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Smnmary
Simple and fast algorithms to sample nonstandard distributions as appearing
in Devroye (1986) are developed. They replace the need for rejection based
approaches and are particularly appropriate for use in a Gibbs sampling con-

text.
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1 Introduction

Let 1 be a continnous density function detined on the veal ine. The soln-
tion ol eenerating a random variate X from f. starting with the assmap-
tion that it ix possible to sample wniform random variables from the in-
terval (0011 10 provide an iid sequence of such variables. was developed i
Damien and Walker (1996). To motivate their result stated as a theorem
fater, let Siad x expt—e Nle < o < b)owhere 7> 0.0 <o < b <~
and [ represents the Indicator function: write such a density as o fou by,
et [ Nl =77 where 7> 0and 0 < o < b < Lowrite such a
denstty as S foalh). It s obvious that these densities can be sampled via
the tnverse transform method. Finallv, let {7(e. ) denote the uniform dis-
tribntion on {«. ). Now. the basic idea is to introduce a latent variable Y.
construct the joint density of Y and X with marginal density tor X' aiven
by f. and 1o use the Gibhs sampler (Smith and Roberts. 1993) to vener-
ate random variates from f. In particular. Damien and Walker (19961 show
that all the conditional distributions in a such a Gibbs <ampler will he on
of the three distributions. Cta bY. 30 fwh) e doa ). To this end they prove:

Theorem (Damien aud Walker. 19965, 1If

L
Tty < JT o).

i=1

where the g are nonmegative invertible functions (not necessarily) densities —
that i, if grir) > y then it is possible to obtain the set \y) = {r: gi{e) >y}

then it 1s possible to implement a Gibbs sampler for generating variates
from 1 in which all but one conditional distributions will uniform distribu-

Iiulls.

Damien and Walker 119961 exemplity the use of the Theorem by sampling
Al nmivariate continuons densities that appear in Johnson and Kotz. Also
they illustrate the method for several Bavesian nonconjugate models and
nonparametric models. Combns, Damien and Walker {1996) illustrate the
nse of the Theorem to sinmlate discrete and truncated nmltivariate densities.
and Walker and Damien (19961 use the method to sample from a mixture of
Dirichler process model.



We consider four of the nonstandard distributions considered in chapter 9
ol Devrove rIINGT which can not he simpled divectly, The Zipt disiribn.
“on s osed e lingnisties and soctal scieueess while the Planek disteibnion
i~ enconntered in the physical sciences. It is known that provided one can
ctliciently simulate a Zipl random variate, it is straightforward 1o senerat e
a Plauck variare as well. Two other well known distributions are the sener-
alised inverse Ganssian and Pearson 1\ distributions.

he this paper new algorithis to sample these distributions are developed.
[iese algorithms are an alternative to the rejection algorithms whicl appear
- Devrove (1986). and is based on the Theoren eiven earlier.

2 The Zipf distribution

The Riemann zeta function is eiven by

x l
la) = Z Pt
i=1
where @ =« + 1. 5.t are real numbers. and j is the square root ol minus
one. Simple expressions for the zeta function are known in spr cial cases. For
example, if ¢ s an infeger then
D=1 24

oy - mn
\(-—”) =
(2a}!

B,.
wlhere B, i the ath Bernonlli number { Titchmarsh. 1931, p20).

Fhe Zipf distribution has one parameter o > 1. and is defined by the proba-
Difities l
po=—= 2 1.
YO
Fullowing the Theorem. the Gibhs sampler is hased on the joint distribution
civen up to proportionality by

! :/.uz\[ll)<i'NSl).
[hen the full conditionals are eiven by

i) = 00,07,



il

ol = {2

where = intio™ 5 that isc pric = jlo = Vi, Tor cacl, V= TR
We can constrnet the Markov chain XL o, .. sl tha No— s — ~
'.‘in

AVTAV S LRI T T

-1/

where or, s vandom and given by int [N, 774 where the 7 ave il 750, 1

and tudependent of the X,. Here intle] denotes the laraest integer loss than

ot equal to .

We ran the above algorithm for a number of values for « and in each
case colleeted 20.000 random variates.  Computing time for cach run was
approsimately 10 seconds and the estimates for the reciprocal of 1he zeta
lnetion at v = 2. L and G are. respectively. 0.609. 0.923 and 0951\ Monte
Carlo approximation 1o the zeta function is given by

: -
lima_nyfn]™ .

where .
mo=Y 1N = 1).
k=1
and Xy Xaoare the samples obtained from the Zipt distribution.  The
exact values.ave 677590771 and 915/7% which are in sood agreement with
olr estimates,

3 The Planck distribution

Phie Planck is a two parameter distribution with density given by

b‘l+1 .l"'

fir = = .
A Dl 4+ DCta + 1) e — |

where . > 000 > 0 is a shape parameter. b > 0 is a scale parameter. Qur
approach nsing the Theoreny involves consideration of the joint density given
np 1o proportionality by

Tircucer N <o < 0 ce(explhe) — 1) < L.



™

where v.h > ). Clearly the mareinal distribution ol . is as vequired. The

il conditional distributions are all untform and eiven hy

Jvele ey =0700007 0

Jiviuoei =0 gexpihe) = | 7).

.lll(;

Jirle ) = oo 0 ogtl = Loein

We ran this aleorithim with o = 2 and b = (.5 and collected 10000 sam-
ples from the Planck distribution. Computing time was 13 seconds and a
istoeram representation of the sample is presented in Figure 1.

e ona “0 oW

Jue

Fienre I: Histogram representation ol samples obtained {rom the Planck
distribution with parameters ¢ =2 and h = 0.5.

4 The generalised inverse Gaussian distri-
bution

Onr algorithm is particularly appropriate for the generalised inverse Ganssian
cGHGHdisteibution. Aecording to Devrove there ave two difficulties associated
with a rejection based algorithm to sample the GIG distribution: firstly, it



i~ required to calculate the moditied Bessel function ol the third kind: and.
~ceondiv. the expected nnmber ol iterations in the rejection aleorithn is laroe,

The GIG distriburion has three parameters with densiny lunetion eiven
np 1o a constant of proportionality by

Jred x alesp (=0.5{0 e = he )i,
where > 00N 2 i—=x.+x). and a.b > 0. Note that the wamma and
imverse Gaussian distributions are a special case of the GIG. We deline the
joint denstty freoueowey by
Jfiwcw eow)y x I < AT < exp(=05af ) e < vxp(—l)..')l;.r.v) .
The full conditionals are eiven by

flule w. ey =000,

Flepeoeow) = U0 exp(=0.50 0},
Juowlecu.e)y = 17(0.exp(—0.5bx)).

and

[ (ma-x {—u/(‘.’log ). u‘/('\“”} .—=2/hlog u') TR
frprow) =< Ui=af(21og ). =2/blog ) ifA=1
[ (—u;’('_’log (').ulin{l/ul/“"\). —2/blog u*}) itA <.

5 The Pearson 1V distribution

Fite Pearsou Tamily of disiributions has 12 members and all but one can he
sampled directly using standard distributions, The exception is the Pearson
IV distribntion given np to a vonstant of proportionality by

frey ~ {il - ;.r-u:")-‘t'X])(——(' avctan{.a/a))

where o is detined on f—xc. =>x1. 0 > 0. 6> 1/2 and ¢ is a real. We define
the joint density

[l u.r) x /(u <il o+ .:.r,-"uf"')“"'.l‘ < expl—c arctan(.x'/u))) .

O



The tll conditonals are eiven by

Jrujeowei= U (U.(I - ;.r»:/;"i_.‘l] .

fivoroar =1 (Uoexpt—carctamir aip.
anned

. . { o . ) k
froewer=1 (nm.\'{—uv’l_f““‘- Lootan(—1/clog m} cay Lot — 1 ) .

.

where we have assumed without loss of generality that ¢ > (.

6 Conclusions

In this paper. we have provided a new and ximple way of generating ran-
dom variates from the Zipl. Planck. GIG. and Pearson [V distrtbutions. The
method described regnires no more than a Gibbs sampler involving nuniform
full conditional distrihutrions. ohbtained after the introduction of latent vari-

ables.
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