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Abstract

Marketing applications of structural equation models with unobserv-
ables have relied almost exclusively on LISREL for parameter estimation.
There has apparently been little concern about the frequent inability
of marketing data to meet éhe requirements for maximum-likelihood estimation
or the common occurrence of improper solutions in LISREL modelling. 1In this
paper we demonstrate that Partial Least Sqﬁares (PLS) can be used to over-
come these two problems.

PLS is somewhat less well-grounded than LISREL in statistical thgory.
We show, however, that under certain model specifications the two methods
produce the same results. In more general cases, they provide results which

diverge in certain systematic ways. We analyze and explain these differ-

ences in terms of the underlying objectives of each method.



Introduction

Though they were introduced to marketing only recently, structural
equation models with unobservables are beginning to change the conventions
of marketing research methodology (Bagozzi 1980; Fornell 1982). For
social science in general, the new structural equations approach is strongly
identified with maximum likelihood factor analysis procedures generaliéed
by Karl Joreskog (1970, 1973, 1979) and the associated computer program
LISREL (Joreskog and Sorbom 1978). For marketing, in particular, nearly
every application of structural modelling has used LISREL for parémeter
estimation. But it is not realistic to assume that all problems amenable
to use of structural equation models are also suited to LISREL. There are
other protocols of structural estimation which impose different assumptions
about data, theory, and the ties betwen unobservables and indicators. Mar-
keting data do not often satisfy the requirements of multinormality and
interval scaling, or attain the sample size required by maximum-likelihood
estimation. More fundamentally, two serious problems often interfere with
meaningful modelling: improper solutions and factor indeterminacy.

Herman Wold's method of Partial Least Squares (PLS)1 avoids many of
the restrictive assumptions underlying maximum-likelihood (ML) techniques
and ensures against improper solutions and factor indeterminacy. Toward a
comparison of PLS with LISREL, we estimate three models for a single data
set. The first model compares traditional common-factor ML estimates with
PLS estimates for a case in which LISREL produces improper solutions. We
show that the improper estimates do not stem from sample variance or from
lack of fit but can be traced, instead, to the path-analytic fitting objec-

tive behind LISREL. It is then shown that the removal of factor
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indeterminacy via PLS provides an effective cure. In a second model,
wherein all factors are explicitly defined, LISREL avoids its improper
solutions by giving estimates identical to those of PLS. The thirdbmodel
extends the second in a direction consistent with the consumer behavior
theory it embodies. It too presents no improper solutions, but illustrates

a systematic difference between LISREL and PLS results.

Partial Least Squares in Structural Modelling

In Partial Least Squares, the set of model parameters is divided into
subsets estimated by use of ordinary multiple:regressions that involve the
values of parameters in other subsets. An iterative method provides succes-
sive approximations for the estimates, subset by subset, of loadings and
structural parameters. Extending his theory of fixed-point estimation
(Wold 1965), Herman Wold developed this method for structural models with
unobservables (1974, 1975, 1980a, 1980b). As is the case with LISREL, many
of the early elaborations and applications originate from Sweden (Kgren 1972;
Bergstrom 1972; Bodin 1974; Lyttkens 1966, 1973; Noonan and Wold 1977;
Areskoug et al. 1975). 1In the United States, Hui (1978) has extended the
model to nonrecursive systems, and Bookstein (1980, 1981) has provided a
geometrical restatement of its protocols.

Recent discussions of both PLS and LISREL are available in Joreskog
and Wold (1981). Applications of PLS appear in a variety of disciplines,
including economics (Apel 1977), political science (Meissner and Uhle-
Fassing 1981), psychology of education (Noonan 1980; Noonan and Wold 1980),

chemistry (Kowalski et al. 1981), and marketing (Jagpal 1981).



Model Structure

To facilitate the comparison with LISREL, we will use Joreskog's nota-
tion. Like LISREL, PLS puts forward two sets of equations: the structural
equations ("inner relations") and the measurement equations ("outer rela-

tions"). The structural equations can be written:

TR

n=T&g+¢ (1)
Heren'=(®n,n,..,n)adé& = (& ,&, ..., E) are random vectors
1T 2 m ) n
of unobserved criterion and explanatory variables; B(m x m) is a matrix of
coefficient parameters for n,and (m x n) is a matrix of coefficient para-
meters for §; and 2= (T , T, . ., Cm) is a random vector of residuals.
~ ~ 17 72

The measurement equations are:

y=An+c¢ (2)
~ ~y~ ~
x=MANE+$ (3)
~ ~X< ~
in which y' = (yl, Vo v e s yp) and x' = (xl, X5 v e xq) are the observed

criterion and explanatory variables, respectively; AV (p x m) and AX (g x n)

are the corresponding regression matrices; and € and § are residual vectors.

It is assumed that E(f) = E(Z) = E(Q) = E(%) 03 E(QQ') = E(7) = 03

E(zz') = E(z8') = 0; and that E(ce') = O, E(88") = O, E(EE') = @ and

1

E(EC') Y. It is also assumed that Var (ni) = Var (Ej) = Var (Xk) =

~

Var (yr) =1, all i, j, k, r. Further, we compute the unobservables as

exact linear combinations of their empirical indicators:

NEm Y (4)
EEmx | (3)

where ﬂn (p x m) and ﬂg (p x m) are regression matrices.

Mode Selection: The Relationship between Unobserved and Measured Variables

In estimation, the unobserved constructs (n, &) can be viewed as



underlying factors or as indices produced by the observables. That is,
the observed indicators canbe treated as reflective or formative. Reflec-
tive indicators are typical of classical test theory and factor analysis
models; they are invoked in an attempt to account for observed variances
or cbvariances. Formative indicators are more directly concerned with

the delineation of abstract relationships.

The choice of indicator mode, which substantially affects estimation
procedures, has hitherto received only sparse attention in the literature.
Figure 1 exemplifies the choices to be made. 1In deciding how unobservables
and data should be related, there are three major considerations: study
objective, theory, and empirical contingencies.

Should the study intend to account for observed variances, reflective
indicators (Figure 1, Mode A) are most suitable. If the objective is ex-
planation of abstract or "unobserved" variance, formative indicators (Figure.
1, Mode B) would give greater explanatory power. Both formative and reflec-
tive indicators can also be used within a single model. For instance, if
one intends to explain variance in the observed criterion variables by way
of the unobservables, the indicators of the endogenous construct should be
reflective, and those of the exogenous, formative; the result is a mixed-
mode estimation (Figure 1, Mode C). ModesAand B represent two separate

principles--mode A minimizes the trace of the residual variances in the

measurement equations, mode B minimizes the trace of the residual variances

in the structural equations, both subject to certain systematic constraints
which we will discuss shortly. Mode C is a compromise between the two

principles.
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Indicator mode is also shaped by an aspect of the substantive theory
behind the model: the way in which the unobservable is conceptualized.
Constructs such as "personality" or "attitude" are typically viewed as
underlying factors that give rise to something that is observed. Their
indicators tend to be realized, then, as reflective. On the other hand,
when constructs are conceived as explanatory combinations of indicators
(such as "population change"zor "marketing mix") which are determined by a

combination of variables, their indicators should be formative.

Finally, there is an empirical element to the choice of indicator mode.
In the formative mode, sample size and indicator multicollinearity affect the
stability of indicator coefficients, which in this mode are based upon multi-
ple regressions. In the reflective mode indicator coefficients, based on
simple regressions, are not affected by multicollinearity. If the indica-
tors are highly collinear but one nonetheless desires optimization of ex-
plained structural model variance, one might estimate mode B but use loadings,
rather than regression weights, for interpretation. This will be illustrated
in our subsequent analyses.

Should the considerations involving study objective, theory or concept-
ualization, and empirical contingencies be contradictory, the selection of in-
dicator mode may be difficult. For example, one may wish to minimize residual
variance in the structural portion of the model, which suggests use of forma-
tive indicators, even though the constructs are conceptualized as giving rise
to the observations (which suggests use of reflective indicators). In such cases,
the analyst might estimate twice, once in either mode. If the results corres-
pond, there is no problem. If they differ, a compromise might be worked out
using the factor structures of the blocks separately (as suggested by Bookstein

1981); otherwise, a decision as to the overriding concern must be made.



Fixed-Point Estimation

The PLS model is estimated by determining (1) the loadings (éy’ QX)
or weights (Hn, EE) which describe how the observations relate to the
unobservables, and (2) the structural relations (%, E), whereby values of
unobservables influence values of the other unobservables in the system.
Instead of optimizing a global scalar function, PLS estimates by way of a
nonlinear operator for which the vector of all estimated item loadings
(éy, éx) is a fixed point. Followingits introduction by Wold in 1963,
the properties of fixed point (FP) estimation have been discussed in Lyttkens
(1968, 1973), Areskoug (1981), and in a collection of papers edited by Wold
(1981). Several developments using some form of FP can be found in the
recent psychometric literature (deLeeuw et al. 1976; Young et al. 1976;

Perreault and Young 1980; Kroonenberg and deLeeuw 1980; Sands and Young

1980; Kruskal 1980; and Carroll et al. 1980).

FP differs from ML models such as LISREL in its basic principles and
assumptions. In ML estimation, the probability of the observed data given
the hypothesized model is maximized. Wold's FP estimation, which is a least
squares approach, minimizes residual variances. ML estimators assume a
parametric model, a family of joint distributions for all observables; FP
operates as a series of interdependent OLS regressions, presuming no distvi-
butional form at all. FP estimation, then, bears no resemblance at all to
the search for zeroes of certain derivatives which characterizes the estima-
tion of ML models.

The distinction between optimizing and fixed-point methods may be
compared with the two main models for solving multiple regressions. If we

state as our goal the constuction of a linear form e + b x, . +b X
VX1.X2 1 ¥X2.xX1 2



which estimates y with least error variance, we face a problem in direct
minimization. But we may instead invoke the vocabulary of path analysis,

referring to the total effect b < of variable x1 on variable y and attempt-
1

ing to partition this into a direct effect b < and an indirect effect
1°%2

b mediated by x_'s effect on x_. The direct and indirect effects
XpXy YXp X, 1 2

taken together must comprise the total: we must have

X, o X * bx X b x X byx (6)
Y% 2% V5N 1

and similarly for X . The result is a system of two equations with two
unknowns which are, of course, identical to the normal equations of the

usual approach. 1In this second version all explicit minimization is rele-

gated to the bivariate analyses, the coefficients b , b , b being
yx yX X_X
1 2 1 2
solutions of an easier optimum problem, the simple regression. Multiple
regression may be thought of, then, as a revision by joint constraints of
simple regression coefficients independently arrived at.

A similar distinction separatesPLS from LISREL in the structural
analysis of systems of latent variables. LISREL poses and solves the global
optimization problem (maximization of likelihood) explicitly. PLS limits
its explicit optimization computations to the now-familiar case of ordinary

multiple regression. The separate simple analyses are jointly adjusted by

nonlinear algebraic constraintsso that "effects" can be computed meaningfully

Analyses
We compare LISREL and PLS using a small data set, with collinear indi-
cators, in the context of a study of consumer dissatisfaction.

In his influential book of 1970, Albert O. Hirschman developed a theory of



consumer reaction to dissatisfaction. He describes two basic modes: Exit
and Voice. The exiting consumer makes use of the market by switching

brands, terminating usage, or by shifting patronage——all'economic actions.

In contrast, Voice is a political action:’ a verbal protest directed at the
seller, and, if remedy is not obtained, sometimesnvia third parties.
Hirschman posits that when the Exit option is blocked or when cross-elastici-
ties are low, Voice will increase. By this reasoning, Exit should dominate
in highly competitive markets, whereas -the more a market resembles a mono-
poly, the more Voice would be expected. Since Seller Concentration is a
measure of monopoly power, we hypothesize that Concentration is negatively

related to Exit and positively related to Voice.

Data

Exit and Voice data were obtained from a nationwide study by Best and
Andreasen (1977). The 1972 Census of Manufacturers' 4-digit concentration
ratios were used as measures of market concentration. In total, seven vari-
ables were used: four measures of Concentration, two measures of Voice
(aided and unaided recall), and one measure of Exit. The Voice and Exit
measures were expressed as the proportion of respondents Wholrecalled having
taken action in each of those categories. From a total of 34 product and
service categories in the Best and Andreasen study, 25 were retained for this
analysis. Together they represent a majority of annual consumer purchases.
The deleted categories either had no corresponding S. I. C. code for concen-

tration ratios or were too general to be meaningful. The resulting correla-

tion matrix is presented in Table 1.

Model 1

In LISREL applications, the most common way of relating unobservables



to data is by means of reflective indicators.

tempts to

In this mode, the model at-

explain the observed correlations. Reflective indicators in a PLS

model imply that the primary objective is to explain the variances of the

observed wvariables.

As a starting point for comparative analysis we esti-

mated the

first model using reflective indicators.

In equation form, model 1 is set forth as follows:

[

O =

Results:

n - 1Y + 4
n! v I}] r! (7)
2 2 2
3 7] -
10 0
nl
= OAyz + € (8)
N
0 )‘y 2 €
3 3
L J L
Ax §
1 1
}\XZ 62
= [E] + (9)
Ax §
3 3
Axu Gq
R [
LISREL

The results in Figure 2 illustrate a problem that most LISREL users

probably have encountered more than once (cf. Joreskog 1977; Bentler 1976;

Areskoug

1981; Driel 1978): one of the variance estimates (in this case

6 , the error of variance of x ) is negative and the corresponding standard-
3 3

ized loading (correlation) is greater than 1.

This is an unacceptable result.
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A common practice for circumventing the problem is to fix the negative
variance at zero and Teestimate the model, apparently on the grounds that
the offending estimate is typically low and insignifican;. However, this
approach has both theoretical and practical flaws. The model to which it
leads is based on neither the principal components nor the common-factor
model (ﬁentler 1976). Also; forcing one offending variance to zero will
quite possibly cause the problem to reappear in other variance estimates.
This is illustrated in Figure 3. When 63 is fixed at zero, the error vari-
ance €3 of y3 becomes negative.

One cause of improper solutions might be failure of tﬁe model to fit
the data (Driel 1978). Given the large chi-square for the models of figures
2 and 3, this possibility cannot be ruled out without further analysis. If the
model fit is to be blamed, the improper solutions should be witiated if 9
is specified as symmetric rather than diagonal. But the results of Figure
4 show that this modification also fails. Even though the model now fits
well, it does so by virtue of several negative variances, some quite large.
Thus improper solutions are not necessarily circumvented and certainly not
resolved by fixing the offending parameters or improving the model's fit.
This is because we are dealing with an algebraic rather than a numerical or
a statistical problem: a matter not of "likelihood" or multivariate
normality, but of patterns of signs and magnitudes of the correlation matrix.
Recall that LISREL's objective is to reproduce as closely as possible the
observed correlation matrix 5 by a matrix whose entries are explicit nonlinear

- functions of the parameters allowed to the model. For model 1, with Og and

O, diagonal, I is modelled as:
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i
1.0
Ylyzxyz 1.0
Ylyzkyg Aylxyz 1.0
X1Y1Ay1 Xx1Y2Ayz Ax1szy3 1.0 (10)
X2Y1AY1 X2YZXY2 X2Y2AY3 XXZAX1 1.0
X3Y1AY1 AX3Y2AY2 Aanz y3 XX3XX1 >\Xa)\xz 1.0
X4Y1KY1 AXuY2XYz Aqu2AYs Axuxx1 Aquxz Axuxxg 1'O~

For the model to be exactly true, it must reproduce the correlations among

the indicators of concentration:

A = ,959 (11)

X2 X1
= ,8797 (12)

X3 X1
A = ,9561 (13)

X3 X2
A A - = .7810 ' (14)

Xy X1
A = .8664 (15)

Xy X2
XA = .9662 (16)

Xy X3 )

Notice that the correlation between these pairs of indicators is a
strong negative function of the absolute difference between their subscripts—-
a characteristic of the familiar "Heywood" and simplex models of items in
series, for which no single-factor model is adequate. For example, from

equations 11-16 it is evident that KXI > ,9594 and Axu > .9662. It follows

that A A > .9268--but r = .7810. Since no X can exceed unity (as the
X4 X1 X1Xy
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standardized error variance in LISREL is equal to 1 - Kz) it is not possible
for I to fit S without impropriety in the solutions; and the closer we come
to fitting S, the smaller will be the chi-square and the larger the magnitude
of the estimated negative variances.

Driel (1978) recommended that variables involved in improper solutions
be deleted. By eliminating variables X, (CR8) and X, (CR20) and the Exit (ys)
variable from the data set-~reducing, incidentally, the collinearity hobbling

the x-block--the model now looks like Mode A in Figure 1:

r 7] - m
1.0 1.0
.7094 1.0 AA 1.0
- y1y2 (17)
.2881 .1827 1.0 A YA A YA 1.0
Y1 x1 y2' x1
.2813 .1539 .7810 1.0 A YA A YA A A 1.0
V1 X2 V2 X2 X1 X2
L A L i

- Again we consider the estimates necessary for an exact fit, Algebraically

N

(cf. Fornell and Larcker 1981b), A may be estimated eitherby (r T /r
X2¥1 y1¥2' X2y2

RN

= 1.30 or by (r

T /r ) .12. The error variances for y are thus
X1¥1 Y1y2 X1y2 1
-.30 and -.12, respectively. ML estimation will conflate these two values
intc a single composite estimate; their pooling thus imputes a solution which
is still improper. The improprietyis not a result of collinearity; one can
have very high correlations and still obtain interpretable estimated models if
the ratios of cross correlations r /r are reasonably low. The improper

X.y. X,y
iy "i'k

solution is rather a consequence of either (a) the failure of a single-factor
model to explain the correlation submatrix for a particular block (unobserv—

able), or (b) inhomogeneities of the cross-correlation submatrices between

blocks which cause them to be obviously of full rank. These are precisely the
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assumptions of LISREL submodels, block by block, which are seldom verifiedin
the course of overall modelling (which is, of course, why they cause prob-

lems).

Results: PLS

In Figure 2, the estimates via PLS for Model 1 are presented above or to the

left of the corresponding LISREL estimates. Comparing them, we note lower
structural parameters Y1 and Y, in PLS but mostly higher loadings Qy’ éx'
PLS does not produce improper estimates, as all residual variances are
actual regression residuals; they are not inferred from the data. The

PLS results are thus interpretable; they suggest a weak negative relation-
ship between Concentration and Exit and a positive relationship between
Concentration and Voice, along the lines suggested by Hirschman. The model
is satisfactory insofar as the loadings, our primary focusin accounting for
observed variances, are quite large. In general, PLS estimates of models
with reflective indicators impute smaller measurement errors and weaker
structural relationships than does LISREL. The algorithm by which the PLS

estimates were obtained may be found in the Appendix to this paper.

Model 2

The cause of improper solutions is generally the attémpt to account
for observed correlation matrices by patterned products of model parameters
that are inadequate. The problem may be circumvented by attending
to variances instead of correlations, that is, by working with components
rather than factors. Components, which are exact linear combinations

of their indicators, "maximize variance," while factors "explain
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covariance." To explore this amelioration we take advantage of the circum-
stance that certain component structures can be estimated by both PLS and
LISREL. The MIMIC model (Joreskog and Goldberger 1975; Stapleton 1978;
Bagozzi, Fornell, and Larcker 198l) is one such case.

Let this LISREL model be:

E1 - Xl
EZ = X
= 2 18
n [YleYgYQ:I+ . (18)
3 3
£ =x
4 4
L J
€
y1 }\YI 1
y A € '
L= [n } + |7 (19)
1
y3 kyg 83

with @E symmetric. The LISREL estimates are presented in Figure 5. For
purposes of interpretation we make reference to the loadings for the x-block,

computed as:

A =R _T, (20)
~X  ~XX ~
to yield A. = .42, A = .51, A_ = .58, A_ = .45. From these loadings
x1 X2 X3 Xy
we compute the elements of O, in Figure 5.
The PLS version of the above model is:
TI=Y€+C (21)
y
1
=1
" [ n1 M2 ﬂﬂ{] Y, (22)
y :
3
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_ 2 (23)
& = [ﬂil Te, Mg ﬂiu}

The resul;s, according to a two-construct mode B estimation (as described
in the appendix), appear in Figure 6. Clearly, the PLS and LISREL solutions °
have identical x-weights (Y's in LISREL, m's in PLS). Further, the loadings
for the y-side (ky‘s in LISREL) are equal to the loadings of the PLS results
up to a factor of I/YPLS’u

Thus, if LISREL is specified in a MIMIC version with QE symmetric, it
produces results identical to those from a PLS model with formative indica-
tors. The formative specification with E = O--that unobservables be exact
linear combinations of their indicators—--is not as restrictive as it may
appear. When the errors of the y-variables are correlated, the error term ¢
of the unobservaﬁle is distributed instead throughout the elements of 9
(see Hauser and Goldberger 1971).

The PLS estimate of the structural parameter 7Y in Model 2, Figure 6,

PLS
is larger than either of the two estimates Yl, Y2 in Model 1, Figure 2. This
is because the primary objective of a formative-mode model is to minimize

the trace of the residual matrix Y (the variance-covariance matrix of ), so
that the measurement portion of Model 2 absorbs the largest possible part of

the total residual, subject to the constraint of being a fixed point. The

formative formulation, then, imputes a stronger relationship between Concen-
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tration and the construct combining Exit with the two Voice measures. The
inverse relationship between Exit and Voice is reflected in the negative

weight for Exit (ﬂnl = -.80) in this construct.

Recapitulation of Models 1 and 2

We pause here to review certain important distinctions we have estab-
lished. Model 1 presumes indicators which are reflective of the constructs.
The LISREL estimation yielded negative variances and standardized loadings
(correlations) greater than one. We showed that these unacceptable estimates
ultimately derived from the LISREL objective of fitting a pattern of para-
meter products to the correlations observed. The PLS estimates, which by
construction cannot yield such improprieties, exhibited smaller measurement
variances but also lower estimated structural parameters. This accords with
the purpose of PLS mode A, which is to explain the variance of the observed
variables by minimizing mean-squared measprement residuals.

Model 2, by contrast, involved formative indicators. Estimates in this
form focus on the variance in the structural portion of the model so that
more of the net failure-of-fit is partitioned into measurement error. We
emphasize that the choice between formative and reflective indicators is not
merely a matter of empirical statistical fact. Choice of indicator mode
brings conceptual, theoretical, and empirical observations to bear‘together
on the objectives of the study; the partitioning of error va;iance can only
be manipulated insofar as it depends on this choice. In particular, a
MIMIC model specified without a disturbance term I but with correlated
measurement errors is equivalent to a formative PLS model with two constructs.

In this case PLS and LISREL produce identical estimated structures.
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Model 3

Even though Model 2 produced consistent results from both LISREL and
PLS, 1t is not an attractive formulation because no distinction is made, at
the abstract level, between Exit and Voice. Our third model makes this dis-
tinction. Let us assume that the objective is to explain the observed
y-variables (that is, in LISREL, their correlations; in PLS, their variances).
In order to avoid uninterpretable results from LISREL, assume also that Con-
centration is formed by its indicators without any surplus variance. We
arrive at a model with both formative and reflective indicators. The LISREL

equations are:

X
1
10 0
nl = Yl Yz Ys Yu Xz + . (24)
B1 n 0 0 0 O X 4
2 3 2
X
iy
T
4 _ - _
y1 A . 0 £
y ”1 1
.Yz = 10 Ayz : + ez (25)
0 A 2 £
Ly3 NE - 3J

where n is Concentration, N is Voice, andy is Exit.
1 2 1

The PLS model is:

10 n ) Y, [E] . ¢ (26)
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X
1
xz
= m, ™ , 27
g [ﬂgl ﬂgz €3 Eu] < .
3
X
| - u—i
— - - -1 F -
y 10 0
! M _I
y {=10 Av L €2 (28)
2 Y2 nz
0 A £
ya Ys 3
- - - - L. -

where n1 is Exit (yl), n2 is Voice, and £ is Concentration.
The two sets of estimates presented in Figure 7 are similar.’ The dis-
turbance terms in the structural portion are slightly higher in PLS, whereas
the measurement residuals are higher in LISREL. These differences derive
from the different fitting objectives. We may explore them in detail by

use of the descriptive statistics from the testing system of Fornell and

Larcker (1981a).

Referring to Table 2, the Average Variance Accounted for (AVA) is the
mean-squared structural parameter. This statistic is slightly higher in
LISREL, Because of the similarity of model specifications, the difference in
AVA is small. Average Variance Extracted by the unobservables (AVE) is the
mean-squared loading for blocks of indicators separately. This statistic is
consistently higher in PLS than in LISREL, due to the smaller imputed measure-
ment errors. For each endogenous construct, Redundancy (which is the product
of the squared structural parameter by AVE) measures the power of the exo-

genous constructs for predicting the y-variables. As Exit (y ) has no measure-
1

ment error by construction, its AVE is 1. Thus, Redundancy for y is YZ in
1
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as well as frequency of convergence. Unlike ML techniques, PLS makes mini-
mal demands about measurement scales, sample size, or the distribution of
residuals. Small sample sizes--sometimes fewer than the number of variables
(Wold 1980c)--can be sufficient for meaningful PLS analyses; and, in contrast
to ML, PLS estimation does not involve a statistical model, thereby avoiding
the need for assumptions regarding scales of measurement. Nominal, ordinal,
and interval-scaled variables are permissible in PLS in the same ways as in

ordinary regression.

A éfimary difference between PLS and LISREL concerns the structure of
unobservables. LISREL specifies the residual structures, while PLS speci-
fies the unobservables. This difference bears important implications which
have long been debated in the psychometric literature (see the review by
Steiger, 1979). The main defense of the factor model is that it allows for
imperfect measurement by assigning surplus variance to the unobservables.
But such measurement error implies certain disturbing consequences. An
infinite number of unobservables may bear the same pattern of correla-
tions with observed variables and yet be only weakly or even negatively cor-
related with each other (Mulaik and McDonald 1978). For exploratory
analyses, such indeterminacy can be very problematic. In confirmatory struc-
tural equations, modelling indeterminacy has been thought to be less of a
problem by reason of presumed existence of "prior knowledge" ruling out con-
flicting explanations. Because the chi-square statistic of fit in LISREL
is identical for all possible unobservables satisfying the same structure of
loadings, a priori knowledge is necessary. However, indeterminacy can
create difficulties for confirmatory studies as well. There have been cases

where several hypothesized models account for the same data equally well
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PLS and A;l in LISREL. Redundancy for predicting the observed Voice indica-
tors is calculated as the product of Yi (PLS) or 8% (LISREL) with thg cor-
responding AVE. Because the measurement errors are smaller, Redundancy is
higher for PLS.

The sharpest difference between the PLS and LISREL estimates is seen in
Operational Variance (OV), which is equal to Redundancy times the squared
multiple correlation of the exogenous indicators with their unobservable
construct. This statistic expresses the degree to which the variances of

the y-observables are accounted for, via the model, by the observed x-

variables. In the PLS solution, because all unobservables are exactly de-
fined, it is identical to Redundancy; in LISREL it is attenuated and there-
fore lower. For instance, when the Redundancy of Voice is multiplied by

the squared multiple correlation of Concentration with its indicators,6 there

results an OV of .072 in LISREL; the corresponding value for PLS is .105.

Discussion
Under the classifical assumptions of independence and normally distri-
buted residuals, ML and OLS estimates in regression analysis are identical.
In structural equation modelling, this is not the case. Except as applied to
certain MIMIC models, PLS and LISREL have different objectives and present
systematically different results. However, as illustrated in Models 2 and 3,
the more similar the model specification, the more similar the results will be.
As we have argued above, LISREL attempts to account for observed correla-
tions, whereas PLS aims to account for variances at the observed or abstract
level (depending upon indicator mode). Other major differences between the

models include assumptions about factor structure, mechanisms of statistical

inference, matters of identification,7 interpretation of measurement error,
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(see Mulaik 1976). Thus, confirmatory studies are not necessarily free
from the problem of having several interpretations. In this paper we sug-
gest an equally serious problem: only indeterminate factors can have im-
proper loadings. Since improper loadings lead to negative variances, such
results do not have several interpretations, but, rather, none at all.

For the discipline of marketing, which is often concerned with predic-
tion and control, other drawbacks flow from indeterminacy. As factor scores
cannot be calculated, specific case predictions are not possible without
prior estimation of the scores themselves. Similarly, testing for outliers
and modelling of factor.scores cannot be done either. PLS avoids factor
indeterminacy by explicitly defining the unobservables. Factor scores for
prediction or further modelling are then readily available.

Yet PLS estimators lack the precision of ML estimators. Given multi-
variate normality, LISREL estimates are efficient in large samples, and sup-
port analytic estimates of asymptotic standard errors. In exchanging far
greater a priori assertion for statistical inference, LISREL is a model for
theory testing. PLS is applicable over a wider range of problems, in
particular, when prior information is wanting and theory is less developed.
However, the theoretical underpinnings of PLS estimation are also less well
developed. Although it appears to converge more quickly than LISREL
(Areskoug 1981), an analytic proof of PLS convergence for general models
has yet to be worked out.

The example used in this paper is not amenable to statistical inference
because the sample is small and nonrandom. But PLS modélling is not neces-
sarily devoid of statistical inference. Although statistical tests are not

integrated within the protocol of estimation, one may invoke the classic
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standard-error formulae of multiple regression or (perhaps more sensibly)
use a Stone-Geisser (Stone 1974; Geisser 1974) test for predictive signi-
ficance. This provides jackknifed standard errors for the individual para-
meters, whereas LISREL calculates standard errors from the inverse of the
information matrix. Both methods have limitations. In PLS, there may be a
problem in selecting the appropriate subgroup size for estimating pseudo-
values in jackknifing. However, the larger the subsample size, the more
reliable the statistic. The standard errors estimated by LISREL are also
fallible. Since each unobservable requires a scale identification restric-
tion affecting the information matrix, standard errors vary by choice of
restriction, and can yield rather unpleasant paradoxes of interpretation
(Pijper and Saris 1981). By contrast, in recursive models, the fixed-
point estimation scheme of PLS is free of identification problems.

The tests for predictive significance, Redundancy, and Operational
Variance can be used to assess the overall "fit" of both LISREL and PLS
models. A corresponding test in LISREL is the likelihood ratio chi-square.
However, this test has some qndesirable properties which limit its ability
to support any conclusions beyond those dealing narrowly with accounting
for observed correlations. Fornell and Larcker (198la, 1981b) showed that
the strength of variable relationships is negatively associated with goodness

of fit in models otherwise isomorphic.

Summary
| For the marketing analyst, the choice between LISREL and PLS is neither
arbitrgry nor straightforward. Both apply'to the same class of
models~-structural equations with unobservables and measurement error—-but

they have different structures and objectives.
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LISREL attempts to account for observed correlations, while PLS aims
at explaining variances (of variables observed or unobserved).

LISREL offers statistical precision in the context of stringent as-
asumptions; PLS trades efficiency for simplicity and fewer assumptions.

The factor model underlying LISREL allows more errors in measurement
than the components model invoked by PLS. In LISREL, unobservables are
truly unobservable; PLS foresakes the consequent enhancements of theoreti-
cal explanation in order to avoid the ambiguities and improprieties which
often ensue.

In sum, nothing less than the general research setting can determine
the appropriate modelling approach. It is within this context that the
LISREL benefits of statistical efficiency and higher estimated relationships
among unobservables should be weighed against the problems associated with
indeterminacy. The analyses of the paper suggest that when relevant corre-
lation submatrices (block by block) are not of the appropriate reduced rank,
factor indeterminacy is more serious than generally acknowledged. The
frequent occurrences of improper and uninterpretable solutions advise

against the use of LISREL unless its assumptions are verifiably true; and,

when they are not, we submit that PLS is more likely to provide meaningful

analysis.
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TABLE 1

CORRELATION MATRIX

Exit

Voice 1

Voice 2

CR 4

CR 8

CR 20

CR 50

(y)
1
(yz)
(y)
(x)
1
(x)
2
(x)
3

(x)
L

1.0

.0079

-.0797

.1024

-.1757

.2000

-.1311

1.0

. 7094

. 2881

.2759

. 3057

.2813

1.0

. 1827

.1820

.1959

.1539

1.0

. 9594 1.0

.8797  .9561
.7810  .8664

1.0

.9662

1.0
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TABLE 2

Model 3: Descriptive Statistics¥®

PLS LISREL
Average Variance Accounted (AVA) for
The Structural Model .165 177
Average Variance Extracted (AVE) by
The Unobservables
oy, (market concentration) ‘ . 256 .228
pvc (voice) .856 .706
0'C (exit 1.0 1.0
ve
Redundancy
ﬁ;l/market concentration 212 .230
R? /market concentration .105 . 087
Y2, ¥3
Operational Variance (0V)
R /x .. .x .212 .230
y1i 1 4
R /x .. .x .105 .072
Y2,53 1 b

*See Fornell and Larcker (198la) for formulas and a detailed description of
these statistics.
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FIGURE 1

THREE DIFFERENT MODES OF RELATING UNOBSERVABLES TO EMPIRICAL INDICATORS
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Mode C: Formative indicators for the exogenous construct,
reflective indicators for the endogenous construct
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FIGURE 2

MODEL 1: PLS AND LISREL ESTIMATES WITH REFLECTIVE INDICATORS*
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FIGURE 3

MODEL 1: LISREL ESTIMATES WITH OFFENDING VARIANCE ESTIMATE FIXED TO ZERO
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FIGURE 4
MODEL 1: LISREL ESTIMATES WITH CORRELATED MEASUREMENT ERRORS FOR

THE EXOGENEOUS CONSTRUCT
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FLGURE 5

MODEL 2: LISREL ESTIMATES
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FIGURE 6

MODEL 2: PLS ESTIMATES




- 32 -

U

FIGURE 7

MODEL 3: PLS AND LISREL ESTIMATES *
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pLs Estimate, corresponding LISREL Estimate in parentheses



FOOTNOTES

Previously known as NIPALS (Nonlinear Iterative Partial Least Squares)
or NILES (Nonlinear Iterative Least Squares).

"Population change'" is presumed to be determined by natality, mortality, and
migration. This example is from Hauser's (1973) criticism of sociologists'
overreliance on reflective indication.

No attempt was made to pool concentration ratios for several categories

to obtain a better fit between the Best and Andreasen data and the S. I. C.
codes. Therefore, substantive conclusions based on the analysis reported
here must be interpreted with caution. Also, given the nature of the
data, the sample size, and the sampling procedure, statistical inference
will play a very minor role in our analyses.

The y-loadings in PLS are: A = 1 A% A
~y YPLS Y1 Y2 Vs

where YPLS is the estimated . structural parameter from PLS, and

Ky e e Ay are the estimated loadings from LISREL. Numerically, we have
1 3

.
A =1 -.47 .31 .31)=|-.83 .56 .55
Y 57 | |

which are the y-loadings.. This can easily be verified by computing the
corresponding loadings for the PLS solution as Ay = Ryy m
~ ~ ~n.

The estimate Y is not available from LISREL but can be computed as:

PLS
- L
R R "R
~N1y ~yy ~M1y
. . b . , -1 -1
Since YPLS is the largest eigenvalue of Eyy Byx §xx gxy’ both PLS and

LISREL provide general models for canonical correlation.

In other comparisons we have found significant structural relations in a
LISREL model while corresponding PLS estimates have been insignificant,
even when the latter was estimated via Mode-B to minimize the structural

error. As shown by Bagozzi, Fornell, and Larcker (1981), this paradox is
traceable to the factor score indeterminacy in LISREL. '

This adiustment is identical to the index of factor score indeterminacvy
proposed by Green (1976). ‘

For recursive models, PLS basically has no problem on this score —-
cf. Bookstein, 1981.



REFERENCES

Kgren, A. (1972), Extensions of the Fixed-Point Method, published doctoral
dissertation, Department of Statistics, University of Uppsala, Sweden.

Apel, H. (1977), Simulation sozio-ckonomischer Zusammanhange-Kritik and
Modification von Systems Analysis, doctoral dissertation, J. W. von
Goethe University, Frankfurt and Main, Germany.

Areskoug, B. (1981), "Some Asymptotic Properties of PLS Estimators and a

Simulation Study for Comparisons between LISREL and PLS," in Systems

 under Indirect Observation: Causality, Structure, Prediction, K. G.
Joreskog and H. Wold, eds. Amsterdam: North Holland, in press.

,» H. Wold, and E. Lyttkens (1975), "Six Models with Two
Blocks of Observables as Indicators for One or Two Latent Variables,"
Research Report No. 6, Department of Statistics, University of
Gothenburg, Sweden.

Bagozzi, Richard P. (1980), Causal Models in Marketing. New York: Wiley
and Sons.

, Claes Fornell, and David F. Larcker (1981), "Canonical
Correlation Analysis as a Special Case of a Structural Relations Model,"
Multivariate Behavioral Research, 16, in press.

Bentler, P. M. (1976), '"Multistructure Statistical Model Applied to Factor
Analysis," Multivariate Behavioral Research, 11, 3-25.

Bergstrom, R. (1972), "An Investigation of the Reduced Fixed-Point Method,"
seminar paper, Department of Statistics, University of Uppsala, Sweden.

Best, Arthur and Alan R. Andreasen (1977), "Consumer Response to Unsatisfac-
tory Purchases: A Survey of Perceiving Defects, Voicing Complaints and
Obtaining Redress," Law & Society, 11, 701-42.

' Bodin, L. (1974), Recursive Fixed-Point Estimation: Theory and Application,
published doctoral dissertation, Department of Statistics, University
of Uppsala, Sweden.

Bookstein, Fred L. (1980), "Data Analysis by Partial Least Squares," in Evalu-
ation of Econometric Models, J. Kmenta and J. B. Ramsey, eds. New York:
Academic Press, 75-90.

(1981), "The Geometric Meaning of Soft Modeling with Some
Generalizations," in Systems under Indirect Observation: Causality,
Structure, Prediction, K. G. Jdreskog and H. Wold, eds. Amsterdam:
North Holland, in press.

Carroll, J. Douglas, Sandra Pruzansky, and Joseph Kruskal (1980), "CANDELINC:
A General Approach to Multidimensional Analysis of Many-Way Arrays with
Linear Constraints on Parameters," Psychometrika, 45, 3-24.




\

deLeeuw, J., F. W. Young, and Y. Takane (1976), "Additive Structure in
Qualitative Data: An Alternating Least Squares Method with Optimal
Scaling Features,'" Psychometrika, 41, 471-503.

Driel, Otto van (1978), "On Various Causes of Improper Solutions in Maxi-
mum Likelihood Factor Anmalysis," Psychometrika, 43, 225-43.

Fornell, Claes (1982), ed. A Second Generation of Multivariate Analysis in
Marketing, New York: Praeger.

and David F. Larcker (198la), "Evaluating Structural Equa-
tion Models with Unobservable Variables and Measurement Error,' Journal
of Marketing Research, 18 (February), 39-50.

and David F. Larcker (1981b), '"Structural Equation Models
with Unobservable Variables and Measurement Error: Algebra and Statis-
tics," Journal of Marketing Research, 18 (August), 382-88.

Geisser, S. (1974), "A Predictive Approach to the Random Effect Model,"
Biometrika, 61, 101-7.

Green, Bert F. (1976), "On the Factor Score Controversy,'" Psychometrika, 41,
263-66.

Hauser, Robert M. (1973), "Disaggregating a Social-Psychological Model of
Educational Attainment,'" in Structural Equation Models in the Social
Sciences, A. S. Goldberger and O. D. Duncan, eds. New York: Seminar
Press, 255-84.

and Arthur S. Goldberger (1971), "The Treatment of Unobser-
vable Variables in Path Analysis," in Sociological Methodology, H. L.
Costner, ed. San Francisco: Jossey-Bass, 81-117.

Hirschman, Albert 0. (1970), Exit, Voice, and Loyalty--Responses to Decline
in Firms, Organizations, and States. Cambridge: Harvard University
Press.

Hui, B. S. (1978), "The Partial Least Squares Approach to Path Models of
Indirectly Observed Variables with Multiple Indicators,' unpublished
doctoral thesis, University of Pennsylvania.

Jagpal, Harsharanjeet S. (1981), '"Measuring Joint Advertising Effects in
Multiproduct Firms," Journal of Advertising Research, 21, No. 1, 65-69.

Joreskog, Karl G. (1970), "A General Method for Analysis of Covariance
Structures,'" Biometrika, 57, 239-51.

(1973), "A General Method for Estimating a Linear Structural
Equation System," in Structural Equation Models in the Social Sciences,
A. S. Goldberger and O. D. Duncan, eds. New York: Seminar Press,
85-112.




(1979), "Structural Equation Models in the Social Sciences:

Specification, Estimation and Testing," in Advances in Factor Analysis
and Structural Equation Models, Karl G. Joreskog and Dag Sorbom, eds.
Cambridge, Mass.: ABT Books, 105-27.

and Arthur S. Goldberger (1975), "Estimation of a Model

with Multiple Indicators and Multiple Causes of a Single Latent Vari-
able," Journal of the American Statistical Association, 70, 631-39.

Joreskog, Karl G. and Dag Sorbom (1978), LISREL IV: Analysis of Linear
Structural Relationships by the Method of Maximum Likelihood. Chicago:
National Educational Resources.

Joreskog, Karl G. and Herman Wold (1981), eds. Systems under Indirect
Observation: Causality, Structure, Prediction. Amsterdam: North
Holland, in press.

Kowalski, B. R., R. W. Gergerlach, and H. Wold (1981), "Chemical Systems
under Indirect Observation," in Systems under Indirect Observation:
Causality, Structure, Prediction, K. G. Joreskog and H. Wold, eds.
Amsterdam: North Holland, in press.

Kroonenberg, Pieter M. and Jan deLeeuw (1980), "Principal Component Analy-
sis of Three-Mode Data by Means of Alternating Least Squares Algorithms,'
Psychometrika, 45, 69-97.

Kruskal, Joseph (1980), "An Elegant New/0ld Approach to Estimating Path
Models (Structural Equation Models) with Unobserved Variables,"
technical report. Murray Hill, N. J.: Bell Laboratories.

Lyttkens, E. (1973), "The Fixed-Point Method for Estimating Interdependent
Systems with the Underlying Model Specification,'" Journal of the Royal
Statistical Society, Al36, 353-94.

(1968), "On the Fixed-Point Property of Wold's Iterative
Estimation Method for Principal Components,'" in Multivariate Analysis,
P. R. Krishnaiah, ed. New York: Academic Press, 335-50.

Meissner, W. and M. Uhle-Fassing (1981), "PLS--Modeling and Estimation of
Politimetric Models," in Systems under Indirect Observation: Causality,
Structure, Prediction, K. G. Joreskog and H. Wold, eds. Amsterdam:
North Holland, in press.

Mulaik, Stanley A. (1976), ''Comments on the Measurement of Factorial Indeter-
minacy," Psychometrika, 41, 249-62.

and Roderick P. McDonald (1978), "The Effect of Additional
Variables on Factor Indeterminacy in Models with a Single Common
Factor," Psychometrika, 43, 177-92.

Noonan, Richard (1980), "School Environments and School Outcomes: An Empir-
ical Comparative Study Using IEA Data," working paper series No. 26,
Institute of International Education, University of Stockholm, Sweden.



and Herman Wold (1977), "NIPALS Path Modelling with Latent
Variables: Analyzing School Survey Data Using Nonlinear Iterative
Partial Least Squares," Scandinavian Journal of Educational Research,
21, 33-61.

(1980), "PLS Path Modelling with Latent Variables: Analyz-
ing School Survey Data Using Partial Least Squares--Part II,"
Scandinavian Journal of Educational Research, 24, 1-24.

Perreault, William D. and Forrest W. Young (1980), "Alternating Least
Squares Optimal Scaling: Analysis of Nonmetric Data in Marketing
Research," Journal of Marketing Research, 17 (February), 1-13.

Pijper, de W. M. and W. E. Saris (1981), "The Effect of Identification
Restriction on the Test Statistic in Latent Variable Models," in Systems
under Indirect Observation: Causality, Structure, Prediction, K. G.
Joreskog and H. Wold, eds. Amsterdam: North Holland, in press.

Sands, R. and F. W. Young (1980), "Component Models for Three-Way Data: An
Alternating Least Squares Algorithm with Optimal Scaling Features,"
Psychometrika, 45, 39-87.

Stapelton, D. C. (1978), "Analyzing Political Participation Data with a MIMIC
Model," in Sociological Methodology, San Francisco: Jossey-Bass, 52-74.

Steiger, James H. (1979), "Factor Indeterminacy in the 1930's and the 1970's—-
~ Some Interesting Parallels," Psychometrika, 44, 157-67.

Stone, M. (1974), "Cross-Validatory Choice and Assessment of Statistical
Predictions," Journal of the Royal Statistical Society, B36, 111-33.

Wold, Herman (1963), "Toward a Verdict on Macroeconomic Simultaneous Equa-
tions,'" in Semaine d'étude sur le rdle de 1'analyse économétrique dans
la formulation des plans de développement, P. Salviucci, ed., Scripta
Varia 28 (Pontifical Academy of Science, Vatican City). Cited in Wold, H.

(1981) ed. The Fixed Point Approach in Interdependent Svstems. Amsterdam:
North Holland.

(1965), "A Fixed-Point Theorem with Econometric Background,
I-1I," Arkiv for Matematik, 6, 209-40.

(1974), "Causal Flows with Latent Variables: Partings of
the Ways in the Light of NIPALS Modeling," European Economic Review, 5
67-86.

b

(1975), "Path Models with Latent Variables: The NIPALS
Approach," in Quantitative Sociology: International Perspectives on
Mathematical and Statistical Model Building, H. M. Blalock et al.,
eds. New York: Academic Press, 307-57.

(1980a), "Model Construction and Evaluation When Theoreti-
cal Knowledge Is Scarce--Theory and Application of Partial Least
Squares," in Evaluation of Econometric Models, J. Kmenta and J. G.
Ramsey, eds. New York: Academic Press, 47-74.




(1980b), "Soft Modelling: Intermediate between Traditional

Model Building and Data Analysis,' Mathematical Statistics, 6, 333-46.

(1980c), "Factors Influencing the Outcome of Economic Sanc-

tions: An Application of Soft Modeling," paper presented at the Fourth
World Congress of the Econometric Society, AIX-en-Provence, France.

(1981) ed. The Fixed Point Approach to Interdependént Systems.

Amsterdam: North Holland.



“um

-

Appendix

PLS Algorithms for Models 1, 2, and 3 of ‘the text

The computations of PLS estimation are performed by iterations
of explicit simple and multiple regressions. This can easily be
accomplished within such computer packages as.MIDAS, SAS, and TROLL.
Specialized PLS programs are also available. 'Interested'readers may
contact the first author at the_Graduate School of Business Administration,
The University of Michigan, Ann Arbor, Michigan, 48109, concerning

these programs.

Model 1 (Figure 2).
Initialize. Set N, =Yy = Exit, ny, =¥, + Y3 = Voice,

E= x., + x2 + X3 + x4 = Concentration.

1

Loop. HNormalize Nye Ny, and & to variance unity.

Regress Nyr Ny O Xy, Xy Xq4 X, separately:

T A toEyy

n2 = }\zixi + Ezi ’ i = l, 2, 3, 4:
Construct

R 4

i=1
the minus sign because n, and Ny have covariances of opposite

sign with ¢.

Regress ¢ on Y, and y3 separately:

E= A3¥; *t oegi

Compute = A

Il ™ w

Ny 3i¥i

i=2

There is no Ny since this block has only one indicator.

Test. If ¢ is not equal to ¢ or Ny to oo Loop again.

Otherwise,

Finish. Regress Ny and n, separately on ¢ for the

structural parameters Yir Yo



Model 2 (Figure 6) .
Initialize. Set n = yl+y2+y3, £ = xl+x2+x3+x4.
Loop. Normalize n and ¢ to variance unity.
Regress n on Xy, X,, X3, X, jointly:
4
n = X ﬂixi+ € .
i=1 " "
Construct
N 4
g = X T X:
- i=1 Mt
Regress £ bn Yir Yyr Y3 jointly:
N 3
g = )X T,..V. + € .
i=1 E1- 1 &
R 3
Construct n = .Z ﬂgiyl .
i=1
Test. If ¢ is not equal to ¢ or n ton , Loop again.
Otherwise,
Finish. Regress n on ¢ for the structural parameter .
Model 3 (Figure 7).
Initialize. Set n, = yl = Exit, N, = y2+y3 = Voice,
£ = xl+xéx3+x4 = Concentration.

Loop. Normalize Ny, Mo and ¢ to variance unity.

Regress

n‘ll

N1

=3
[\S]

Ny, ON X, Xy Xgy X, jointly:
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Compute
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Regress & on y,, ¥j separately:

= A
£ v, 2
= A
3 Y2y2
n 3
Compute n, = I
2 .
1=2

A

Test, If & is not equal to ¢ or

Otherwise,
Finish. Regress

structural parameters

1

and

Yy
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Ny to

Ny separately on &£

Yoo

UPY Loop again.
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