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INTRODUCTION

The basic tool of the theory of linear vibrations was forged by
Daniel Bernoulli in 1753, when he enunciated the principle of resolution
of vibrations into independent modes. The general theory of vibration of
ar undamped linear dynamic system with a finite number of degrees of free-
dom was developed by Lagrange in 1762-1765. The work of these two great
mathematicians has served as a basis for most of the developments in the
theory of vibrations over the past two centuries. Today, the formal solu-
tion of the problem of linear vibrations, both damped and undamped, is
complete and has been extended to systems with infintely many degrees
of freedom,

The theory of vibrations of nonlinear systems has not fared as
well as its linear counterpart. Bernoulli's principle of resolution of
vibrations into independent modes, which plays such an important role in
linear theory, is inapplicable to nonlinear systems. Exact solutions
have been obtained only for a few special cases of single degree of freedom
systems, For steady-state forced vibrations of single degree of freedom
systems with nonlinear damping, methods have been devised for finding
approximately equivalent linear systemse<l) For vibrations due to tran-
sient forces 1t may sometimes be possible to approximate the system by a
linear system over a limited range, or by one of the nonlinear systems
for which the solution is knowr., If strong nonlinearities are present,

this approach is apt to be unsatisfactory; in such cases, for single

degree of freedom systems, the solution can often be obtained by the



use of an electronic analog computer, Alternatively, numerical methods can
be employed. For a nonlinear system having many degrees of freedom, the
complex circuitry required for the analog computer becomes prokibitive, and
numerical methods provide the only suitable approach., A high-speed digital
computer is essential.

This paper presents two numerical methods for solving the differ-
ential equations of motion for nonlinear systems., The differential equa-
tions of motion are formulated for a lumped mass multi-story elasto-plastic
framework subjected to dynamic lateral forces, taking into account elasto-
plastic deformation and viscous damping. Uniqueness of the solution for

an elasto-plastic frame is proved,



THE DIFFERENTTAL EQUATIONS OF MOTION
FOR DYNAMIC SYSTEMS

To write the differential equations of motion for a damped
linear dynamic system, consider a system of n discrete bodies, each of
which is connected to every other body and to the base by a system of
linear springs and viscous dampers., Such a system, of order two, is
shown symbolically in Figure 1. Assume that the springs and dampers
are weightless, and that all motion takes place in the x-direction, which
is the direction in which the springs and dampers act. Let the motion of
the base in the x~direction be any prescribed function of time; and, further,
let each body be acted upon by an external force in the x-direction, each
force being any prescribed function of time. One then has a linear dynamic

system of n degrees of freedom.

Let
m; = mass of the 1th body,
X3 = displacement of the 1th body, relative to a
coordinate system fixed in the base,
y(t) = displacement of the base, relative to a
"fixed" frame of reference,
F.(t) = external force applied to the 1*0 pody,

and let dots denote differentiation with respect to time.

Define the stiffness coefficient kij as the force exerted on the
ith body by the springs when the configuration of the system is Xy = 1 unit
length; X =0, k # J; and ﬁk = (0 for all k., Also, define the damping co-

efficient cij as the force exerted on the ith body by the dampers when the
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X1 and Xo are displacements relative to base

y is displacement of base

Figure 1. Damped Linear Dynamic System.
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configuration of the system is ij = 1 unit velocity; %, =0, k # Jj; and
%, =0 for all k.

Because all the bodies are interconnected by the spring and damper
system, a displacement or velocity in any one body will cause spring or

damper forces to be exerted on all bodies in the system. For any configura-

tion, the force exerted on the ith body by the spring and damper system 1is

n

n RES
Z CiJ-Xj + L liXJ
J=L J=1

The Newtonian equation of motion for the iJGh body is then

n n
ng (% + ) +Zcijij . \L ky x5 = Fy (8) (1)
j=1 j=1
Thus, for the entire system,
n b3
° 0 . \ - o -
n ¥ -»-Z gty ) Fagrg =B ) (=120 ()
j=1 3=1
Let
£,(¢) = Fyi(t) - myy(t) (i =1,2,..n) (3)
Equations (2) then become
R I
mX, + \L cijfgj + Z Ky g%y = £, (t) (i =1,2,..n) (&)
J".:l j::l

which are the general differential equations of motion for a damped linear

dynamic system with n degrees of freedom.

e

In Equation (4) the texm12d ciigj will be called the damping
n J

force, and the term kijxj will ﬂéicalled the restoring force. The sum

of the damping and %gstoring forces will be called the resistance force R;.
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In a general nonlinear system the resistance force R; for each
mass may be a nonlinear function of time and of the velocities and displace-
ments of all masses. The equations of motion for a nonlinear system are then

mixy + Ry (%1, Xp,.ee X, X, Xp,eee X, 8) = £3(t) (1 =1,2,..n) (5)

NUMERICAL SOLUTION OF THE EQUATIONS OF MOTION
There are many methods of approximating the solution to Equations
(5) numerically. While these differ in detail, they all employ the same
basic idea. Let h be a small finite increment of time. One takes the known
discrete values of xi, x4, and X3 (i =1,2,..n) at times t, t=h, t-2h, etc.,
as required by the particular numerical process, and the values of f;, which

o

are explicit functions of time, and projects these to evaluate X5, X and

i
ga at time t+h. In this manner, one advances step by step through the solu-
tion.

No one method of numerical integration can be claimed to be the

best for all problems. The following two methods have exhibited excellent

behavior in machine computation of structural response to dynamic loads.

MIINE PREDICTOR-CORRECTOR METHOD
The Milne Predictor-Corrector method(e) is well suited to problems
in which (a) damping forces are absent or negligible, and therefore the re-
sistance functions R; do not involve the velocities %; and (b) the driving
forces fi can be approximated by smooth curves through sets of discrete
points equally spaced in time. Blast problems, for example, often meet

these requirements. To employ the Milne Predictor-Corrector method one
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must know the discrete values of x; and £i at the ends of four consecutive
time intervals of equal length h. The steps of the method are:

Predictor

xi*(t+h) = x4 (t) + x;(£-20) - x,(t-3n) + %E[5§i(t) + 2%, (t-n) + 5§i(t-2h)] (6)
Corrector

2
h
x; (t+h) = 2x4(t) - x4 (t=h) + __,[

e X, % (t+n) + lo§i(t) + Qi(t-h)} . (7)

i
By recursive use of these two formulas one advances step by step through the
solution.

The Milne Predictor-Corrector process does not require calculation

of velocities, Also, being noniterative, it is not accompanied by a conver=

17 .6 vi
gence problem. The dominant error term in the predictor is + ?E% h X,
6 vi
while in the corrector the dominant error term is - 250 h X4 The trunca-

1
tion error committed in each step is therefore approximately 18 ]x? - X5

One can easily program the computer to accumulate a set of error functions

€ = ‘jljg Z ’x: - X4 (8)
€
and halt when any e; exceeds a present maximum. The error functions are not
absolute error bounds, for they consider only the dominant term in the trun-
cation error in each step. Nevertheless, they are worthwhile checks to in=-
corporate in the program.

Because each step of the Milne Predictor-Corrector process uses
jinformation from three preceding time steps, some "starter” method must be
employed to calculate the initial steps. Also, the length of the time
interval h must remain constant. Any time after the sixth cycle the time
interval can be doubled in an obvious manner, However, reducing the time
interval would require interpolating to find the needed values of displace=

ment at intermediate points of the preceding intervals.



RUNGE~KUTTA METHOD

For problems which involve very irregular driving forces, such
as the earthquake response problem, it is advantageous to use a single-
step method-~that is, one which projects to time t+h from the values of
X5 ii, and fi at time t, and the functions f;, without using the values
of the variables at earlier times., This is advantageous first, because
it permits changing the time interval h at any step; and second, because
it requires no special starting procedure for the initial steps of the
solution. The Runge-Kutta procedure(B) is a single=-step method well
suited to high-speed computers.

For the equations

Vi = F1(y1,v0s .. o¥pn,t) (i =1,2,..n) (9)

the formulas for the Runge-Kutta third order procedure are

KiO = h&i(yl)y2;°°°yh)t)

ki1 7 h;‘:fi(yl + PK1gs Yo + PRops oo edp + Pty t + ph) (lO)

Kip = hyi(yi + [q-r] Ko * Thypseno¥py + [q=r] koo + TRy t + gh)
and

yi(t+h) = yi(t) + ﬂKiO + mnil + nnig (ll)

The relations governing the constants 4, m, n, p, ¢, and r are
derived by expanding both sides of Equation (11) in power series in h,
and equating coefficients of the powers up through h5. The relations are
L+m+n =1

1/2

il

mp + ng

mp2 + nq2 =1/3

npr = 1/6 ,
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to which there are infinitely many solutions. One of the more useful

solutions 1is

a

r

= 1/b

= 0

= 3/4

= 1/3 (13)
= 2/3

2/3

This makes m = (g-r) = O and thus reduces the number of arithmetic opera-

tions required.

In this solution, £ = p = (g-r),

(&)

A second solution, due to Conte and Reeves,' ' is
4 = .62653829327
m = ,85614352807
n = =-,48268182134 (1k4)
p = .62653829327
q = .075L42588774
r = -,5511124055%

ment for the computer,

To adapt Equations (5)

them in the form

The solution is

1

which leads to a reduced storage require-

to the Runge-Kutta process, one can write

——~[fi(t) - Ry (%1, Xp,..Xp, 27, Zoye-o2y, t)] (15)

then straightforward.
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The numerical methods above are applicable to any system, subject
only to the restrictions that the number of degrees of freedom must be
finite and the resistance functions Ri must be single-valued and piece-

wise continuous.,

THE RESISTANCE FORCES FOR AN ELASTO-~PLASTIC BENT

The specific problem considered in the remainder of this paper is
the response of a multi-story bent to lateral dynamic forces. The bent is
a rectangular plane framework of elasto-plastic members, loaded by lateral
dynamic forces applied at the joints and in the plane of the bent. Connec=-
tions may be either pinned or fully restrained. The mass of the structure
is assumed to be concentrated at the joints. Damping is assumed to be vise=
cous., Deformations due to axial forces and shear forces in the members are
neglected, and the effect of axial forces upon the stiffnesses and plastic
hinge moments of the members is neglected. These assumptions yield a dynamic
system having degrees of freedom equal to the number of stories in the bent.
The principles employed can be extended to more general problems, but such
extension is not considered herein.

Consistent with the assumption of viscous damping, the resistance
functions Ry are separable into damping forces D;, which are linear functions
of the velocities, and restoring forces Q. As in Equations (4), the damping

forces are

n
_\ .
Di = LJ CinJ- ° (16)
J=1
th

The coefficient i3 is the damping force that would exist at the i floor
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if the structure were passing through the equilibrium configuration with
unit velocity at the j-th floor and zero velocity at all other floors.
The restoring forces for an elastic frame can be expressed in

terms of a matrix of stiffness coefficients k such that

n

Pa—

5

just as in Equation (4). The forces Q; (i = 1,2,..n) are the forces nec-
essary to hold the frame in static equilibrium in the configuration defined
by the lateral deflections X5 (j =1,2,..n). The j=th column of the matrix
k represents the set of static lateral forces that would be required to
hold the frame in equilibrium with unit lateral deflection at the J-th
floor and zero lateral deflection at all other floors. A conventional
static analysis is sufficient to evaluate the stiffness matrix., The effect
of eccentricity of dead load (the "overturning" effect) can be taken into
account in evaluating the matrix if desired.

Let the subscripts k and ¢ denote locations in the frame, such
that each value of the subscript denotes the end of a specific structural
member at a specific joint; and let M, be the moment at location k, con-
sidered positive when it tends to rotate the end of the member clockwise,
Then the end moments in the members of an elastic frame can be expressed

in terms of a matrix of influence coefficients p such that

n

o - Z AR (18)

J=1
The j-th column of the matrix pu i1s the set of end moments that would exist

in the members if the frame had unit lateral deflection at the j=th floor
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and zero lateral deflection at all other floors. The matrix pu can be
evaluated by conventional static analysis.

IT the lateral deflections become sufficiently large, the elastic
1limit may be exceeded at one or more locations in the frame., This occurr-
ence will, of course, affect the restoring forces and moments.

For this paper it is assumed that the connections are either
pinned or fully restrained, and that all members in the frame, columns
and girders alike, have ideal elasto-plastic moment=-rotation characteristics,
The typical moment-rotation curve follows a linear elastic branch until the
moment reaches the plastic hinge moment. Upon further deformation, the
moment remains constant and a plastic hinge forms, meking a "kink" in the
member, Upon reversal of strain after reaching plasticity, the moment-
rotation curve follows a path parallel to the original elastic branch., It
remains on the second elastic branch until the plastic hinge moment, either
positive or negative, is reached, and then follows a plastic branch as before.
Extreme reversals cause the moment-rotation curve to follow a hysteresis loop.
This idealized behavior is illustrated in Figure 2,

As soon as plasticity is reached at any location,,the frame behaves
Just as though the member were hinged at that location, with a constant
moment applied to the hinge. This condition prevails until the next hinge
forms or until a decrease in strain occurs at an existing plastic hinge
location, causing the hinge to disappear.

Cohern, Levy and Smollen developed a procedure for adapting the
method of normal modes to an elasto-plastic frame with infinitely rigid

(5)

girders, and Schenker indicated a method of extending this to include
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Figure 2. Ideslized Moment - Rotation Diagram
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the frame with flexible girdersa(6) In both procedures, an elastic solution
is carried out by the method of normal modes to the point where plasticity
is reached at some location. The frame is then modified by inserting a
real hinge at the plastic hinge location, the new normal modes and frequen=
cles are computed, and the solution is continued as a superposition of the
conditions at the instant of transition and the changes found by solving
the modified frame. Each time a new hinge forms or an old one dlsappears,
the frame is modified accordingly. In this way a continuous solution can
be found.

For a step by step numerical solution, an analogous and somewhat
simpler procedure can be devised. The conditions at the end of a time step
can be found as a superposition of the conditions at the beginning of the
step and the changes during the step. To find the changes during the time
step, one first computes the "elastic increments"; that is, the changes
which would be caused by the motion during the time sﬁep if plastic hinge
rotations did not occur. The resulting moments may exceed the plastic
hinge moments at one or more locations in the frame, To remedy this,
"corrector" solutions are superimposed in which the frame has hinges at
these locations, and these hinges are rotated in such a way that the total
moments, obtained from superposition of the elastic and corrector solutions,
nowhere exceed the plastic hinge moments, The superposition of elastic and
corrector solutions is illustrated in Figure 3.

The effects of plastic hinge rotations upon the forces at the
floors and the bending moments in the frame members can be expressed in
terms of two matrices of influence coefficients b and v, evaluated as

described below.



lastic

\
i

Corrector

e

Elasto-Plastic

Figure 3. Elasto-Plastic Solution by Superposition.
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Let ?y be the plastic hinge rotation at location 4, taken as
positive when it corresponds to clockwise rotation of the end of the member,
(The hinge rotation in Figure 3 is positive,) Take the bent in its initial
(unstrained) position, insert a hinge at location 4, and rotate the hinge
through an angle ?, = 1, with zero lateral deflection at all joints. Evalu=
ate the lateral forces at all floors and the end moments for the members in
the frame, The lateral force at the i-th floor is the influence coefficilent
biﬂ’ and the moment at location k is the influence coefficient vkzo Both
matrices b and v can be evaluated by conventional static analysis. It will
be seen that only those locations at which plastic hinges form are signifi-
cant to the dynamic response,

If the lateral deflections x and the plastic hinge rotations ¢

were known for some instant of time, one could evaluate the restoring forces

and moments as

Q = Z ky 5% +Z VA (19)

and

My = Z P 3% +Z V¥ (20)
J Y/
The deflections x can be found by integrating the equations of

motion, but one must also find the plastic hinge rotations which satisfy
all the constraints of the elasto-plastic system, An iterative method
of solution is developed below.

Consider the time rates of change of the forces Q;, the moments
Mk, and the plastic hinge rotations Py o Let the plastic hinge moment at

location k be Pko The elasto=-plastic constraints are:
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1. The moment M cannot exceed the plastic hinge moment
P in magnitude.
2. If a positive plastic hinge exists, the moment must
be either constant or decreasing. If the moment 1is
constant, the hinge may rotate in a direction con-
sistent with the moment. If the moment is decreas-
ing, the hinge cannot rotate.
3., Equivalent conditions exist for a negative plastic
hinge.
4, If the moment is less than the plastic hinge moment
in magnitude, the hinge cannot rotate.
These conditions may be expressed mathematically as the following set of
constraints:
l. = Pk-s Mk < Pk
2. If M =P, then M <0, ¢ <0, and M ¢

) . o . (21)
3. If My =-P, then M_ >0, ¢ >0, and M, : N

il
o

Ii
O

L, If mPk < Mk < Pk’ then P =0

Differentiating Equation (20), one gets

J Y/
The following uniqueness theorem can be established: Given any
rigid=-jointed rectangular plane framework of ideal elasto~plastic flexural
members, and given any x's whatever, and any M's not exceeding the plastic

hinge moments¥ there exists one and only one set of M's and é's which satis=-

fies Equation (22) and Constraints (21). The proof follows.,

¥ The case in which all members at a joint become hinges simultaneously is
excluded.
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First, observe that if, for one or more values of k, =P, <M, < Pk,
then ék = 0 and there is no constraint on ﬁko Thus the solution for @k is

unique, it does not affect other locations, and the effect of conditions at

e -

other locations upon M, is immaterial., Hence it is sufficient to consider

only those locations for which ]Mk[ =P,

Define
Ve = -(Sgn M )M,
g, = (Sen Mk)“kgxg
= (Sgn M )(Sgn M ) v (23)

frg T ERE kg
z, = =-(Sgn Mz)wﬁ .

Equation (22) then can be written
Z S ’Z %y T %, (24)
Y y/

where Skz is the Kronecker delta,
SK,Z = l’, k = E;
8, = 0,k [

Constraints (21) become
Z,VKZ 0,
7). > 0, (25)
Tk = O

The vector a is unrestricted., To establish uniqueness, it must be
shown that the matrix ¢ has properties which guarantee that, corresponding
to any vector a, there exists one and only one pair of vectors y and z that
satisfies Equation (24) and Constraints (25). This amounts to a partition

problem in n=dimensional Euclidean space.
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Consider the columns of the matrices =B and ¢ as vectors
Nys Mpseoolys Cl’ §2,°°°§no That is, let {qi} = {“aji} and {gi} = {gji} .
Then let 5 Qé,uu,ohlbe a set of vectors such that every oy is either N3
or {;. There are 2" such sets. If the n's and ('s partition the space,
every vector a in the space can be formed by linear combination of one
and only one set of @y's with nonnegative coefficlents.* In other words,

for any given vector a there is one and only one set of o5 's for which

B =) e s} (26)

where every 93 is nonnegative. If this is so, then for those i for which

Q3 = 1Ny, one has y; =gy and z; =0; and for those i for which a5 = {;, one

|

]

has vy = 0 and Z; = Q4. Thus the vectors y and z corresponding to any given
vector a are unique and satisfy the constraints.
To illustrate this concept, consider the two-dimensional case.,

Suppose positive plastic hinges exist at locations 1 and 2, and all other

locations are elastic, Further, suppose that the matrix v is (see example,
page 32),

B 69,700 -16,580
vy -]

o kios /radd
-16,580 105,560} in-kips/radian

In this case, vy, = & ,, and Equation (24) becomes

[ 69,700 ~16,58o} {2} + [mi mi} {5} = {a}

L -16,580 105,560
The columns of the matrices in this equation are plotted as the vectors {7,

€os, M1, and np in Figure L., The four vectors partition the plane so that

¥ If any coefficient is zero, say q, = 0, obviously one can have either
Oy = Ny Or o = . However, in this case yp = zp = O and uniqueness
is preserved.
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Figure 4. Partitioning Vectors.
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any vector {a} in the entire plane can be formed by linear combination of
one and only one set of Q;'s with nonnegative coefficients.

By virtue of a recent theorem due to Samelson, Thrall and Wesler,
necessary and sufficient conditions for the columns of ¢ and -d to partition
the space are that every principal minor of the matrix ¢ be positive.

Consider now the frame with real hinges at one or more locations,
in the equilibrium configuration, This is the frame used for the "corrector”
solutions, above, Let the hinged joints in this frame undergo hinge rota-
tions ¢, with lateral deflection of the floors prevented. The resulting

strain energy in the frame is

B 1) o . (27)
k

The moments are

Hi

=[>

"

WAY)

Combining Equations (27) and (28), one gets

E = % jz E: Vi 9Py (29)
kK 4

Because Equation (29) is a strain energy equation, it is a positive definite
quadratic form. The principal minors of v are therefore positive. Finally,
since & was obtained from v simply by changing the signs of the off-diagonal

elements of certain rows and the corresponding columns (see Equations (23)),

the principal minors of ¢ are positive, It follows from the Samelson-Thrall-
Wesler theorem that a unique solution exists.

The solution can be found by the following iterative scheme. Let
zP be the p-th approximation to_the vector z, with all elements of zP non-

negative, (Zero is a convenient and satisfactory first approximation.)



PP =

For convenience in notation, define

ko ™ Exn+1 T %0 T Zpe1 T O

Starting with k = 1, let

k=1 %%}
p+l _ \ ptl p
T ZJ gkzzﬂ - ZJ gkzzﬁ (30)
£=0 S=K+1
Then,
up+l
+1 +1 k
if ui >0, let zi = , (31)
‘ bk
p+l p+l

and if v, <O, let =z

il
O
°

Repeat this for k =2, k = 3,...k = n. Then let

n
+1 D+1
YE = Z by, - %K (k =1,2,..n). (32)
4=1

The (p+l)st approximation to the vectors y and z is then complete., It sat-
isfies Equation (24) and the constraint Zy > 0, but may fail to satisfy the
other constraints in (25). The process is repeated until the amount by which
the approximation fails to satisfy all the constraints is insignificant.

Once the vector z is determined (and therefore the é's) the rates

of change of the restoring forces are found by the equation

Q = Z kijij + Z by P, . (33)
J )

The foregoing procedure is, in essence, an adaptation of the Gauss=-
Seidel iterative method of solving linear equations. Equation (24) and Con=-

straints (25) reduce finally to a system of linear equations, since at least
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one of ék, yk must be zero for each value of k. The nonzero elements form
a system of n (or fewer) linear equations in the same number of unknowns.
In this application, the Gauss-Seidel procedure is used to set up the equa-
tions as well as to solve them, The procedure lends itself well to machine
computation, and it turns out that convergence is quite rapid.

Using this procedure, at each step one must perform three matrix
multiplications and solve a system of equations equal in number to the number
of plastic hinges. An obvious alternate is moment distribution, whereby at
each step one must solve a set of equations equal in number to twice the
number of members in the structure,

In developing the above procedure, rates of change of deflection,
hinge rotation, and moment have been used. As soon as one introduces finite
time intervals in place of differentials, one loses the claim to uniqueness,
since it cannot be claimed that reversals in strain do not occur within the
time interval. However, by taking the intervals sufficiently small and con-
sidering the strain rates as everywhere monotonic within any one time inter-
val, the exact, unique solution of the differential system can be approxi-
mated to any desired degree of accuracy by the finite difference system.

To set up the finite difference system, let the subscripts s and

th

s+l denote a condition at the end of the s and s+lSt time step; e.g.,

Xi,s+l is the value of the variable Xy at the end of the s+lSt time step.
Also, let
Axg = X g4l - Xi,s
B = Q) 541 " Q4 5 (34)
AMy = Mg ogyg - My g, and
Aqk - Qk,s+l B <pk,s



=2l

Then the finite difference equations are

AQ; = Z by %, o+ Z b, A0, (35)
j )
and
—
AM, = Z by BX 5 Z VA0 (36)

J £
which correspond to Equations (33) and (22).

The elasto-plastic constraints are:

1. If 0<M <P,

then either AM =P, - M . and Apy <O (37)

and
2, If ——Png’SfO ,
then either AM = -P, - Mk’ g and Ag > 0 (38)

or “PK = MK,S < AMK < Pk o= Mk,s and Aq)k = O o

In the finite difference system, by taking ij sufficiently large,
one can construct mathematically a situation for which no solution exists,
For example, if, for some value of Kk, Mk,s were negative, one could choose
the AXj so that E;“kjéﬁ would be a very large positive quantity, so large
that a solution o% Equation (36) would require either that AMy exceed
Pp = Mk?s or that A¢k'be negative, both of which are in violation of Con-
straints (38) for negative Mk,s° The occurrence of such a situation in
the course of an actual numerical integration would mean that very large

changes in moment were taking place within a single time step-=-a condition

that would rapidly destroy the significance of the numerical results.
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Should such a situation arise, it would simply mean that the time interval

was taken too large in the first place.
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ADAPTATION FOR THE COMPUTER

In using the computer, both storage requirements and computation
time can be reduced by expressing the moments in nondimensional form. To

do this, one can define

My
pk = Fl;
VikPr
L i (59)
Pig y 39
by
4]
My T OB
(0] = Z—K—&Eﬁ

These transformations do not affect the uniqueness of the solution. In this

notation, Equations (35) and (36) become

J 7
Loy = Z MejAX 5+ Z O gAY 4 (41)
3 7

and the elasto-plastic constraints (37) and (38) become

1, If 0 < p <1, then

k,s
either Ag = (1 - p, () and Ay <O (42)
J

or (-1 = pk,s) <Ay < (1 - pk,s) and Ay, =0

2, If -1 < pk,s < 0, then

either Apy = (-1 - p, ) and Ay >0 (43)

J
or (~1 - pk,s_) <lp, < (1 - pk}s) and A\J/k = 0.
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The iterative procedure of Equations (30), (31) and (32) is readily adapted

to this formulation of the problem. Let

r = number of moment locations (the order of the matrix o)
and
Aqﬁ) = p=-th approximation to Awk .
k
Define
0
Awk = 0 for all k ,
GkO = 0kr+l s 0 for all k ,
Ay = AP =0 for all p .
wg qI:r'+l P

Then, starting with k = 1 and p = 1, compute

il

k-1 r+l
— 2 "+ N
b= + AP+ ) P Ly
% Z N Z Yt ), %™y (k)
J 2=0 £=k+1
p N p = - - p .
If (pk,s +ulP) > 1, let A = (1 Pr s = U )
T P P_45.
if -1 < (pk,s + Uy ) <1, let A\]rk 0 ; and (45)
i (o o * w P) < -1, let Ay = (-1 - o5 - W)

Repeat this for k =2, k = 3,...k = r, This completes the p-th approxima-

tion. Then let

epz

o - (46)

et

which is an indicator of the amount by which the solution fails to satisfy
the constraints (42) and (43). If e® is larger than some predetermined error
test &, one returns to k=1 and computes the p+l st approximation. When the
convergence test is satisfied, one accepts the last approximation as the cor-

rect solution for the Ay and computes AQ; and Apy from Equations (40) and (1
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NUMERICAL EXAMPLE
The following numerical example illustrates the foregoing processes.,
Consider the undamped bent shown in Figure 5. Taking fy = 36,000 psi, one

gets for plastic hinge moments

g
1]
o
]
g
il

1398 in-kips
Ph = 2072 in-kips

= 1583 in-kips .

1
1

Because the bent is symmetric and the effects of axial forces on the member
stiffnesses are ignored, the stress distribution will also be symmetric,
Hence only half the moments need be recorded. Moreover, the moment at loca-
tion 5 cannot reach plasticity and therefore does not need to be recorded.

The matrices of influence coefficients kij’ biﬂz M 35 and Vi g
which describe the elasto~plastic properties of the system are the forces
and moments shown in Figures 6 and 7. The effect of eccentricity of the

dead load on the moments may be taken into account if desired. It is

neglected in this example. The complete matrices are

) [ 35,73 -2A,11} Kt 1o-1
1 -2k,11 20.20] %
1425 2019 -1674 =345
by, = [ } kips/radian
-1325 -1584 563 1021
C 726.1 -662.6]
1009.6 -791.8
ey = -836.,9 281.3 in-kips/inch
| =172.7 510.5
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_5::> 12 WF 31 W_ =20 kips
2 2 ;-1
f my, = .05161 kip sec” in
O] .
N\ oy -
B Bl 9
olf :
12 WF 4o , W) =30 kips
@b m = .07772 kip sec? in™t
' mi -
N 48] ﬁ
B B
3 3 i
————————— D! ———————

Figure 5. Bent for Numerical Example.
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Figure 7. Matrix Elements bil and Y]
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69,700 25,720 -9,140 -16, 580
25,720 88, 300 -31,370 =56, 930

Vi, = in-kips/radian
4 -9,140  -31,370 80,010  -48,6h0

16,580 ~56,930 -48,640 105, 560

Converting the moments to nondimensional form according to Equations (39),

one obtains

29,12 31.97 =29.25 -6.78

"1 T -26,58  -25.08 9.83 20.04 e
.519k nme
7222 - . 5664 4
ey -.5987 .2012 .
-.0833 02464_j
[ _—
1.0000 .2913 -.11kh2 -.2328
3690 1.0000  =.3921 = -.7993
T s -3555 1.0000 -.6829
-,1605 -.4350 -,4102 100093

Suppose that at time to the system is in the configuration

2,600 in x, = 10,00 in/sec.

.

4,900 in x, = 25.00 in/sec,

X

X

2

and that plasticity has not yet been encountered at any location, Suppose

also that the driving forces at time to are

fl = f2 = 10,00 kips,
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and that these forces decay linearly to zero at time to + 0.1 second. The
complete process for determing inelastic behavior and executing one time
step of Runge-Kutta integration is given below,

The Runge-Kutta constants for this example are those given in

Equation (13), nemely,

L = 1/4 p = 1/3
m = 0 q = 2/3
n = 3/4 r = 2/3

and a time interval of h = 0,02 sec., is used., These initial conditions and
time interval have been chosen for illustrative purposes, and are not nec=
essarily typical or optimum.

Because plasticity has not yet been reached, the restoring forces

at time ty are given by Equation (17,

. [ 35.73 24,11 2.600
9 = <%J 5555 7| ok 20,20] [4,900}
or
Q = =-25,24 kips
Q = 36.29 kips

and the nondimensional moments at time tO are
[ 5104 -.h47ho |
7222 ~.566k4 2.600

\
p, = X, =
K {%J oF -.50987 2012 | |%.900

-.0833 246k
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or Ql = ‘=°9722
02 = -°8976
= =,570
05 o707
pl]. = 09908
From Equations (15) and the initial conditions,
%q (to) = 10.00 in/sec
§2 (to) = 25.00 in/sec
il (to) = o%;72 (10 + 25.24) = +453.4 in/sec2
. 1 . 2
t = 10 = 36.29) = «507.4 in/sec
2, () oSiEL ( 9) 7.4 in/

The first of Equations (10) yields

Kio = ni () = (.02)(10.00) = 0.200 in
nzo = B %, (5,) = (.02)(25.00) = 0.500 in
6o = b7 (8,) = (.02)(k53.4) = 9.068 infsec
KZo = ni, (t) = (.02)(-207.k) = -10.148 in/sec,

The superscripts x and z identify the variable associated with x. Before
proceeding to the second of Equations (lO), one must evaluate the functions
Q(xi + % K§O>’ which in turn require the evaluation of the Af's, The first

terms in Equations (44) are

\' 1
) s = ) vt ego)

J J
[ 510k -.i7ho | okl |
1 J7222  -,5664 .200 -,0462
3 -.5987 .2012 »500 ) - .006k4
_5.0835 °2h6h“_ i °0555_J
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The iteration of Equations (44) and (45) yields, for p = 1,

1
By
From Equation (46),

1
e

and the process must

2
1

Awg

Ly

2
s
o

and e2

]

be

1

= ooh'll')'l‘

l_.
it
+.0166

= =

9722 - .Ob4h = -1,0166

-,0462 + (.3690)(,0166) = -,0L401

u = =
2

0

-,0064

0

+.0355

8976 - 0401 = =.9377

+ (-.1311)(.0166) = -.0086

5707 - .0086 = -,5793

+ (-.1605)(.0166) = +,0328

ui = ,9908 + .0328 = 1.0236

-.023%6

1
) on

i

0
- Ay, | = L0ko2

repeated. The second cycle gives

,0111

-,0245
0064

As the process 1s repeated, e’

approaches zero and the lteration converges to



-36-

Ny; = L0109 py + L8p; = =1.0000
My = 0 oy + Loy = = 9201
AwB = 0 P5 * Ap5 = - 5617
Ay, = =,02L6 py + Doy = 1.0000

Equation (40) then yields

X

— 1 4 —
AQy = Z kij(g KJO) + Z BiﬂAW,@
J

)
or
AQl = -1.636 + 0,484 = =1,15 kips
AQy = 1.759 = 0.785 = 0.98 kips
and
Q + A = -26.39 kips
Qp + My = 37.27 kips

One can now return to the second of Equations (10) and compute

ES
I

1 =z
h + = Kk, d
i1 [Zi 3 nlo} an

h h X

The results are

< = (.02)(10.00 + 2=-'19—6-§5-) = 0.260 in

11 3

nzl = (.02)(25.00 - =8y g usp 4p

z ,02 1 } ,

6y = (007772) {(lOoOO 3 x 2.00) + 26.59} 9.193 in/sec

Z <02 1 _ _ .
oy = (,05181) [(10000 ; x 2.00) 57,27} 10,784 in/sec,



_37_

Before going to the last of Equations (10) one must evaluate

Qlxy + % n?l). Using Equations (L0), (1), (L), (45), and (46) again,
Just as illustrated earlier, one gets

Ay = L0080 pp + Doy = -1.0000
Ny =0 oo + Loy = - ,8958
AWB = 0 Pz + Ap5 = - ,5861
Ay = =.0460 py + Loy = 1.0000
A = -0.21 kips Q + 49 = -25.45 kips
M, = 0.50 kips Q + My, = 36.79 kips

The last of Equations (10) is now executed.

«° = (.02)(10.00 + 2 x 9.19%) = 0.323 in

12 b)
ek, = (.02)(25.00 - % x 10.784) = 0.356 in

Z _ .02 .2 - .
fp = (007772) [(loaoo 5 x 2,00) + 25,45] 8.779 in/sec
<= (=22 | (10,00 - 2 x 2.00) - 36 79| = -10.856 in/sec
22 .05181 ’ 3 ’ ’ : ’

Equation (11) now yields the displacements and velocities for the end

of the time step.

- . 1l x 3 x  _ ,
xq (to+h) = Xy (to) tT Ry FT Ry, = 2,892 in
x5 (tg+h) = 5.292 in
1z 3 z i
% (t0+h) = zl(to) TN 18.85 in/sec

o+
o+
oy

~—
il

14.32 in/sec
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The terminal values of Q and p for this time step must now be com-

puted from Equations (L0), (41), (44), (L45), and (46), as before, The results

are
Apo= 0 o) (to+h) =~ ,9916
Ny =0 oo (tgth) = - 858k
Aq;B = 0 P (t0+h) = - 6236
Ny = =,0630 P, (to+h) = 1.,0000
Q (to+h) = =+23,83 kips

Q (tyth) = 35.91 kips \

One now advances to the next time step, taking these terminal values

as the initial values for the next step.
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APPLICATTON

The multi-degree elasto-plastic response problem has been programmed.
for solution on an IBM Type 650 computer at the University of Michigan. Both
the Milne Predictor=-Corrector Method and the Runge-Kutta Method have been used.
The programs were written for the basic IBM 650, without index registers,
automatic address modification, or floating point hardware. If the programs
were to be rewritten today, they could be simplified a great deal by taking
advantage of these improvements.

The 2,000-word memory was able to accommodate a system with as many
as 16 degrees of freedom and 16 plastic hinges using the Milne method; and
with the Runge-Kutta method the system could go to 12 degrees of freedom and
16 plastic hinges. The more severe limitation for Runge-Kutta occurred
partly because viscous damping and a form of inelastic deformation not con=-
sidered in this paper were taken into account in that program.

The four matrices, kij’ Bs g kkj’ and Ty g0 WETE stored in the
memory initially as part of the data for the main program., A separate pro-
gram was written to evaluate all of these matrices. Input for the matrix
evaluation program comprised the number of stories, number of bays, story
weights, member stiffnesses, plastic hinge locations, and plastic hinge
moments, Acting on this information, the machine wrote the slope deflection
equations, solved them by iteration, evaluated the matrix elements, and
printed the matrices on load cards ready for use with the main program.

For the matrices Biz’kkj and O 4o OE need consider only those
locations at which plastic hinges form during the response. There is no

need to calculate or record the moments at locations that remain elastic.
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Thus the limitation of 16 plastic hinges is not as severe as it might seem.
Intuition and experience with smaller systems may enable one to predict
which locations are most likely to become plastic during the response., The
unlikely locations can be omitted from the matrices. One can process the
output data after the run is complete to check whether or not all of the
unrecorded locations did, in fact, remain elastic.

The programs were applied to the problems of structural response
to blast and earthquake, In each case the driving forces were put in punched
cards which were read by the computer as the solution progressed. For the
blast problem, the equations governing the dynamic pressures were given to
the machine in a separate program and the machine calculated the driving
forces and converted them to punched cards ready for unput for the main
program, For the earthquake problem, recorded accelerograms were approxi-
mated by piece-wise linear functions, and the time-acceleration coordinates
of the intersection points of successive line segments were put in punched
card form, The machine accepted this input data and interpolated where

necessary to find the desired driving forces.,

CONCLUSIONS
Experience with both the blast and earthquake problems shows that
the methods of analysis presented herein are practical and can be carried
out on equipment that exists today. Tomorrow's equipment, or even a late
version of todays equipment, greatly facilitates programming and permits

many of the restrictions to be relaxed.
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NOTATION

Symbols are defined where they first appear in the text. Those

used frequently are summarized here for reference.

i,d subscripts associated with mass or force
k, 4 subscripts associated with bending moment or plastic hinge
h time interval in numerical integration
4,m,n,p,q,r constants in Runge-Kutta method of integration
f; driving force
my mass
X4 displacement
Di damping force
Mk bending moment
Pk plastic hinge moment
Qi restoring force
Ri resistance force
R plastic hinge rotation
Py dimensionless bending moment
wk plastic hinge rotation (with dimensionless bending moment)
biﬂ rotation~force coefficient
Cij damping coefficient
13 stiffness coefficient
ﬁiz rotation-force coefficient (with dimensionless moments)
5k£ Kronecker delta
kkj displacement - moment coefficient (dimensionless moments)

LD
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Mk' displacement - moment coefficient

£J

sz rotation - moment coefficlent

o. rotation - moment coefficient (dimensionless moments)

kg
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