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A GENERAL MODEL AND SIMPLE ALGORITHM FOR
REDUNDANCY ANALYSIS
Abstract
Stewart and Love proposed redundancy as an index for measuring the amount
of shared variance between two sets of variables. Van den Wollenberg presented
a method for maximizing redundancy. Johansson extended the approach to include
derivation of optimal Y-variates, given the X-variates. This paper shows that
redundancy maximization with Johansson's extension can be accomplished via a

simple iterative algorithm based on Wold's Partial Least Squares.






1. Introduction

Following the publication of van den Wollenberg's [1977] paper on
redundancy maximization, discussions and extensions of his approach have been
developed by Johansson [1981], DeSarbo [1981], Muller [1981], Dawson-Saunders
[1983], and Tyler [1982].

A limitation of van den Wollenberg'é redundancy solution was pointed out
by Johansson and later by Tyler. Specifically, van den Wollenberg's approach
implies that the Y-variates are derived independently of the X-variates using
the eigenvectors of 3;;§yx5xy’ i.e., the transformation of Y-variates is not
related to the transformation of the X-variates. As a result, as opposed to
canonical correlations, the correlations between X and Y variates are not
optimal. Johansson [1981] extended van den Wollenberg's method to include the
derivation of Y-variates which are maximally correlated with the X-variates
constructed to maximize the redundancy of the y-variables. He also shows that
these Y-variates have some desirable properties of orthogonality. Thus,
Johansson's approach appears very attractive. |

The purpose of this paper is to demonstrate that Johansson's extended ver-
sion of redundancy analysis can be accomplished via a very simple iterative
algorithm involving nothing more than a series of simple and multiple
regressions. A useful feature of the algorithm lies in its simplicity. There
is no need for the analyst to construct his own computer program; all that is
necessary is a program for standard multiple regression such as MIDAS, SAS, or
TROLL. As a result, Johansson's extended redundancy analysis is easily avail-

able to most applied researchers.

2. Redundancy Analysis
Stewart and Love [1968] developed a nonsymmetric index of redundancy
which represents the mean variance in one set of variables predicted by a
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linear composite or variate of another set of variables. The redundancy index

is:

2 1
RO, = vy —= A A
Vo Ry tyngtyny

where RDy is the redundancy of the criteria given the 2th canonical vari-
L

ate of the predictors, Yy is the canonical correlation coefficient, qy is the

number of y-variables, éyn is the vector of loadings of the y-variables on
z .

their &P canonical variate Nge
It has also been shown [e.g., Johansson 1981] that the redundancy index
can be viewed as the mean squared loadings of the variables of the criteria set

on the canonical variate of the predictor set, g, i.e.,

RD, =E£
2 y

A' A
~ygz~y€2'

In canonical correlation analysis, only the Yi portion of the redundancy
index is maximized. Van den Wollenberg [1977] suggested that redundancy per se

could be maximized. Maximization of redundancy results in two general char-

acteristic equations:

(R_R_=-AR Ja=0
~Xy ~yX O~XX
R_R_ = AR =0

("YX"XY B~yy)§

where Aa and XB are eigenvalues while a and B are weight vectors.

Van den Wollenberg goes on to develop the case for extracting successive
variates such that these are orthogonal to variates already comstructed within
the same variable set. It is not, in general, possible to have biorthogonal
variates in redundancy analysis.

Johansson [1981] presents two solutions for deriving Y-variates given

X-variates derived to maximize the redundancy in the y-variables. The first
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solution, a least squares approach, satisfies the orthogonality condition
g;gyygm = 0, £ # m but not the condition gégxygm = 0, & # m where 92 defines
the weights of the 2th X variate and §m defines the weights of the cor-
responding Y variate. The second approach, a restandardized solution, fulfills
the opposite orthogonality condition, i.e., the solutions are complementary.

We first present the iterative algorithm for redundancy maximization. 1In
the next section we show the equivalence of this approach to Johansson's solu-

tion. Following this, the numerical example used by both van den Wollenberg

and Johansson is applied.

3. The Algorithm

The algorithm derives from Wold's [1966] extension of his fix—point method
to nonlinear iterative Partial Least.Squares (PLS) which has been shown to be
a general model for principal components and canonical correlation analysis
[e.g., Areskoug 1982]. As we will show here, Johansson's extension of
redundancy analysis can also be obtained via this algorithm. Thus, even before
the term "redundancy” was coined by Stewart and Love in 1968 and well before
van den Wollenberg presented his analytical solution to redundancy maximization
in 1977, a method existed that not only maximized redundancy but also incor-
ported the attractive features of Johansson's [1981] extension. And, as we
will see, the approach involves nothing but traditional OLS regressions in an
iterative fashion using a fixed point constraint.

The following series of OLS regressions is executed:

Initialize



LooE

Normalize &,n to variance unity. Regress n on
X5 000y xp jointly:
n =% +..0Fax + en .

PP

Compute

A

Regress y;, « ¢+ + , yq separately on &:

v, = 81£+ €

<
]
™
e
+
m

Compute

S
1By

Test

If é not equal to § or nton (within some chosen convergence criteria),

loop again. Otherwise
Finish

Regress n on § for the parameter Y (the correlation between the

Y-variate and the X-variate).

4, Equivalence to Johansson's Least Squares Solution
Following analysis similar to that outlined by Areskoug [1982] in the case
of canonical correlation, we can show that the above algorithm leads to eigen-
value equations which could be solved for a and §. It also permits us to
compare these eigenvalue equations with van den Wollenberg's and Johansson's

to assess the equivalence of the approaches.
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In PLS, the estimated latent variables (components) are defined as the

linear forms:

£ = fx0 (1)

and n = f,y8 (2)

where: X and Y are matrices of observations from T cases and: f1 and f2 are

A

scalar constants to give unit variance to & and n.

1 -l

= ' ! = ! .
1
1 -1
— =T '8'(y'y)8 = B'R_B .
-2 B'(y'y)8 = B'R B
2

f is the scalar constant which transforms the eigenvector corresponding with
the largest eigenvalue in classical eigenvalue equations to standardized
weights.

The parameters of the redundancy model were estimated by PLS in the fol-
lowing iterative fashion.

Start Choose arbitrary weights for B and from (2) let

~O0) f§0)¥§(0) . o
Step 1 Regress A'°) on x jointly to get al’)

@ = TR
and from (3)

R e W .

Now from (1) let:



Substitution of (6)

and regress Yys + 0 v s yq on §

and fr

&)

a

where £ = f

O

)

£(0)

E(O) - r(é(o),z)
om (5)
(0) - £(0) (0)
g - fl gng . ¢

= £(0)£(0) -1
= f776 'R R

~XX~XY
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1f2 and Ma =R

R
~XX~Xy ~yX

R

separately

into (4) gives 9(1) in terms of «

)

Substitution of (4) into (6) gives g(l) in terms of 2(0)

9(1)

= (00, -1
= £7°f, 'R_R R

3©)

(0)y 4(0)
£ 8
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where M, = R R "R

B

SteE n

and

o0

g(“)

Now if

lim
n—-—>

~yX~XX XY

= f(n—l)M a(n—l)
a~

= f(n_l)Msg(n_l)

the iterative procedure converges we must have:

g(n) = lim
n-->w

o - g

(5)

(6)

)

(@)

(9

(10)

(1)

(12)

(13)



and

1im g™ =1 gD - g, (14)
n—-> n-—>®

The iterative procedure v(n) = Av(n_l)

where v, scaled in some fashion
known as the power method, converges to the eigenvector of A that corresponds
to its largest eigenvalue [Morrison 1976, pp. 279-82].

Then the solution must satisfy the general eigenvalue equation:

(Mv - XVI)Y = 0 where v = a,8 . (15)

To obtain nonzero solutions consider first as

From (15) and (7)

(BB Ry ~ ADg = 0

or equivalently

(R Ry = ARy )e = 0 (16)

Solving (16) for the largest root Xa’ we can then proceed to solve for

Similarly for B, from (15) and (9) we have the eigenvalue equation

(gyxg'}lchy - AgDg = 0 )

which we solve for the largest eigenvalue XB and hence proceed to solve for
B.

When comparing the above eigenvalue equations to those derived by van den
Wollenberg we find that (16) is consistent with his general characteristic
equation:

(R_R _ - AR_a=0
~Xy~yx  ~xx’e

and hence the PLS solution and van den Wollenberg's redundancy solution give

identical solutions for g, i.e., the weights of the £ variate, as expected.
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Van den Wollenberg does not present a solution for f given the optimal
£ variate, however Johansson does for his least squares and restandardized
solutions. Examining the least squares solution for the first n variate,
Johansson arrives at his equation (6):

B'R o = A (18)

where A indicates the correlation between the first variate pair.
Now, from (4) and (13)

_ 1
¢ fZBxx~xy§

and substituting into (18) we get

_1
| . =
f2§ gyxgxxgxyﬁ A =0 (19)

post-multiplying by 8 and dividing by f2§'§ where B'B is a scalar
we arrive at

g8 =0 or ® KIR - Ag1)B = 0 (20)

=YX ~KX~Ky

“YX“XXBXY £,8'8
which is the same eigenvalue equation as (17) for the first n variate. Hence
the PLS solution is equivalent to Johansson's least squares solution for the
weights of both the £ and n variates in the first redundancy pair.

The PLS results would be consistent with Johansson's for the second and
higher order redundancy variates based on his argument regarding the general

case for the jth variate [Johansson 1981, p. 96]. Also similar equivalencie s

can be found if the redundancy of the x-variables is examined given n variates.

5. Numerical Example
Van den Wollenberg's [1977] "artificial” data will be used to illustrate
the equivalency of results using the PLS algorithm and results from Johansson's
least squares extension. The input correlation matrix is presented in Table 1.
Using van den Wollenberg's data as analyzed by both van den Wollenberg

and Johansson, we note that our results are completely consistent with
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Johansson;s (see Table 2). As expected, the correlation between £ and n in
the iterative algorithm and JQhansson's extension is larger than in van den
Wollenberg's ca;e, while the opposite is true for the sum of the squared load-
ings of the y-variables on n. The net result is that the redundancy of the

y-variables in all solutions is the same.

6. Conclusion
This paper has shown that a simple, easily implementable algorithm based
on Wold's PLS, when applied to redundancy analysis, not only derives optimal
X-variates to maximize redundancy with respect to the y-variables but also
produces Y-variates which maximally correlate with the derived X-variates. 1In
addition, this algorithm produces Y-variates with the desirable orthogonality
properties of Johansson's least squares solution, i.e., §£~y

yin
£ # m.



TABLE

.800

.140

.060

""003

«265

404

723

1. Van den Wollenberg's Correlation Matrix

X

.060

140

062

.203

.709

461

X3

.800
422
J14
-.142

-.012

X4

.710
440
.089

—"037

b

400
200

.000

)

.000

.200

400
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Notes: a.
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Table 2. (Cont'd)

Results, although not given, must be the same as in PLS and van den
Wollenberg's Redundancy Analysis since Johansson's extensions do
not change the redundancy or the & variate.

As van den Wollenberg does not present these results, nor does the

REDANAL program [Thissen and van den Wollenberg 1975] produce them,
these loadings and weights have been calculated from:

Y\ 1/2

(&)
2 k— = 1, L] . . F) q
.

1

and B R A .
~ ~yy~y

A
Yk

I

Since the weights of the y-variables for n in PLS and Johansson's
extension are equivalent, so must be the loadings since

A R .
~y "YY§

It appears that there has been a transposition error in van den
Wollenberg's Table 5. Thus the loadings presented here are incor-

rectly labeled in his Table 5 as the x-variable loadings on the
Y-variates.
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