY(£)¥(t-p)
" -

all summations are from t=p+l to t=N-d.

- JY(t-1)Y(t-p)

ve ZY(t—Z)Y(t—p)

. ZYz(t;p)

, where

After obtaining the estimates a from (48), the estimate of the variance

- of e(t) in (46) is given by

(49) v(o0) =

N-d

t=p+1

[Y(t)+;lY(t—1)+...+QpY(t-p)

N-d 9 A N
= z Y (t)—i'Y'Yi

t=p+1

]2

(N~-d-p)

(N-d-p)

For purposes of testing hypotheses and setting confidence intervals, Mann and Wald

show that the asymptotic covariance matrix of a is given by

(50) Var_é=(Y'Y-1)Y€(0),

and that 'a has a limiting multivariate normal distribution. That is, if the ele-

ment in the i-th row and i-th column of (Y'Y_l) is given by C

A

i1’ then

a, - a,
i i
z=

v (0)Cyy

is asymptotically distributed as a standard normal random variate.
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Estimation Procedure B (p=o)23

The second estimation procedure to be discussed was first derived by Durbin

for the case p=o in (45). In this case, (45) may be rewritten in the form

q
(51) ¥(®) = 3 bye(ey).
. j =‘O

Durbin noted that since (51) describes a moving average process of finite order q,
the time series {Y(t),teT} must also possess an autoregressive representation of
infinite order. If this autoregressive representation were of finite order, say k,
then Estimation Procedure A would be directly applicable; Durbin showed that if
k were taken to be sufficiently large, then this approach could be taken.

Following Durbin, we first approximate the autoregressive representation
of {Y(t),teT} by

k
(52) ] ag¥(t=3) = e(t)

J=0

for large k. Let 8158950 0sdy be the least squares estimates of 81585500058 in
(52) given by a direct application of Estimation Procedure A for p=k (cf. (48)).
Durbin then showed that these estimates could be used to obtain consistent and
asymptotically normal estimates of'bl,bz,...,bq in the following mannef. Let the
qxq matrix A be defined by

23Durbin, J., "Efficient Estimation of Parameters in Moving Average Models,"
Biometrika, 46 (1959), 306-316.
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~ 1
k . k-1 . . k-g+1 . .

A= E a§ z a aj+l g aja'+q—l
j=o j=o j= .
k-1, . k . k-g+2 . .,

a.a, ., Z a% ceo § a8, 9
j=o J 1] j=o 4 i=o J3rq
k-g+l . . k-qt+2 . . koL

§ a,a, § a.,a, ces Z a%
j=o 3 IFul heo J Jta-2 j=o 1
~ r:\ T k_'.]. A A ~
= * = - i
Let b bl and a .z ajaj+1 Then b is
Jj=o
b2 ng A a
- a.a,
' j=o i j+2
R : k-q . .
b - ) a.a,
s ‘ jmo 4 J+%d

given as the solution to the equation

(53) Ab = a*

and the estimates b possess the statistical properties previously statea.
The variance of“these estimators is not as easily obtained as in Procedure
A. However, when q<2 (as will be the case according to our recommendations made at
the beginning of this section), these variances are easily found. Durbin showed
that if g=1, the variance of ﬁl is given by
var gl = (l—bi)/(N—d—k)

If q=2, the variance of bl 9£‘b2‘is given by

~

- b e (1-02Y / (Ned
var bl = var b2 = (1 bz)/(N d-k).
Hypothesis tests and confidence intervals may therefore be constructed by noting
that

z = /N-d-k (bl—bl)//i_b%

is a standard normal random variable when g=1 and that
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Zj = VN~-d-k (bj‘bj)/vl_b% R j:]_ or 2
is a standard normal random variable when g=2. Finally, since this estimation

procedure utilizes Procedure A explicitly, an estimate of the variance of e(t) may

be obtained from (49) after setting p=k.

Estimation Procedure C (Any value for p, Any value for q)24

This last estimation procedure_to‘be discussed was first derived by
Durbin for general values of p and q in (45). The procedure is iterative in nature,
and each iteration involves a number of steps.

The first steE suggested by Durbin is to approximate the representation
for {Y(t),tel} in (45) by an autoregressive representation

K :
(54) ) alY(t-j) = e(t)
j=o

for large k, and to apply Procedure A to obtain estimates ;l’;2’°"’;k of the

parameters in (54).

The second step taken by Durbin is to calculate
k .
(55) e(t) = ) a'Y(t-j),
j=o J

which is simply the residual error from the regression of Procedure A. Estimates
al,az,...,ap, bl’bZ""’bq of the unknown parameters in (45) are then obtained by
calculating those values which minimize the sum of squares
N-d 5
(56) S = ) [Y(t)+a Y (t-1)+.. .4a_Y(t-p)-b e(t-1)-...-b e(t-q)]
t=p+k+1 P q

(The limits on the summation are easily obtained by noting which terms in the

summand are available.) The appropriate estimates are given by solving

24Durbin, J., "The Fitting of Time Series Models," Revue Inst. Int. de Stat.,
28 (1960), 233-243.




M : M A
(57) ﬁ;;_;_ﬁzz al _
21 : 22 b
T¥? (t-1)
JYe-1)v(e-2)
M, =
JY (t-1)¥ (t-p)
L
'Ze(t—l)Y(t—l)
~Je(t-1)Y(t-2)
Mip =
~Ye(t-1)Y(t-p)
Myy = Mpy,
Te? (£-1)
Je(t-1)e(t-2)
Myy =
Ze(t-l)e(t—q)
X = -le(t)Y(t—l)ﬂ

~JY(t)Y(t-2)

RAOMES]

Y (£-2)Y(t-1)

T¥? (t-2)

7Y (t-2)Y(t-p)

Ve (t-2)¥(t-1)

-Je(t-2)¥(t-2)

-Ye(t-2)Y(t-p)

Ye(t-2)e(t-1)

Je? (t-2)

Je(t-2)e(t-q)

i

e

ZY(t-p)Y(t—l)

)Y (t-p) Y(t-2)

ZYz(t-p)
~Ye(t-q)Y(t-1)

~Ye (t-q)Y(t-2)

~Je(t-q)¥(t-p)

-y

Je(t-q)e(t-1)

Je(t-q)e(t-2)

Zez(t-q)

YY(t)e(t-1) ,

VY (t)e(t-2)

- J¥(t)e(t-q)

e




a= 1 , and b = bl , where all summations
2 b2
a n
b
| P K1

are from t = pt+k+l to N;d.
The third step suggested by Durbin is the following. Suppose that the
true valﬁés of al,az',...,ap are known in (45). Let
Z(t) = Y(t) + alY(t—l)+...+apY(t—p)
to obtain
(58) Z(t) = a(t)+ble(t—l)'+ bzs(t—2)+...+bq€(t—q)
for t=p+l, p+2,...,N-d. Then Procedure B (p=o0) can be directly applied to obtain

~ A

estimates bl’bZ""’bq by simply letting Y(t) = Z(t) in the indicated procedure.

The fourth step suggested by Durbin is the following. Suppose that the

true values of bl’bz""’bq are known in (45). Utilizing the backward shift

operator B, (45) may be written in the form

59§ asv = ) b8 e
j=o 1 j=o

But then

]

. e(t) = g ajW(t-j)

(60) E a, B (t)
j=o J i j:o

when we define

(61) wW(t) = J y.By(t)
j=o
such that

6 ] v -1 baiL.
j=o j=o 7
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Approximating (61) and (62) for large k, we write
k
(63) W(t) = ) v.Y(t-3)
PPN
j=o
and
k . : .
64) [ ] v,B11 § by -1
j:o J j=o J
Knowing the valles 6f bj’ the values of Yj may easily be found by equating co-
efficients of like powers of B in (64). For the values of q that are of concern,

the following results are easily obtained.

a=l: vy = (-b))7s g0,

q=2: y0=l; y1=-bl; Yj='ble—1*b2Yj—2 for j>2.
After making the indicated transformation (63) for large k, the parameters 815 8gseees

ap may be estimated by a direct application of Procedure A, substituting W(t) for

Y(t) in the normal equations (48). Thus, knowing bl’bZ""’bq’ we obtain estimates

. 38,5000 49a o
1°%92? ’P

The above steps are related to each other in the following manner. First,

preliminary (and usdally quite accurate) estimates of al,az,...,ap, bl’bz""’bq

are obtained by carrying out the first two steps described above. Given the
resultant estimates ;l’;Z”"’;p’ the third step is carried out under the assumption
that these estimates are equal to the actual values al,az,...,ap. This third step,
of course, will yield new estimates of the unknown parameters bl’b2"'°’bq' Given
these latter estimates, the fourth‘step is then carried out under the assumption
that these estimates are equal to the actual values bl’bZ""’bq' This fourth
step, of course, will yield new estimates of the unknown parameters 81585500058 .

p

This sequence of estimation procedures constitutes the first iteration. Additional

iterations are then carried out beginning with the third step.

This estimation procedure clearly requires the establishment of a non-
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arbitrary rule which can be used to terminate the iterative process above. Durbin
has indicated that the preliminary estimates obtained with steps one and two above
are usually quite good, thereby reducing the number of iteratibns that might be
required if poor "starting values" were utilized. Accordingly, it is recommended
that an upper limit of 5 iterations (including the first pass through the indicated
four steps) be established to reduce computational effort, Further, it is recomménded
that each time the fourth step is carried out, the estimate of the variance of
e(t) given in (49) be calculated. The iterative procedure should be terminated
whenever ;E(o) changes by less than 107 from the previous iteration. This additional
termination condition should further reduce the expected number of iterations
without adversely affecting any forecasts that are subsequently made.

Finally, the only remaining ambiguities are the number of lags (k) to be
taken in some of the steps above where k was simply taken to be large, and the
statistical measure of goodness of fit that will be used to determine the proper
order of the process. It has been shown in recent Monte .Carlo studies that when
' both the sample size (N-d-p) and the number of lags (p) are assumed to be large, a
reasonable rule of thumb is to take N>50 and p to be approximately N/lO.25 When
these conditions cannot be satisfied, the only recourse is to rely upon the proven
robustness of time series forecasts derived from the models discussed in this
paper. The statistical measure of goodness-of-fit that should be used in deciding
upon the order (p,d,q) of the process is given by the estimate of the variance
of the time series {e(t),teT} in (49). This measure is a logical one to utilize
in the context of time series forecasting, since the variance of a one-step ahead
forecast will be equal to the variance of the time series {e(t),teT}. We would

prefer to choose, as a model of the time series of interest, that particular model

25Cogger, K. 0., op. cit.
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(and order) which minimizes the residual variance given by (49). Moreover, this
measure of goodness-of-fit can be shown to be extremely sensitive to misspecification
of the correct value of d. It is less sensitive to misspecification of p and q but,
fortunately, it can be shown that this latter type of misspecification does not

usually entail very large increases in the variance of a forecast.

26Ibid.
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