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SUMMARY

Continuous densities on the real line are sampled given only an iid sequence
of uniform random variables on the interval (0,1) and using a Gibbs sam-
pling scheme. The method is exemplified via several examples. A feature of
the paper is to provide an alternative sampling algorithm to rejection based
methods and other sampling approaches such as the Metropolis-Hastings al-
gorithms, especially from a Bayesian perspective.
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1 Introduction

Let f be a continuous density function defined on the real line. We address
the problem of generating a random variate X from f. Starting with the
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assumption that it is possible to sample uniform random variables from the
interval (0,1) to provide an iid sequence Uy, Us, ... of such variables.

The basic idea is to introduce a latent variable Y, construct the joint
density of Y and X with marginal density for X given by f, and to ‘use
the Gibbs sampler (see, for example, Smith and Roberts, 1993) to generate
random variates from f. This is done by simulating a Markov chain {X,}
where given X, = z, Y is taken from f(y|z) and then X,,, is taken from
f(z|Y = y). Under mild regularity conditions X, —4 X ~ f. Additionally
we are looking for the conditional distributions which can be sampled us-
ing the appropriate uniform random variables. For a historical overview of
Markov chain methods and the use of latent (auxilliary) variables the reader
is referred to Besag and Green (1993).

With the widespread use of the Gibbs sampler this paper, especially from
a Bayesian perspective, is relevant. In particular, the new algorithm, after
some preliminary analysis (details later), provides a Gibbs sampler in which
all the full conditional densities are of known type. This then may lead to
a more efficient method than the Metropolis-Hastings algorithm (Tierney,
1994), the adaptive rejection method for log-concave densities (Gilks and
Wild. 1992) and other rejection algorithms, in many contexts.

Preliminaries

Firstly being able to sample a uniform random variable from the interval
(0.1) allows us to sample a uniform random variable from any interval (a, b)
and we write such a density as U(a,b).

Let f(z) « exp(—zf8)I(a < z < b), where 3 > 0,0 < a < b < o0 and
I represents the indicator function. We write such a density as £(8, a, b).
Sampling X from £(8, a, ) can be done by taking U from U(1—exp(—af),1~
exp(—bf)) and taking X = —1/8log(1 - U).

Let f(z) x (1 —z)*""(a <z <b),where 3 >0and0<a<b<1.
We write such a density as B(f,q,b) and it is easy to see that if f(y) =
(B, —log(1 — a), ~log(1 — b)) and X =1 —exp(-Y) then f(z) = B(B,a,b).
Thus sampling an X from B(f, a, b) follows from above. Alternatively, one
could use the inverse transform method to sample from B(8, a, b).

In subsequent sections, we will show that £(8, a, ), B(B, a, b) and U(a, d),
along with an appropriately defined Gibbs sampler, are sufficient to generate
random variates from most of the standard densities, and many nonstandard
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and complicated densities as well.

2 Densities from Johnson and Kotz

While there is not an obvious theorem underlying the proposed method there
is a common thread which will be exemplified. Here we state this as a ‘rule-
of-thumb’: ‘

(1) Given a target density f, defined up to a constant of proportionality,
identify factors in f which can be substituted easily via latent variables that
induces full conditional densities, and which can be sampled using a uniform

random variable.
(2) Set up the full conditional distributions for the Gibbs Sampler based

on (1).

Ezample 1. Normal

First we consider the normal(0,1) density with density function f(z) o
exp(—0.5z%). We introduce the latent variable Y, defined on (0, 00), which
has joint density function with X given, up to a constant of proportionality,
by

f(z,y) & exp(—0.5y)I(y > =°).

Clearly the marginal density for X is the normal(0,1) density. The condi-
tional densities are given by

flylz) = £(0.5,2%,00)

and
f(zly) =U( = V5, +v3).
For a normal(y,o) density we simply generate a X, variable and take
Xpo) = 0Xa) + .
Note that the sampling of the normal(0,1) density could also be done by
defining the joint density by

flz,y) x I(y < exp(—O.Szz)).

The conditional densities are now given by
flylz) = L{(O. exp(—0.5x2))
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and

f(zly) = U( — \/—2log(y), +/~2log(y))-

It is no more difficult to sample a truncated normal(0, 1) variate with density
f(z) x exp(=0.52%)I(a < z < b). The joint density of X and Y is given by

flz,y) exp(-0.5y)1(y >z?a<zr< b).

The conditional density f(y|z) remains unchanged but the conditional den-
sity f(z|y) becomes U(max{~—/y,a}, min{+,/7,b}).

FEzample 2. Gamma

We first consider the gamma(a, 1) density with density function given up
to a constant of proportionality by f(z) o z*~exp(—z)I(z > 0) for @ > 0.
We introduce the latent variable Y, defined on (0, 00), which has joint density
function with X given, up to a constant of proportionality, by

f(z,y) x I{y <z* ',z > 0)exp(—z).
The conditional densities are given by

flyle) =u(0,2°7)

and
E(,yYeN 00)  ifa>1

flaly) = { E(1,0,(1/y)Y0-9) ifa < 1.

Trivially « = 1 implies f(z) = £(1,0,00). Such a Gibbs algorithm may be
appropriate when a = € < 1 is very small. For a gamma(a, ) density we
sample a X(,,1) variable and take X4 = 1/8X(s1). Again, as in example
1, sampling a truncated gamma density will pose no extra problem.

Ezample 3. Beta

Here we have f(z) o< z*}(1 —z)?-'I(0 < z < 1) for &, > 0. We
introduce the latent variable Y, defined on (0, 00), which has joint density
function with X given, up to a constant of proportionality, by

flay) o Iy <z, 0 <z < 1)(1 -2,



The conditional densities are given by
flylz) =u(0,z>7")
and

_ B(8, yll(a-—l), 1) fa>1
f(xh/) = { B(ﬂ,O,(l/y)ll(l_a)) ifa<l.

Trivially & = 1 implies f(z) = B(B.0,1). Again, as in examples 1 and 2,
sampling a truncated beta density will pose no extra problem. We note that
the above method overcomes numerical problems when one wishes to sample
from a beta distribution with parameters that are less than one and very

small.

It is apparent that this method can be applied to other well known densities
as well. For example, the Student’s t, chi-squared and Weibull densities can
be sampled using transformations or mixtures of the above.

Ezample 4. Cauchy

The Cauchy(0,1) has density given by f(z) o 1/(1 + z?). We de-
fine the joint density of X and Y, a random variable defined on (0,1), by
f(z,y) « Iy < 1/(1 + 2?)). The full conditional densities are given by

Flyle) = U(0,1/(1 +3%) and f(zly) = U(=\/1/y — L, +/1/y = D).

Ezample 5. Pareto

The Pareto(a, &) density is given, up to a constant of proportionality, by
f(z) < 1/z** I(z > «), where a,a > 0. We define the joint density of X
and Y, a random variable defined on (0, 00), by f(z,y) x I{y < 1/z**},z >
a). The full conditional densities are given by f(y|z) = ¢(0,1/z°*!) and

f(zly) = U(a, 1/yHe+1),

Ezample 6. Inverse Gaussian
We consider the Inverse Gaussian with density given, up to a constant of
proportionality, by

f(z) x \/l/x:’exp( -z l/z)l(a: > 0).

Here we introduce two latent variables Y and Z, defined on (0, 00) and (0, 1),
respectively, such that their joint density with X is given, up to a constant
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of proportionality, by

flz,y,2) exp(—x)f(y < \/ﬁ;?:)f(z < exp(—l/:r))](:c > 0).

The full conditional densities are given by

flyle, 2) = U(0,\/1/2%),

F(=ly,z) = U(0,exp(-1/z))

and

flely,2) = £(1,~1/log(=), (1/9)*"°).

3 Nonstandard Densities

This method and other related concepts in the context of neutral to the right
processes (Doksum, 1974) are studied in detail in Walker and Damien (1996).
In this section we exemplify our method to densities encountered within the
context of Bayesian nonparametrics, and which have appeared in recent lit-
erature: see, for example, Damien (1994), Damien et al. { 1995,1996), Laud
et al. (1993,1996) and Walker (1995,1996). In addition, we illustrate the
method for some Bayesian non-conjugate models.

Example 7. D-Distributions
The class of D-distributions was introduced by Laud (1977). A random
variable X on (0, 00) is said to have a D-distribution with parameters c, B>
0, 4 > 0, if its density function is given, up to a constant of proportionality,
by
f(z) cc o= lexp(~Bz){1 - exp(2)}".

Here we introduce the latent variable Y, defined on the interval (0,1), such
that the joint density of X and Y is given, up to a constant of proportionality,
by
Flzyy) o 2 exp(=Fa)(1 ~ gV I (y > exp(=z)).

The conditional densities are given by
f(ylz) = B(1,exp(-z),1)
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and
f(zly) o 22 lexp(~Bz)I (= > ~log(y)),

a truncated gamma(e, #) density (see, example 2). The D-distributions are -
special cases from the class of SD-distributions (Damien et al., 1995) and the
method of this paper can be used to sample from such distributions (Walker,
1995). We omit details here.

Ezample 8. Diaconis/Kemperman
Here we consider the unusual density uncovered by Diaconis and Kem-

perman (1996) which is given, up to a constant of proportionality, by
f(z) o< (1 = )2 %sin(z7)I(0 < z < 1).

Now we introduce five latent variables U, V, W, ail defined on (0,1), Y and
Z, both defined on (0, c0), such that their joint density with X is given, up
to a constant of proportionality, by

flu,v,z,0,y,2) x I(w < sin(z7))

xI(u < exp(—zy),v < exp{—(1 ~ z)z},y > —log(l — z),z > -—ng(:z:)).

The conditional densities are given by
flulo,w,z,y,2) = U(0,exp(~zy)),
folw,z,y,z,u) = U(O, exp{—(1 - z)z}),
flwlz,y,z,u,v) = L((O, sin(:nr)),
flylz,u,v,w,z) = U( — log(1 — z), —-m'llog(u)),

F(zlu, v, w,,y) = U( ~ log(z), ~(1 — z)"log(v))
and
fzly, z,u,v,w) =

Z{(max{aw, exp(—z), 1+ z"llog(v)}, min{bun _y—llog(u)a 1- exp(_y)})7

where (ay,b,) = A, = {z : sin(zx) > w). It is not clear that this density
could be sampled in any other way.

Next we consider some common Bayesian non-conjugate models.
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Bayesian Non-conjugate Models

If a posterior is given by f(z) o« I(z)r(z), where I(.) represents the likelihood
and 7(.) the prior, then the general idea is to introduce the latent variable
Y, defined on the interval (0, c0) or more strictly the interval (0, !(6)), where
§ maximises I(.), and define the joint density with X by

flz,y) < I(y < I(z))w(z).
The full conditional for Y is ¢(0,!(z)) and the full conditional for X is =
restricted to the set 4, = {z : {(z) > y}.

Ezample 9. Poisson/log-normal model
A Poisson likelihood with log-normal prior produces the posterior

f(z) x exp{nz — exp(z)}exp(—0.5z?),

where we assume without loss of generality that the prior is normal(0, 1). We
introduce the latent variable Y, defined on the interval (0, c0), such that the
joint density with X is given by

f(z,y) < exp(~y)I (v > exp(z) Jexp{—0.5(z — 2nz)},
which leads to the conditional densities given by
f(ylz) = £(1,exp(z), o)

and
f(zly) < exp{-0.5(z — n)2}I( —0<zr< log(y)),

a truncated normal(rn, 1) density (see, example 1).

Ezample 10. Binomial/logit model
Here we have m|z ~ binomial(z, n) with a normal(0, 1) prior for log{z/(1-
z)} which produces the posterior

f(z) x exp(mz){1 + exp(z)} "exp(—0.5z%).

We introduce the latent variable Y, defined on the interval (0,1), such that
the joint density with X is given by

f(z,9) o< I(y < {1 + exp(2)} " exp{~0.5(a* ~ 2mz)},
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which leads to the conditional densities given by
f(yle) = U(0,{1 +exp()} ™)
and |
f(zly) x exp{-=0.5(z — m)z}I( - o0 <z < log{l/y*" - l}),
a truncated normal(m, 1) density (see, example 1).

Ezample 11. Bernoulli/logistic regression model
Consider the following model in which

ylX =z~ Bernoulli(l/{l + exp(—p — z'z,-)}), i=1,..,n,

where X ~ normal(0,1) is the prior (we assume g is known). The posterior
density for X is given, up to a constant of proportionality, by

flz) exp(—0.5z2)H?=1{1 + exp(—p — mzi)}-v-‘m;‘{l +explu+ :cz.-)}m—l.

Here we introduce the latent variables U = (Uy,...,U,) and V = (W4,..., }),
where both U and V are defined on (0, 1)", such that their joint density with
X is given, up to a constant of proportionality, by

f(z,u,v) o< exp(—=0.5z?)

iy (v < {1+ exp(ou— ez} I, (i < {1+ exp(u + mzs')}yi—l).

The full conditional densities f(u;|u_;,v,z)and f(vi|v_;, u, z) are all uniform.
For example,

fluifui,v,z) = U(O’ {1 +exp(—p — Iz")}wi)

and

flvilvoiyu,z) = Z,((O, {1 + exp(u + xz,-)}w—l).
Let § = {i:y;=1}ﬂ{i:z;#0} and R = {i:y; =0} N{i:z #0}. Then

flzlu,v) x exp(~0.52%)I(z € Au,),
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where A,, = (maxjes{a;}, minier{b;}), a; = {log(1/u; — 1) — u}/z; and
b; = {log(1/v; — 1) — p}/z;. This is then a truncated normal density. Note
that if § = @ then replace max;es{a;} by —oo and if R = 0 then repla.ce

min;er {4} by +o0.

Fzample 12. Probit model
Here we have the posterior density given, up to a constant of proportion-

ality, by
F(8) o< T {@(Bo + Br=) Ty {1 — @(Bo + Brza)} " x(B)

where we assume a multivariate normal(g, £) prior for 8 and @ is the stan-
dard normal distribution function. We introduce. the latent variables U =
(Ury .o, Un) and V = (W, ..., V), where both U and V are defined on (0,1)",
such that their joint density with B is given, up to a constant of proportion-
ality, by

f(B,u,v) oc I, (u,- < {‘I’(ﬂo‘!'ﬂlzi)}yi)n?:] (v; < {1—@(ﬂo+ﬁlzi)}n'_y‘)ﬂ(ﬁ)-

The full conditional densities f(ui|u—;,v,8) and f(vi[v_;,u,B) are uniform
(see example 11 to see how to obtain them) and interest is in f(Bk|B-x, u,v).
Let a; = Q_I(Ti) - ﬂlz;, b = (‘D"l(‘r,-) - ﬂo)/z;, c; = Q"l(/\g) — f1z; and
d; = (97YX;) — Bo)/z:, where 7; = u}/y‘ and \; = 1 — v,-l/("'"y'). As in
example 11 b; and d; are only defined for those z; # 0, a; and b; are only
defined when y; > 0 and ¢; and d; are only defined when n; > y;. Then

f(Bo|Br,u,v) x w(ﬁofﬂl)l(max;{a,-} < B < min.-{c;})

and

£(B1Bo, u, v) o 7(B1}Bo)I (maxi{b;} < By < mini{ds}).

Numerical Examples

Our first example is the Cauchy(0, 1) density (example 4). Using the Gibbs
sampler algorithm 1000 random variates were generated and the results are
shown in Figure 1.
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Our second example is the binomial GLM with a logit link function and
a quadratic logistic model given by

yi|m; ~ binomial(n;, 7;)

and

10g(1r,-/(1 — ‘/T,')) =P+ Zify+ 2= XiB, i=1,..,n.
Further details are provided in Dellaportas and Smith (1993). With a mul-
tivariate normal prior for §, say N(g,X), the posterior distribution is given

by
f(8) oc {II, %52 /(1 + XP)" Jexp( - 0.5(8 — 1) =7 (B - w))-

Here we introduce the latent variable U = (Uh,...,U,) such that the joint
density with J is given, up to a constant of proportionality, by

£(Bu) o {2 T (< {1+exp(XiB)}™™) Jexp(—0.5(8—p) S~ (B—p)+vB),

where v = Y, %:X;. The full conditional distributions for each of the U;
are uniform given by

fluilus, B) = U (0, {1 +exp(X;B)} ™).

However, the real interest is in sampling from f(B]u).
First the condition u; < (1 + eX#)~™ implies exp(X;8) < l/u:/ .
Therefore define the sets

Apy = {ﬂk : B < ming{log(1/u}’™ — 1)/ Xai - XuBi/ Xai — Xmiﬂm/th'}}’

where {k,!,m} are, in some order, the elements {1,2,3}. Sampling from
f(Blu) can now be done by sampling successively from f(Bi|B-k,u) which
involves sampling from a univariate normal distribution restricted to the set
Aku. This univariate normal distribution is given by #(Bx|8-x) where 7(8)
is the multivariate normal distribution with mean y + £v and covariance
matrix X.

We analyse a data set relevant to the above example. The data set and
prior distribution used are given in Dellaportas and Smith (1993). We start
the chain by taking 8 as the location of the prior distribution and then pro-
ceed to sample U and then back to 8. We ran the chain for 20000 iterations
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(taking only several seconds) and collected the last 2000 for parameter esti-
mation. We can report, as was to be expected, that our parameter estimates
(B, = —2.36, B = 0.21 and f; = —0.004) coincide with those obtained by
Dellaportas and Smith. These authors used the adaptive rejection sampling
scheme (Gilks and Wild, 1992) which depends on the posterior density being
log-concave. (We need no such condition.) Additionally, in Figure 2 we give
kernel density estimates of the marginals for 3 obtained from the output of
the Gibbs sampler.

_l - —a- —— -..-..'ll'llllllllllll.l.---h —— MR m -
s 0 s 10

o.10 0.15 0.20 025 0.30

0.05

0.0

T =

-15 -10 15

Figure 1: Histogram representation from output obtained using the Gibbs
Sampler for the Cauchy(0,1) example.

4 Discussion and Conclusions

With the increasing use of the Gibbs sampler in Bayesian analysis, faster,
efficient, and simpler methods for generating random variates are required.
In this paper, we have proposed and illustrated a method that appears to
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Figure 2: Marginal posterior distibutions for 3 (8 top, 3 bottom)

be, in some sense, ubiquitous when sampling from univariate continuous
densities, from a Bayesian perspective. Here we simply point out that in
all the examples we have presented, the use of popular algorithms such as
the Metropolis-Hastings, sampling-resampling (Smith and Gelfand, 1992),
adaptive-rejection, ratio-of-uniforms, or any rejection method, whether these
methods are used within a Gibbs loop or not, is bypassed. (For an excellent
discussion of these algorithms, see, for example, Chib and Greenberg, 1995,
and Mueller, 1995). The striking feature of our approach is that it obviates
the difficulties associated with these alternative approaches, namely identi-
fying dominating densities, calculating supremums, and acceptance rates.
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