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SUMMARY

We demonstrate the use of auxilliary (or latent) variables for sampling non-
standard densities which arise in the context of a Gibbs sampler, involving
Bayesian nonconjugate models. Their strategic use can result in a Gibbs
sampler having standard full conditionals. We propose such a procedure to
simplify or speed up an existing Markov chain Monte Carlo algorithm. The
strength of this approach lies in its generality and its ease of implementa-
tion. The method is illustrated on posterior densities arising from Bayesian
nonconjugate and hierarchical models. A feature of the paper, therefore, is
to provide an alternative sampling algorithm to rejection based methods and
other sampling approaches such as the Metropolis-Hastings algorithm.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods (Smith and Roberts, 1993;
Tierney, 1994) allow Bayesian inference for highly complex modeis in which
realistic distributional assumptions can be made. The Gibbs sampler, the
most common of the MCMC algorithms, can often be difficult to implement
due to the required conditional distributions assuming awkward forms. In
this case the practitioner may turn to the Hastings-Metropolis algorithm and
Jor a rejection algorithm; see, for example, Metropolis et al. {1953); Hastings
(1970); Tierney (1994); Devroye (1986). However, this may be difficult to set
up and may require ‘tuning’ to achieve satisfactory performance (Bennett,
Racine-Poon and Wakefield, 1995). In this paper we discuss a novel approach
which, after the introduction of strategic auxilliary (or latent) variables, re-
sults in a Gibbs sampler having a set of standard full conditionals.

Suppose the required conditional distribution for a random variable X is
denoted f. The basic idea is to introduce a latent variable U, construct the
joint density of U and X, with marginal density for X given by f, and then
extend the Gibbs sampler to include the extra full conditional for /. We
demonstrate that in many cases it is possible to introduce a latent variable
so that all full conditionals are standard and can be sampled directly. This
is obviously appealing and, provided there is no dramatic loss in efficiency
compared to the original chain(s), will be of particular interest to the MCMC
practitioner.

In many cases the introduction of a single latent variable will ‘split’ a
nonstandard full conditional disribution appearing in a Gibbs sampler into
two standard full conditional distributions, effectively increasing the Gibbs
sampler by one more full conditional. This then may lead to a more effi-
cient method than the Metropolis-Hastings algorithm, the adaptive rejection
method for log-concave densities (Gilks and Wild, 1992) and other rejection
algorithms, in many contexts.

For a historical overview of Markov chain methods and the use of latent
(auxilliary) variables the reader is referred to Besag and Green (1993). In
particular our approach develops the original idea introduced by Edwards
and Sokal (1988) and highlighted by Besag and Green in Section 5 of their
paper. Recent progress with auxilliary variables is reported in Higdon (1996),
and references therein.

The paper is organised as follows. In the next section, we develop the
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theory underlying the new algorithm. We show that our method improves on
a Metropolis independence chain as well as a rejection algorithm. In Section
3 we implement the approach for Bayesian hierarchical models; Section 4.1
for generalised linear mized models (GLMMs) and Section 4.2 for nonlinear
mized models (NMMs). Section 5 contains numerical examples, followed by
a concluding discussion in Section 6.

2 Preliminaries

The main result on which the algorithm developed in this paper is given in
the following theorem; see, Damien and Walker (1996).

THEOREM 1. Suppose we wish to generate random variates from a den-
sity f given by

L
flz) «n(2) [T on(=),
1=1

where w is a density of known form and the g are nonnegative invertible func-
tions (not necessarily densities), that is, if g(z) > u then it is possible lo
oblain the set Ai(u) = {z : gi(z) > u}. Then a Gibbs sampler for generating
random variates from f exists in which all but one of the full conditionals are
uniform densities and the remaining full conditional is a truncaled version

of m.

Proof. We introduce the latent variables u = (uy,...,ur) with each u; de-
fined on (0, 00) such that the joint density with z is given by

flzyury o up) & r(e) [T H{w < gi()).

Clearly the marginal density for z is f(z). A Gibbs sampler can now be
implemented where obviously the full conditionals for each 1 is the uniform
density on (0, gi(2)). The full conditional for z is given by x restricted to the
set A(u) ={z: gi(z) > u,l=1,...,L}.

The decomposition appearing in Theorem 1 is very similar to an expression
appearing in Besag and Green (1993, Section 5). However, they do not men-

tion the significant advantages that having invertible g; lead to. They say,
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“When dealing with more complicated models, direct simulation from f(z|u)
is unlikely to be available.” [ltalics ours.] As a consequence, they propose
that sampling from = restricted to the set A(u) be achieved using rejection
algorithms; that is, sampling from 7 until the sample falls in A(u). While this
method would work in principle, our aim in this paper is to demonstrate that
we can introduce latent variables in complex models which still permits direct
simulation from f(z|u); i.e., the use of rejection sampling can be obviated.
If the decomposition indicated in Theorem 1 is possible then we will achieve
substantial efliciency over the rejection sampling of Besag and Green. The
class of densities having the appropriate decomposition seems to be large,
and specifically, in the context of Bayesian models, the decomposition stated
in Theorem 1 can be readily achieved.

Consider the posterior density given by f(z) « I(z)x(z) and suppose it
is not possible to sample directly from f. The general idea is to introduce
latent variable Y, defined on the interval {0, 00) or more strictly the interval
(0,1(£)), where & maximises I(.), and define the joint density with X by

flz,y) « I(y < l(x))n‘(w)

The full conditional for Y is 2/(0, [{z)) and the full conditional for X is =,
restricted to the set A, = {z : l{z) > y}.

We can show how this approach “improves” on a particular independent
Hastings -Metropolis chain. The Metropolis algorithm is a Markovian scheme
which may be used for obtaining samples from the posterior f(z)  I(z)r(z).
Given 29, a proposal for z#+1), &, is taken from, for example, 7(.), and a
uniform random variable, u, is taken from the interval (0,1). Essentially, if
(#)/1(z) > u then 2+ = 3 else 2!"*Y) = £, The chain either ‘moves
on' or ‘stays where it is’. The convention is that & is sampled first followed
by u. Suppose we reverse this and sample u first. To ‘move on’ we need to
sample Z from 7(.) such that /(#)/(z!)) > u. Suppose, therefore, we sample
& from (.) restricted to the set A,(t) = {z : l{z) > ul(z!)}. The chain
will always ‘move on’. In fact we have just described a Gibbs sampler with
standard full conditionals, detailed in Theorem 2:

THEOREM 2. The Markovian scheme for generating {z(1} given by z(++1) ~
7(.) restricted to the set Au(t) = {z : l(z) > ul(z™)}, where v s @ uni-

form random varieble from the interval (0,1), satisfies () =4 2 ~ f(z) x
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i(z)7(z).
Proof. Define the joint density function of z and y by
flz,9) « Iy < U(z))m(2).

Clearly the marginal density for = is f. A Gibbs sampler can now be used to
generate {z(} which satisfies the conclusion of the theorem. To implement
the Gik%bs sampler the full conditional densities need to be sampled in turn,
updating the parameters as they are sampled. These full conditional densities
are given by f(y|z(), which is the uniform density on the interval (0, I(z(t})),
and f(z%*V|y), which is 7(.) restricted to the set A, = {z : I(z) > ).
Clearly such a scheme is the one described in Theorem 2, completing the
proof.

Theorem 2 says that it is possible to remove the ‘ties’ from an indepen-
dent Metropolis chain and remain with a simulated Markov chain from a
pure Gibbs sampler. So why not just simulate from this Gibbs sampler in
the first place? This is exactly what we are proposing, and intuitively we
must improve the efficiency in exploration of the sample space since we have
removed the ‘stops and starts’ of the Metropolis chain.

An additional burden with the Metropolis algorithm is that it may be
difficult, in some instances, to obtain a good candidate distribution; see, for
example, Chib and Greenberg (1995), who discuss the difficulties in this se-
lection process.

The general case

The above algorithm works when I(.) itself is invertible. It is more usual
for it to decompose into a product of invertible functions. Therefore, we
consider the case when

flz) {ﬁ I,-(a:)} w{z).

=1

Here we introduce the latent variable y = (yy,..., yn), where the y; are mutu-
ally independent given z, and define the joint density of z and y by

e o {[T1 <) pato)
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The full conditional densities are given by f(y;|z), independent uniform den-
sities on the intervals (0,7;(z)), and f(z|y), =(.) restricted to the interval
Ay ={z:l{z) > yi=1,...,n}.

A simplification in the multivariate case

If z is multidimensional and it is not possible to obtain the multivari-
ate set A, then a simplification is to sample from f(z|y) by sampling from
f(zi|z—k,y), for k = 1,...,p, where p is the dimension of z. This would in-
volve sampling from = (zx|z_x) restricted to the set Agy = {x : {(z4, 2-) >

v)}-

In the discussion above it is not required that ! and = be a likelihood function
and a prior dsitribution, respectively. More generally, suppose f = k x ¢, and
we wish to sample from f using g as a proposal distribution for a rejection
algorithm within a Gibbs sampler. A standard rejection algorithm would
proceed by first calculating the supremum of h. Using an argument simi-
lar to the one appearing in Theorem 2, it is easy to prove that the method
proposed in Theorem 1 will be at least as efficient as a standard rejection
algorithm; this, of course, means that the method developed in this section
will be at least as efficient as any variant of the standard rejection algorithm,
when used within a Gibbs sampler.

3 Bayesian nonconjugate models

Ezample 3.1 Poisson/log-normal model

Suppose we observe a random nonnegative integer, n, from a Poisson
distribution with parameter exp(xz). Without loss of generality we assume a
N(0,1) prior for 2. Then we obtain the posterior given by

f(z) x exp (nx — exp(z)) exp(—0.52%),

where we assume without loss of generality that the prior is normal(0,1) and
n is a nonnegative integer. We introduce the latent variable Y, defined on
the interval (0, 00), such that the joint density with X is given by

flz,y) ocexp(—y) (y > exp(z))exp (-—0.5(:1:2 - Zn:c)) s



which leads to the conditional densities given by
f(ylz) o< exp(—y)I(y > exp(z))

and
 S(aly) ox exp (~0.5(z = n)?) I (& < log(v)),

a truncated N(n 1) density; see Devroye (1986); Robert (1995); Cumbus
et al. (1997) for information concerning the sampling of truncated normal
densities.

Ezample 3.2 Bernoulli/logistic regression model
Consider the following Bernoulli regression model for which

w|[X = 2], 2; ~ Bernouk]i({l + exp(—p — :cz,-)}_l), i=1,..,n,

with X ~ N(0,1) as the prior (we assume g is known). The posterior density
for X is given, up to a constant of proportionality, by

flz) o ‘3XP(""0-5$2)_I_QI1 ({1 +exp(—p — zz)} V{1 + exp(p + xz;)}”’"l) :

We introduce the latent variables u = (w15 ttn) and v = (vy,...,v,) such
that their joint density with X is given, up to a constant of proportionality,
by

f(z,u,v) x exp(=0.5z?)

X ﬁ T{ui < {1+ exp(—p = 22)}™ vy < {1+ exp(u + zz)}" ).

i=1

The full conditional densities f(u;|u_;, v, z)and f(vilv_;,u, z) are all uniform:
J(uilu—iyv,2) = U (0,41 + exp(—pt - 22:)}™)

and
f(v.'|v_;,u,;c) =U (0, {1 -I-exp(;t +x:£)}w;—1) ,

where 24(, |) is the uniform distribution on (a, b). Let S = {i:wi=1}n{::
z#0}and R={i:w; =0} N {i:z #0). Then

f(zlu,v) o exp(—0.5z*)I(z € A,,),
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where Ay, = (maxies{a;}, miner{b}), &; = {log(1/u; — 1) - u}/z and
b = {log(1/v; = 1) — u}/z:. Note that if § = 0 then we replace max;cs{a;}
by —o0 and if R = {) then we replace min;er{b;} by +oo. ,

Erample 3.3 Probit model
Here we consider the posterior density given, up to'a constant of propor-
tionality, by

78) o TL{®(0 + Brz)}™ [T {1 - 86 + fuz)}™ ™ (8),

=1 i=1

where we assume a multivariate normal(g, T) prior for 8, and & is the
standard normal distribution function. We introduce the latent variables
U= (l,..,U)and V = (W, ..., V,) such that their joint density with 3 is
given, up to a constant of proportionality, by

ﬂmmwaﬁf@wﬂﬂm+mmwhw<u—u%+mmrﬁﬂwmy

=1

The full conditional densities f(u;u_;,v,8) and f(vi|lv_;,u, 3} are uniform
and so we focus attention on f(B8i|8-k,u,v). Let a; = ®7X(r) — Bz, by =
(O (7) = Bo)/zi, & = ®7Y(N) — Bz and d; = (®Y(X) — Bo)/ =z, where
T = u}/ “and \; =1- v,-ll (=) Note that b; and d; are only defined for
thase z; # 0, a; and b; are only defined when w; > 0 and ¢; and d; are only
defined when n; > w;. Then

F(BolBr u,v) o 7(F|81)] (maxi{a;} < Bo < min; {c;})
and

F(B11Bo,u,v) o (] Bo)] (maxi (b} < By < mimi{d,)).

Ezample 3.4 Weibull proportional hazards model
The Weibull proportional hazards model is popular for modelling censored
survival time data. The hazard function for the ith individual is given by

Ai(t) = Ao(t)exp(X; B),

where § = (f,...,3,) is a vector of unknown parameters and Ao(t) is the
baseline hazard. The Weibull model arises when Aq(t) = at®~! for some
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unknown a > 0. The conditional posterior distribution for 3, given @ and
taking a normal multivariate normal prior for 3, is given, up to a constant
of proportionality, by

B) « f[ exp’(X;_BI(b"; = 0) — t¥ exp(X:f)) exp (-—0.5(ﬂ —p) B - p)) .

=1

where é; = 0 indicates that ¢; is an uncensored observation. Here we introduce
the latent variable U = (Uh, ..., Uy) such that the joint density with g is given,
up to a constant of proportionality, by

W) oc [Te T (ui > 1565)) exp (<05(6 — W/ 5(8 — ) +v6)

=1

where v = 3, XiI(& = 0). The full conditional distributions for each
of the u; are independent exponential(1) distributions restricted to the sets
(trexp(X;B),00). Sampling from f(B|F-k, u) requires

Ap, = {[}k : B < min;{log(u;/t¥)/ Xui Z)ﬁhﬂl/Xlu } .
£k

The full conditional for a with prior 7(a) =constant (Dellaportas and Smith,
1993) is given by

. ¢ log(u;) — X;8 , log(u:) — X;8
(1) o ) oo )

where 7 is the number of uncensored observations. We can sample this
density via the introduction of a latent variable V' and define the joint density
with a by

f(v, )oca"](t<(Ht)) (A™ < a< At),

where A~ and A* are the bounds appearing in the full conditional for a. It
is now seen that both f(v|a) and f(alv) are of standard type and can be
sampled using uniform random variables.



4 Bayesian hierarchical models

Hierarchical models are relevant when the observed variability in the data on
a number of units can be conveniently partitioned into within- and between-
unit components. At the first stage of the hierarchy observations from a par-
ticular unit are modelled, whilst at the second stage of the-hierarchy between
unit differences are modelled. In this paper we consider both (i) generalised
linear mized models and (1i) nonlinear mized models. We concentrate on that
situation in which the second stage distribution is specified parametrically,
typically using normal or Student’s ¢ distributions. The use of such mod-
els is becoming increasingly common as both computational power increases
and new computational techniques are developed. For example GLMMs are
used in health services research (Gatsonis et al., 1995; Kahn and Raftery,
1996), disease mapping (Clayton and Kaldor, 1987), multicentre clinical tri-
als (Skene and Wakefield, 1990), educational testing (Goldstein, 1995) and
small area estimation (Ghosh and Rao, 1994).

NMMs are used, for example, in growth curve analysis (Berkey, 1982), and
population pharmacokinetic/pharmacodynamic studies (Bea! and Sheiner,
1982; Wakefield, 1996). '

Computationally NMMs and GLMMs pose two problems; first, interest
generally focuses on the second stage parameters and to obtain the likeli-
hood for these parameters the unit-specific first-stage parameters (the ran-
dom effects) need to be integrated out. For the models considered here
these integrals are analytically intractable. Secondly problems arise when
sumimarising the resultant marginal likelihood function or the posterior dis-
tribution if a Bayesian approach is taken. From a non-Bayesian perspective
various approaches have been suggested including Maximum Likelihood Es-
timation, Generalized Estimating Equations and Quasi-Likelihood. There is
now a large amount of literature on estimation in GLMMs; see, for example,
Williams (1982), Breslow (1984), Stiratelli, Laird and Ware (1984), Gilmour,
Anderson and Rae (1985), Liang and Zeger (1986), Goldstein (1987), Zeger,
Liang and Albert (1988), Schall (1991) and Breslow and Clayton (1993).

Bayesian solutions for GLMMs have been suggested using the Laplace
method (Kass and Steffey, 1989) and numerical integration (Skene and Wake-
field, 1990). Neither of these techniques is completely satisfactory, however.
Laplacian methods and numerical integration become infeasible as the di-
mensionality of the parameter space increases and for a given model and
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dataset it is difficult to assess whether the posterior distribution is suffi-
ciently well-behaved for the analytical and numerical approximations to be
appropriate. MCMC techniques are far more appealling since they allow the
complete posterior surface to be examined. Unfortunately for GLMMs the
required conditional distributions do not assume standard forms and so spe-
cialist code is required. Zeger and Karim (1991) proposed the Gibbs sampler
as a method for GLMMs but their rejection algorithm was not guaranteed to
provide a bounding envelope and so strictly the Markov chain did not have
the correct limiting distribution, though Tierney (1994) gave a Metropolis
algorithm to correct for this. For a GLM with appropriate priors Dellaportas
and Smith (1993) showed that the required conditional distributions are log-
concave so the adaptive rejection algorithm (ARS) (Gilks and Wild, 1992) can
be used. This approach could be adopted within a hierarchical framework
and examples have been presented using the BUGS software (Spiegelhalter
et al., 1995).

We turn now to NMMs. A good review of this area is provided by Da-
vidian and Giltinan (1995). Non-Bayesian computational techniques have
been suggested by, amongst others, Lindstrom and Bates (1990), Vonesh
and Carter (1992) and Walker (1996).

Fearn (1975) provided an early Bayesian solution to growth curve analysis
and Racine-Poon (1985) provided an EM-type algorithm. However it was not
until MCMC techniques became available that the Bayesian approach was
feasible generally. As with GLMMSs the conditional distributions for the ran-
dom effects do not assume standard forms. Wakefield et al. (1994) used the
ratio-of-uniforms black-box random number generation method (Wakefield,
Gelfand and Smith, 1991) but this technique is computationally expensive
since numerical maximizations are required at each iteration and also re-
quires specialist software. The Metropolis algorithm is an obvious candidate
but this requires ‘tuning’ by the user. In this paper we provide an algorithm
which, via the introduction of latent variables, provides an MCMC solution
with all sampling being from standard forms.
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4.1 Generalised linear mixed models
4,1.1 The model

Given {b:}, a set of g-vector random effects, the observations y; :4 = 1,...,n
are conditionally independent from the exponential family of distributions
with mean h(X;3 + Z;b;), where h(.) is a non-negative invertible function,
that is, g1 = h exists, X; is a p-vector of explanatory variables, 8 a p-vector
of unknown parameters, and Z; a ¢-vector of explanatory variables, for the ith
observation. The conditional variances are given by var(y;|b;) = dv{E(yi|b:)}
where v is a known variance function and ¢ an unknown dispersion param-
eter. The b; are assumed to be independent and identically distributed (iid)
from the multivariate normal distribution with mean 0 and covariance matrix
2. Within a Bayesian framework conjugate prior distributions are assigned
to the parameters ¢, 8 and €. The prior for ¢ (if present) is typically an
inverse gamma distribution, the prior for § a multivariate normal prior, say
N(g,E), and an inverse Wishart prior for Q.

4.1.2 The algorithm

Here we present a general algorithm for sampling the conditional distributions
of the GLMM. Suppose the full conditional distribution for 3 is given, up to
a constant of proportionality, by

f(B) o exp (y,-, B — R{(XiB + Zibi))N(ﬁlﬂ’ ).

In this form the distribution is not of standard type and so cannot be sampled
directly without recourse to specific software. However, with the introduc-
tion of latent variables standard forms can be recovered. We proceed by
introducing the latent variables u = (uy,...,u,) and v = (v1,..., 2} such that
the joint (full conditional) distribution with 3 is given, again up to a constant
of proportionality, by

f(ﬂ, u, ”U) o {ﬁ I(u, < exp(y,-X;ﬁ),v‘- < exp{—h(X,-B + Z,b‘)})} N(B,}t, 2)

=1

Clearly the marginal distribution for § is as required. Some simple algebra
gives the following full conditional distributions for each B,k =1, ...,p,

F(Br) o N(Brlpsy 1 ew) (ar < Br < ci),
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where

Ko =tk = Y (B — p)ew/ e,
17k

ey is the [kth element of &1,

@y = Maxy, 4o { (y;"llogui - Zﬂqu) /ka}

Ik
and
cx = miny, o { (g(- logvi) — Y B Xy — Zibi) /in} .
I#k
The introduction of the latent variables provides what can be described as a
latent model and the ‘new’ Gibbs sampler includes the sampling of the full
conditional distributions for « and v within each iteration. These are easily

seen to be uniform distributions. The full conditional distribution for b; is
given by

Fb) { H I(u: < exp{yiZibi}, v; < exp{—h(X:B + Zib}) })} N(:]0,9)

=1
which, as with the full conditional for A, will lead to a truncated normal
distribution.

4.1.3 Examples

Ezample {.1.1 Random effects binomial model.
The model considered here is a random effects binomjal model which allows
for over-dispersion. If p; is the probability of success for the ¢th observation
then
yi|pi ~ binomial(p;, n;),
logitp; = X;8 + b;,
b; ~ N(0, ).

Independent priors are assigned to A and 8, typically a gamma and a multi-

variate normal, respectively. Of interest is the joint probability distribution
of 8, b= (by,...,b,) and X given, up to a constant of proportionality, by

o exp(yifh) n
F(B,6,0) {g (Tmexp( - 0.5b?A)} (0, 8),
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where 8; = X; + b;. Here we introduce the latent variables u = (uq, ..., uy)
and v = (vy,...,v,) such that the joint distribution with 3, b and X is given,
again up to a constant of proportionality, by '

F(B, b, X uyv) o A2z (), B)x

{ 1I e'"‘y'“”"("‘""')l(u; > log{1 + €%}, v; > log{1 + eg’})exp( - O.Sb?/\)}.
i=1
The full conditional distribution for fy is given by

F(8) o< m(BelB)T (B € Ax),

where Ay is the set
(maxxk,;&o{[ — log{e® — 1} — Ly Xiifhr — b;] /in},

minxk#o{[log{e"‘ - 1} -— 21#‘)('11',8; - b,] /Xk,})
The full conditional distribution for b; is given by

£(be) o exp( — 0.562 1 (8; € 4),
where A; is thg sel
( — log{e® — 1} — Tk Xk P, log{e” — 1} — Eka;Bk).
The full conditional distributions for the latent variables are given by
F(us) o exp(—ug)I (u; > log{1 + e7}),
a truncated exponential(y;) distribution, and
flvg) exp( —vi(n; — y;))[(vi > log{l + eo'})
and the full conditional for A is

FOY o A2 exp (= M2 3 8) ().

All of these full conditionals are of known types. Only minor modifications
are required if y; =0 or y; = n;.
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Erample 4{.1.2 Random effects Poisson model.
Here we consider the random effects Poisson model given by

yi|0; ~ Poisson (expﬂ,-),
0; = XiB + b;,
bi ~ N(0,A).

Priors for § and A are taken as in Example 1. The joint probability distri-
bution of 4, b and ) is given by

n

(B, 3) ocexp {3 (uibi — expb; — A/267) }A"2x (A, B).

t=1
Here we introduce the latent variables u = (uy,...,u,) and v = (vy,...,v,)
such that the joint distribution with 8, b and A is given, up to a constant of
proportionality, by

F(B, 6,2, u,v) A\ (B, A){ f[ e“"’I(u; < ¥y > eg") exp ( - 0.51}?1\)}.

t=1

The full conditional distribution for By is given by

F(Br) o m(BelB-1) (e € As),
where A is the set
(0, minx,,,-#o{ [108{ vi} ~31¢sz;.51“5{] / Xk, [—y;‘ ! log{ui}_zl;ékxliﬂl_bi} /X m'}) :
The full conditional distribution for ¥; is
F(b) o exp( = 0.5620) 1 (b; € 4;),
where A; is the set
(U,miﬂ{ log{v:} — Sx Xii e, —y7 log {wi} — Eka.'ﬁk}).
The full conditional distributions for the latent variables are given by

flu) I(u; < exp(-—y;@,—)),

f(v) exp(—v;)[(v,' > exp(O,-))
and the full conditional for A is

F(A) & A2exp( — Af2 Y b?) ().

Again, only minor modifications are required for the case when y; = 0.
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4.2 Nonlinear mixed models
4.2.1 The model

In the following let 7 (i = 1,...,n) index individuals and j (7 = 1....,n;), with
N = 3;n;, index observations within individuals. Let Yi; Tepresent an ob-
servation or a transformation of the observation (for example the logarithm).
The conditional probability model for the observations is given by

vii16; ~ N (g(6, zi3),0%),

where 8; is the random effect associated with the sth individual, z;; an ex-
planatory variable for the 7jth observation and ¢ a known nonlinear mean
- response function. From now on we will write 9(0;,z:;) as ¢;(0;). The 6;s
are assumed to be normally distributed with mean g and variance-covariance
matrix I. Here ¢, ¢ and ¥ are the population parameters. Conjugate priors
are assigned to these parameters in a manner described in Wakefield et al.
(1994). Note that the full conditional density for 0; is given, up to a constant
of proportionality, by

7(63) o { ﬁlexp (- 054(0/0%) }n(6),

where [;(8;) = (yi; — ¢;(6:))* and 7(8;) = N(i|u, ). It is not possible to
sample this distribution directly without specialist random number genera-
tion techniques. Note that here the ratio-of-uniforms method may be used
but requires three numerical maximisations for each sample. The adaptive
rejection sampling routine cannot be used since the conditional distribu-
tions are typically not log-concave. Gilks, Best and Tan (1995) proposed the
Metropolis adaptive rejection sampling algorithm for such cases.

We can write this model in a different way by introducing a (latent)
random effect u;; for each observation. This latent model is given by

wislusis 05 ~ U (g;(0) — /i, 95(6:) + /i),

and
uij ~ G(3/2,A/2),

where G denotes the gamma distribution and ) = 1 /o*. Tt is easily seen that
integrating over the u;; returns the original model. Now the full conditional
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distributions for the random effects are given by
f(0:) o< N(6i|u, £)1(8; € Ai),
where

A.-={€;:yv Vi < g;(0) <y + g = 1. ,n;}.
The full conditional distributions for the latent variables are given by
Fluis) ox exp(=Aui/2) I (wi > [y5; — g;(80)]"
The full conditional distribution for X, with prior A=!, is given by
G (31\//2, Y3 u,-j/2) .
i=13=1

This latent model motivates the algorithm presented in the next section.

4.2.2 The algorithm

The target distribution is given, up to a constant of proportionality, by

{Hexp( 0.5M;(0)) }(0),

where [;(6) > 0 for all & (here we have removed the subscripts ¢ and we put
m = n;). The aim is to introduce a latent variable and use Gibbs sampling
to generate random variates from the target distribution. Since inference
15 already enveloped within a (Gibbs sampler the only extra computation
required is the sampling of the full conditional distributions for each of the
latent variables within each iteration. We define the joint density for 8 and
u = {uy, ..., up), given up to a constant of proportionality, by

f6,1) f[ { exp(=0.53;)1 (u; > 1;(8)) }(8).

Clearly the marginal density for @ has the required target density f(.). The
full conditional densities, required for the Gibbs sampling, are given by

f(u;]0) o exp(—0.5Au;)! (u,- > Ij(G)),
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for j=1,...,m, and

F(0w) x n(6)I(8 € A,),
where 4, = {0 : [;(0) < uj,j = 1,....,m}.

Sampling from f(u;|f) is straightforward and we assume that sampling from
7(.) restricted to some set A is also easy (typically, in applications, = (.) will
be a known multivariate distribution, for example, the normal). Therefore
the only remaining difficulty is the determination of the set A,. 1t should
first be pointed out that A, is not empty. Within a Gibbs sampling algo-
rithm it is easily seen that the current § must be a member of A,. If it is not
possible to obtain the multivariate set A, then an alternative approach is to
sample from f(6|u) by sampling from f(6x|0-k, ) for k = 1,...,p where p is
the dimension of §. This would involve sampling from = (8|0 )I(0x € Ary)
where Agu = {0k : 1j(0k,0-%) < uj,j =1,...,m}. Clearly each A, or A, will
depend on the likelihood {;(.). We now consider some examples.

Ezample {.2.1 One compartment pharmacokinetic model.

Here the logged data is assumed to be normally distributed. This gives
an approximate constant coefficient of variation, which in such applications
mirmics assay precision. A Bayesian analysis of a population pharmacokinetic
data set (with a one compartment model) then involves the simulation of 7*(.)
with )

(6) = (logy; — logd — 8y + zjexp(fy)) .
Here y; tepresents the measured concentration of a drug at time z; after
administration of a dose of size d at time z = 0. Due to the difficult task of
obtaining the two dimensional set A, we concentrate on obtaining A;, and
Asy. In this case let z; = logy; —logd. Then /;(8) < u; implies

2
(zj -0, + x; exp((%)) < 1.

This leads to

A = (maxi{aj},minj{bj}),
where a; = z;—/@; +z; exp(0y) and b; = z;+ /5 +x; exp(fy). If max;{6; —
zj — \/ﬁ;} > 0 then

Az = (maxjes{a;), mini{4;}),
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where § = {j : 61 — z; — /7 > 0}, a; = log{(th — z; — \/G)/;} and
Bi =log{(6r — z; + \/G5)/z;}. If max; {6, — z; — V%1 £ 0 then
' Ag = (— oo,minj{ﬁj}).

Note that 6; — 2, + , /u; > 0 for all j. Therefore if #(.) is a bivariate normal
distribution then sampling from f(f;)6_x,) is the sampling of a truncated
univariate normal distribution.

Ezemple 4.2.2 Logistic model.
For the logistic model we obtain
2
L(0) = (25— 81 +log{1 + exp(6, + bsz;)}) .
Therefore
Ay = (max,-{aj},minj{bj}),
where a; = z; — \ /iT; + log{1 -+ exp(fa + 3z;)} and b; = z; + VU5 +log{1 +
exp(f; + 03z;)}. Let 8 = {j : exp(fy — \/u7 — z;) > 0}. If S # 0 then
A, = (maxjes{a;}, min; {8;}),
where a; = log{exp(0; — /& - z;) — 1} — b32; and f; = log{exp(6; + VG~
zj) = 1} = 03z; (note that 6, + \/i; — z;) > 0). If § = § then
Asy = ( = o0, min;{8;}).
Finally, if § # 0,
Az, = (manGS{'}'j}:n?iﬂj{‘sj})v
where ; = [log{exp(fy ~ \/G — z;) = 1} — 8;)/x; and §; = flog{exp(6; +
VUi = %) = 1} = 0s]/z;. If S = 0 then

Aau = ( - oo,minj{ﬂj}).

Typically 7(6) will be the normal distribution N(8]u, Z). Then T (0clf-r, p, T)
will be the univariate normal distribution N(Or|pyz/exs-1/ers), where py =
Hrerk — iz ee(O — ) and ey is the Ikth element of £-!. The algo-
rithm reduces therefore to the sampling of the univariate normal distributions
N(Olpz/exx, 1/ ere) restricted to the set Ay,
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5 Numerical examples

Ezample 5.1 Generalised linear model with logit link.
Qur example is the binomial GLM with a logit link function and a
quadratic logistic model given by

yi|mi ~ binomial(n;, 7;)

and

log (Wt/(l - 7'(;)) = ﬁl + ZiﬂZ + Z?ﬁli = ‘Xfﬁv t=1,...,n
Further details are provided in Dellaportas and Smith {(1993). With a mul-
tivariate normal prior for 4, say N(u,X), the posterior distribution is given
by

d

f(8) o {f[ N f(1+ e:""f’)"-‘} exp (= 0.5(8 - 1) Z7(8 - 4).

=1

We introduce the latent variable v = (u,...,u,) such that the joint density
with # is given, up to a constant of proportionality, by

F(Bu) o TTT (us < [1 + exp(Xef)]™ ) exp ( —~0.5(8 — ) £7(8 — ) +v),
=1

where v = ¥, 4:X;. The full conditional distributions for each of the U;

are uniform,

fluluz, ) = U(0, [1 + exp(X;8)] ™).

The condition u; < (1 +¢X#)=™ implies exp(X;8) < 1/u}/"‘ — 1. Therefore,
define the sets

Aku = {ﬁk : B < ming{log(L/u}/™ = 1)/ X — X/ Xis — Xmiﬁm/Xk;}} )

where {k,I,m} are, in some order, the elements {1,2,3}. Sampling from
f(Blu) can now be done by sampling successively from f(B|3-x,u) which
involves sampling from a univariate normal distribution restricted to the set
Agy. This univariate normal distribution is given by #(8|A_) where 7(8)
is the multivariate normal distribution with mean g + £» and covariance
matrix L,
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We analyse a data set relevant to the above example. The data set and
prior distribution used are given in Dellaportas and Smith (1993). We start
the chain by taking 3 as the location of the prior distribution and then pro-
ceed to sample u and then back to 3. We ran the chain for 5,000 iterations
{taking under 15 seconds) and collected the last 2,000 for parameter estima-
tion. We can report, as was to be expected, that our parameter estimates
(ﬁl = —2.36, Bp = 0.21 and B = —0.004) coincide with those obtained by
Dellaportas and Smith. These authors used the adaptive rejection sampling
scheme (Gilks and Wild, 1992) which depends on the posterior density being
log-concave, (Wé need no such condition.) This example demonstrates that
not only is the algorithm simple to code, but it is also quick.

Ezample 5.2 Random effects logistic regression.

Here we analyse the data set presented in Table 3 of Crowder (1978)
which involves binomial data, the proportion of seeds that germinated on
each of 21 plates, in a 2 X 2 factorial layout by seed and type of root extract.
The model for analysis is described in Example 1 (Section 2). Here we have

0; = By + Baxiy + Pazin + Bazinwin + by,

where 71, 7,2 are the seed type and root extract of the ith plate. We encoun-
tered some problems with high autocorrelation associated with the Markov
chain due to the introduction of the Jatent variables. To solve this prob-
lem we took every 100th sample for inference using a single Markov chain.
This reduced the autocorrelation to satisfactory levels. Computing time was
about half an hour.

Parameter | Estimate
3, -0.547
Je 0.068
Bs 1.337
Jix -0.812
o 0.292

Table 1: Parameter estimates for Example 1

The parameter estimates for the Crowder data set are given in Table 1. The
estimates compare well with those obtained using BUGS. Additionally we
provide in Figure 1 the ergodic plots for the parameters obtained from the
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Figure 1: Ergodic averages for Example 1. Parameters are B, B2 (row 1);
Bs, B4 (row 2) and 672, & (row 3).

Markov chain (thinned) output based on a sample of size 1000.

Ezample 5.3 Nonlinear random effects model.

The second example is taken from the paper of Lindstrom and Bates
(1990). The data set consists of 5 (indexed by ¢) orange trees with 7 (indexed
by j) trunk circumference measurements taken for each tree over an interval
of time (denoted by ). The logistic model is used to fit the data giving

logyi; = 61, — log{l + eXP(ozs + 1‘-1‘1‘03,‘)} + €ij,

where y;; are the observed trunk circumference measurements and ¢;; are
independent N{0,02) error variables. As in Example 1 of this Section, the
second stage assumes §; = (6y;, 85, 05;) to be independent N (g, X) variables
with priors assigned to (0%, 4, ¥). The parameter estimates are presented
in Table 2. (We took every 10th sample from the Markov chain output for
parameter estimation). These are comparable with the maximum likelihood
estimates of Lindstrom and Bates (1990). Histogram representations of the
marginal posterior distributions are presented in Figure 2. In F igure 3 we
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present the ergodic plots for the parameters based on a sample of size 1000
from the Markov chain (thinned) output. In this example we did not en-
counter the high autocorrelation which was met in Example 1.

Parameter | Estimate
th 5.304
1o 2.041
Uz -0.00327
Tu 0.274
Yoa 0.576
g 0.00203

Table 2: Parameter estimates for Example 2

nooo ot

(1)

Beauun

Figure 2: Estimated marginal densities for gy (top), g, (middle) and s
(bottom) from Gibbs output {or Example 2

6 Discussion, extensions and conclusions

In Section 5 we presented examples using the auxilliary variable method
which resulted in quick and efficient MCMC algorithms. Additionally, the
algorithm is easy to code, requiring only standard random variate generation
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Figure 3: Ergodic averages for Example 2. Parameters are jiy, g, (tow 1);
H3s 211 ([‘OW 2) and Z'l?: S33 (I‘OW 3)

routines. However, we do not claim that superior efficiency will be the case
in general. If there is an efficient Metropolis or rejection algorithm then,
rather than introducing latent variables, these may be the preferred choice.
A broad question is, “Will a Gibbs sampler with more conditional distri-
butions, all of which are uniform densities, be more efficient than a Gibbs
sampler in which some or all of the full conditionals have to be sampled via
rejection and/or Hastings type algorithms?” We are not aware of a definitive
answer to this question. On the other hand, the question above points to the
fact that ease in coding may very well outweigh gains in efficiency especially
when the gains using an alternative approach may be neglible: in many con-
texts, particularly in examples such as the ones described in this paper, and
which are very useful in applications, this appears to be a common trend.
In addition to the ease in coding, just like other algorithms, the method
proposed in this paper is, in a sense, general. In this spirit the results of this
paper can be compared to that of Meng and Van Dyk (1997). but from a
Bayesian perspective. Generality combined with ease of computation of the
latent variable approach, and gains in efficiency relative to other approaches,
In a variety of contexts, are compelling reasons for popularising its use among
statisticians. For example, improved efficiency in simulation from distribu-
tions arising from exponential power, Student ¢ and stable laws, as well as
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truncated versions of the latter laws, are also being studied. These results
will be reported elsewhere.

From a practical perspective suppose that a “one-off” MCMC algorithm
is required. Qur method provides an “instant” solution and the only issue is
that of convergence (which is the case for all chains). Algorithms based on
Metropolis or rejection steps typically require “tuning” and even then there
is no guarantee that a more efficient chain will emerge.

Results on rates of convergence are currently only available for narrow
classes of models (see, for example, Polson, 1996). Polson, and the discus-
sants of his paper point out that answers to questions such as the one stated
in this section remain unresolved. But there is no specific reason why the
introduction of latent variables should reduce efficiency. On the contrary, Pol-
son, in his section titled, ‘Using Latent Variables To Improve Convergence’,
reports that “Careful use of latent variables...can lead to vast improvements
in efficiency.” The examples in Section 4 of Polson’s paper give support to
the auxilliary variable approach for two types of distribution. Polson indi-
cates there will be improved efficiency for these cases. That there should
be a significant reduction in efficiency for all other types of distributions,
with the introduction of auxilliary variables, may not, of course, follow. But
Roberts (personal communication} has shown that our method (which Rad-
ford Neal at the University of Toronto first referred to as “slice-sampling”)
always converges geometrically, under very mild regularity conditions: this
is untrue in general for other MCMC algorithms, which require far more
stringent conditions to obtain geometric convergence.

We finally note that the method developed in this paper may be used
for random variate generation in general. A comprehensive comparison of
alternate methods to random variate generation for sampling well-known
densities will be reported elsewhere.
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