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1. SIZE AND SHAPE OF THE EARTH

Since the time of Eratosthenes (ca. 300 B.C.) the classical approach to
the solution of this problem has been to measure long arcs on the surface of
the earth and combine these with astronomically-observed positional data to
compute a best-fitting mathematical surface. This method has, with the Amer-
ican continental triangulation and the Europe-Asia-Africa complex of tri-
angulation, probably reached its practical ultimate in application in the
last ten years. There are two basic circumstances that place practical lim-
itations on this classical approach:

a. The accuracy, and even significance, of astronomical determina-
tions of position are dependent on the assumption that a "true" vertical
direction is available at the point of observation. For several genera-
tions it has been known that the only available fundamental vertical
reference, the direction of gravity, is not absolute and is deflected
by random gravitational forces caused by the fact that the earth's crust
is composed of matter that is not uniformly distributed. This effect
results in a "deflection of the vertical."

b. It has not been feasible with currently-operational measuring
techniques to measure across large water spans. Thus, satisfactory
connections between the separate continental land masses have not been
made.

2. DEFLECTION OF THE VERTICAL

It has been demonstrated by Stokes, Clarke, Helmert, Hayford, and more
recently, by Vening-Meinesz and Heiskanen, among others, that it is possible
to calculate the effects of the deflections of the vertical if sufficient
systematic observations of the acceleration of gravity be made on a world-
wide basis. The magnitude of such an operation is tremendous, and, even now,
with a tremendous program of observing and correlating gravity data the goal
has not been reached, although serious attempts are being made to derive
valid conclusions based on the present incomplete data. Obviously, extensive
observations cannot be made in the extensive areas of the world that are not
friendly to the U.S. Also, it has been difficult to obtain sufficient ob-
servations in the ocean areas. Some relief for these situations is now pro-
vided by the probability of deriving extensive conclusions about the gravity
field by analysis of observed orbits of artifical earth satellites.

3, ARC MEASUREMENT
The direct measurement of a distance on the earth and the coordinates

of its termini resolves itself into the procedure usually designated "arc
measurement.” Although, except for base-lines, the method seldom involves



a direct length measurement, it is, in effect, the measurement of a series

of comparatively short chords (5-50 miles) computed from what is, in effect,

a series of plane triangles observed by triangulation, usually a comparatively
short distance above the sea-level surface. By appropriate computation, in-
volving knowledge of the height of each line above sea-level, these series of
chords are reduced to equivalent arc-lengths at the theoretical sea-level sur-
face. As stated in Para. 1, almost all the basic triangulation in all the
civilized nations of the world has been of quality appropriate for this use,
and, when inter-connected across national boundaries, has been computed into
several continent-wide networks with many astronomic stations, which provide
good solutions for each isolated continental mass, It is not likely that the
parameters so derived, and now in common use for the reduction of triangula-
tion data for engineering operations, can be significantly improved by re-
computation with additional measurements of the same kind. A very substantial
improvement is possible, however, if the continental masses can themselves

be comnected by direct measurement. This would not only improve the accuracy
of the parameters of the size and shape of the earth, but would, more impor-
tant, make it possible to relate all geographic positions, throughout the
world, on a common datum,

4, REFERENCE SPHEROID

If positions of points are to be stated in terms of geographic coordi~-
naetes, i.e., latitude and longitude, a mathematically-expressed surface must
be assumed for the sea-level surface of the earth, This figure may be a
sphere or some more-complicated surface. It is the type of surface to be
assumed, the numerical parameters by which it is expressed, and the extent
to which the actual non-mathematical shape of the earth conforms to this
idealized figure, which, together, constitute the problem of geodesy. Since
very early times, the sphere was assumed to be the ideal shape to represent
the earth, What might be called the beginnings of modern geodesy was the
effort of Jean Louis Picard in 1669-70, where triangulation with telescopes
was used to measure a meridional arc in France. This work was based on the
assumption that the earth figure was spherical. Sir Isaac Newton, utilizing
the results of this work, proved (1687) that, in theory, the earth should
be an oblate spheroid of revolution. This was demonstrated by the French in
1735-37 when they made their famous arc measurements in Lapland and in Peru,
This ideal shape for the basis of computations has generally been used for
almost all geodetic work since then, although there has been a multitude of
sets of parameters determined and used by many distinguished observers and
organizations. The work of Hayford in 1910 led to the computation of a fig-
ure that was adopted in 1924 as the International Ellipsoid by the Inter-
national Geodetic Association. Subsequent work, particularly involving ar-
tificial earth satellites has given reason to suspect thet this figure can
be improved slightly.



5. SPHEROIDS IN USE

The U,S., Coast and Geodetic Survey has adopted the Clarke Spheroid of
1866 for its work in the United States. Based on this precedent, Canada and
the Central American countries have also adopted this spheroid. Most of the
newly-adjusted work in Europe and Africa as well as in Asia has been computed
on the International Ellipsoid. To indicate the range of the parameters,
following are the data for several ellipsoids (of revolution):

Semi-Major Axis (a),

Figure . Flattening (a-b)/a
Everest 1830 6,377,276 1/300.8
Bessel 1841 6,377,397 1/299.15
Clerke 1866 6,378,206 1/295,0
Clarke 1880 6,378,249 1/293.5
Helmert (1907) 6,378,200 1/298.3
International (1910) 6,378,388 1/297.0
Krassowski (1938) 6,378,245 1/298.,3%
Hough (1957) 6,378,270 1/297.0
Army Map Service (1960) 6,378,160 1/298.3
NASA (Kaula) (1961) 6,378,163 1/298,24

6. GEODETIC DATUM

When a reference figure has been selected, there still remains the prob-
lem of datum. Some particular point on the reference figure must be selected
as an initial point from which all other points in the system are computed.
The latitude and longitude of this point must be assigned and held fixed and
also an azimuth to some adjacent station must be held fixed. Thus, it is
possible for many separate surveys to be computed on the same reference
spheroid but they will still not be based on the same geodetic datum, unless
they are all directly connected by some measurement to the same initial point.
Thus, it is seen that, at present, there is no way of expressing geodetic lat-
itudes and longitudes in Europe and in Americea referred to the same datum
(neglecting the rather weak connection across the North Atlantic Ocean by
HIRAN measurements). For various scientific reasons, it is highly desirable
to effect connections between the continental land masses in order to have
all geodetic positions expressed in a single world-wide datum,

7. INTER-CONTINENTAL TIES
Obviously, standard triangulation techniques cannct be utilized in ef-

fecting inter-continental ties, because of the long single measurements re-
quired in the ties. It seems that one of the longest lines of triangulation



ever observed was 237.7 kilometers long, observed in California by the U.S.
Coast and Geodetic Survey shortly before 1900. Present limits on the HIRAN
procedure seem to be of the order of 600-800 kilometers. However, some very
promising techniques for extremely long-range distance measurements have re-
cently been suggested. The most promising appears to be one that is an out-
growth of the use of ballistic cameras for tracking test missiles at the
Atlantic Missile Range. Extremely precise and sophisticated systems have been
conceived, designed, constructed, and used under many test conditions for the
determination of precise positions of high-speed missiles at long distances
from the observing sites. It seems quite practicable to utilize an extension
of this system to make the observations for specially-organized operations
for the making of inter-continental ties,

8. USE OF BALLISTIC CAMERAS

The use of ballistic cemeras for inter-continental ties involves some
bold thinking, simple principles (although complex in epplication), a revival
of traditional astrometric principles in use for a couple of generations by
astronomers, and the utilization of one new piece of hardware-—~the long-range
rocket or an artificial earth-satellite. The basic operation, as presently
considered, would involve sending & rocket into such a trajectory (and alti-
tude) that it would be substantially above the horizon for observers on both
continents to be connected. The rocket would be put into trajectory at night
(for both sets of observers) and would be equipped with equipment capable of
putting forth a series of high-intensity, short-durastion flashes, either on
commend or in accordance with a pre-determined schedule. Two or more bal-
listic camereas would be established at located points on each continent to
be connected. Shutters would be open for a short time before, during, and
after the flashes, thus recording the positions of the flashes photograph-
ically, and simultaneously recording & number of stars on the same plate,
Scaling the plate coordinates of the flashes, and also of the stars, would
provide date which, combined with the known Right Ascensions and declinations
of stars in the same vicinity on the plate, would permit computation of a
direction and angle of elevation from each camers station to each flash.
Obviously, if two or more cameras on each continent are accurately relsated
to the same geodetic datum, the position of each flash can be computed, rel-
ative to that same datum. If such positions can be computed from datums on
two continents, the inter-relationship of the datums can be determined. The
instrumentation and computation requirements are sophisticated and expensive
but the system i1s solidly based on theory and on extrapolation of reliable
tests under conditions which need only to be expanded in scope in order to
be fully operative for geodetic measurements.

9. ACCURACY OF BALLISTIC CAMERAS

The system of position determination, essentially a large-scale triangu-
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lation process, just described, is of practical application only 1f its in-
herent accuracy approaches that of conventional geodetic techniques. It has
been repeatedly demonstrated in many different photogrammetric applications,
ranging from astrometry to maepping and military photo-interpretation, that,
with first-order instrumentation, plate coordinates can be scaled with an in-
ternal accuracy of about 2 microns. External influences, such as emulsion in-
stability and instrument calibration, probably increase this to an absolute
value of approximately 3 microns. This means that, using a ballistic camera
of 300 millimeter focal length, the direction to a single flash-point can be
determined to approximately 2 seconds of arc, with respect to the reference of
the plate. The positions of the stars, visible on the same plate and scaled
in the same manner as the flash-point, are usually known to less than one
second of arc, although there are systematic errors in the star catalogs which
may increase this value slightly. It should be noted that one of the basic
assumptions on which the confidence of accuracy is founded is the assumption
of practical elimination of the refraction problem. It is assumed that the
flash point will be high enough above the earth so as to be essentially beyond
any effects of the atmosphere, Thus, it is assumed that the flash position

as recorded is subject to the same refraction effects as the neighboring star
images to which it is referred. Thus, in the data reduction process using

the absolute positions of the stars, the effects of refraction are eliminated
without need for evaluation.

10. COMPARISON WITH THEODOLITE MEASUREMENTS

With modern first-order theodolites, angle measurements may be made
wherein there is significance in the first decimal-place of seconds. This
might lead to conclusions that conventional measurements might have an ad-
vantage over ballistic cemera methods in the range of a decimal order. How-
ever, there are three conditions that modify this apparent advantage:

1. It takes many theodclite angle measurements to cover the same
distance extent that can be reached with a single ballistic camera shot.

2. Fach ballistic camera observation is referred to a practically
absolute direction reference, the star background itself, while direc-
tion is carried through a series of theodolite angle measurements by
calculaticn.

3, The ballistic camera technique involves multiple closely-spaced
flashes at each "shot," all recorded on one plate at the camera. Thus,
each plate provides a series of directions, each independent in itself,
but all referred to the same set of reference stars. Thus, multiple
flashes and multiple reference stars provide redundancies which, sub-
jected to proper statistical treatment, give increased precision and
accuracy.

It is concluded, therefore, that results comparasble with standard first-
order triangulation may be accomplished by use of ballistic cameras and
high-altitude flashes recorded against a star background.



11, USE OF ASTRONOMICAL OBSERVATORIES

One of the principal uses of equipment at the various astronomical ob-
servatories has been in the field of astrometry. Photographic techniques have
been used to determine the positions of stars, planets, comets, asteroids,
etc, Except for final computations these procedures are practically identical
with those outlined for high-altitude flash triangulation. Obviously, many of
the excellent astronomic facilities are suitable for use in flash triangula-
tion, using their own standard data reduction techniques. In fact, they have
one major advantage over ballistic cameras in that their focal lengths are
usually several times longer than ballistic camera objectives, Since plate-
scaling accuracy is quite independent of focal length, the error in angular
direction is an inverse function of focal length., Hence directions determined
to flash points by use of astronomical facilities can be expected to be several
times more accurate than those determined by ballistic cameras. A major dif-
ficulty lies in the fact that such observatory equipment is not portable, but
is permanently fixed in position. Hence, such facilities are useful only when
the individual installations happen to be favorably situated in geographic
position to provide high-strength geometry for a particular flash location in
space. However, in such internationally important endeavors as inter-con-
tinental ties, every effort should be made to accomplish simultaneous utiliza-
tion of as many facilities as possible not only to provide a high order or re-
dundancy in the determination but also to insure at least the probability of
satisfactory conclusion of an expensive operation in face of the many external
factors that may cause failures at individual stations. It should also be
pointed out that the field of view of long focal-length equipment is quite
narrow, which increases the difficulty of application to flash triangulation.

12, THE PROBLEM OF POSITIONAL ACCURACY

Since it is anticipated that flash triangulation for inter-continental
ties will be undertaken only with sufficient instrumentation to provide
abundant redundancies in each solution, an important phase of the data re-
duction will be to provide figures indicating the magnitude of the error in
the solution, This will involve a sophisticated rigid least-squares adjust-
ment to be accomplished by electronic computer., However, when the compute-
tion is accomplished, the quality end accuracy of the positional data ob-
tained must be assessed if any utility is to be obtained from the operation.
In connection with the appraisal of the errors and in placing an estimate
on the accuracy of the positional data, every effort must be made to include
an assessment of all factors which might influence the results. Since the
problem to be solved is primarily one of datum-relationships, and since any
set of observing sites must be inter-connected on one datum, presently ac-
complished only by conventional survey methods, two questions arise which
involve quantities that may enter into the magnitudes of the solution errors:



1. What is the magnitude of the accumulated error in the basic
control surveys connecting a set of observing sites in a single common
datum?

2. What is the magnitude of the errors in the surveys connecting
the individual instruments to the basic control surveys, since it is
improbable that, in general, the instruments will be positioned directly
on basic control points?

13, POSITIONAL ACCURACY OF BALLISTIC CAMERA SITE

At first thought, it might seem that the camera-site must be related to
geodetic datum by first-order measurements. Actually, since the distances
from high-order control points to the observing sites are usually compara-
tively short (less then seven miles) lower-order measurements will determine
the positions of the sites relative to datum with adequate accuracy. In view
of the long distances between sites, the largest part of the error in the
observing net is actually in the geodetic net itself.

1L, ERROR IN CONTROL SURVEYS

The fundemental question in the problem of inter-continental ties by
flash triangulation is that of the accuracy with which the inter-relation-
ship of the ballistic camera or observatory sites is known, as referred to a
common geodetic datum. The problem of the establishment of a geodetic datum
is very complex and is beyond the scope of this investigation. It is not
proposed to discuss at length the correlative problem of assessing the ac-
curacy with which a particular adjusted control net actually represents the
datum on which it has been computed. This is a question to which partial
answers are given when inter-continental ties have been accomplished and
answers forthcoming as to the reletionships between datums thus connected.
However, it is important that estimates be available for the error in the
lengths of the lines relating the observing sites from which flash-point
positions are computed. It should be noted that lengths computed from geo-
detic position will not be greatly affected by the original choice of ref-
erence spheroid on which the geodetic datum is based. The greatest single
source of error in such lengths will be the cumulative effect of the errors
of observation which are distributed imperfectly during the course of the
complicated procedure of geodetic adjustment. There has been little actual
numerical investigation of the effect of this distribution and & theoretical
derivation would be hopelessly complicated and, if general in application,
too simplified to have great reliability. Let it be sufficient to state that
the primary assumptions of the eadjustment procedure: (1) that all systematic
errors have been compensated before adjustment; and (2) that the remaining
accldental errors have a normal distribution, are not completely met in prac-
tice and that, therefore, the Method of Least Squares is, at best, only a
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practical compromise to the problem of adjustment of discordant observstions
to a probable, mathematically-consistent configuration., The fact remains
that there are some undefinable unevalueble systematic errors, and some ac-
cidental errors that do not follow a normal distribution. It is thus con-
cluded that the most reliable, generally-applicable, empirical formulas for
defining the error as a function of the distance should not be in terms of
the square root of the distance, as Least Squares theory might suggest; nor
vet in terms of the first power of the distance, as would be suggested by
the assumption that the error is completely systematic. As a compromise,

it would seem reasonable to propose a formula involving the "two-thirds"
power of the distance. This exponent implies that the error is largely nor-
mal and accidental, but increases the value slightly for the probability that
some systematic error also remains. Extensive examination of distributed
linear misclosures in the national network of the U.S. Coast and Geodetic
Survey indicates that a general conformity with the misclosures will be ob-
tained from the formula:

B o= L06(02/°
where:
E = error, in meters
K = distance between stations, in kilometers

It must be emphasized that the above formula is only applicable in a very
general way, and the error computed from it should be rounded off to the
nearest meter, It must also be pointed out that the formula is intended to
work with the distance between the points as actually measured through the
control system. In most cases, this will not be the air-line distance. It
is quite possible for two stetions a hundred miles apart to be connected
only through a series of triangulation arcs totaling three hundred to four
hundred miles in length,

15. PROPORTIONAL ACCURACY

The above formula for error in the adjusted triangulation of the United
States 1s a modification of a formula originally offered by Simmons as a means
for estimating the proportional accuracy of an arc of triesngulation, The Sim-
mons formula, also empirical and based on the general assumptions stated in
the previous paragraph, states that the proportional accuracy is approximately
1 part in 20,000 (NDl/S, where M is the length in miles. This figure is
probably quite conservative. A less conservative figure is proposed by the
Army Map Service, by whom it is stated that proportional accuracy is approx-
imately 1 part in 8460 (M)/2.



16, APPLICATIONS OF FORMULA

It is emphasized again that error values derived from the above form-
ulae, or any similar formulae, are approximate only and serve only as general
guides. In an actual flash-triangulation operation for which accurate anal-
ysis is imperative, recourse should be had to the original computations of
the actual points used. This might seem to be extremely troublesome and
costly but, compared to the total cost of a missile operation, the additional
cost for an accurate analysis would be negligible.

17. COORDINATE SYSTEM

In expanding the flash triangulation system to a world-wide operation
serious questions arise as to the appropriateness of the conventional geodetic
reference system of latitude and longitude. First, there is the problem of
fitting long linear measurements to a reference ellipsoid which may not be
a good fit to the actual conditions. In addition, the ellipsoidal system is
convenient for computetion only when measured lengths can be assumed to be
approximate arc measurement, on or near the surface of the ellipsoid. These
conditions do not present problems when surveys are made by conventional
means where base-lines are closely identical with arcs and where triangle
sides are so short (5-50 miles) that each can be considered as a chord and
readily corrected to & corresponding arc length, Also, all operations are
performed close to the surface of the ellipsoid (the highest point on the
earth being less than six miles above sea-level) and effects of heights are
almost inconsequential and easily corrected. On the other hand, flash
triangulation involves extremely long lines which (except for refraction)
are essentially straight., In addition, the actual positions of the flash
points (which are important points in the computations) are high above the
surface of earth--100 miles or more, to overcome earth curvature. Spherical
computation, and reduction of heights is infinitely more complicated under
these circumstances, and should not be used for the data reduction of flash
triangulation.

18,  RECTANGULAR COORDINATES

In view of the circumstances outlined in the previous paragraph, it is
recommended that flash triangulation computations be made on a system of
rectangular (cartesian) coordinates. The system recommended is Geocentric
Coordinates, with the origin at the center of the earth, Coordinates should
be in linear units, measured from three mutually perpendicular planes. To
facilitate inter-conversion with geographic coordinates (latitude and longi-
tude) and the incorporation of astronomical data, these planes should cor-
respond to the basic references of the geographic system. Thus the equa-
torial plane is the plane from which "z" coordinates are measured, positive
if north, and negetive if south. The second plane is the meridional plane



through the prime meridian at Greenwich, from which "y" coordinates are
measured, positive if east, and negative if west. The third plane is the
meridional plane through 90° east and 90° west longitude, from which "x" co-
ordinates are measured, positive for longitudes (east or west) less than 90°,
negative for longitudes (east or west) greater than 90°. Coordinates are to
be stated in meter units. The principal advantages of this system derive
from facility of computation with straight-line measurements and intersec-
tions, and, once a basic set of coordinated points is established, subsequent
position computations are absolutely independent of any reference ellipsoid.

19. CONVERSION TO GEOCENTRIC COORDINATES

If the latitude and longitude and true elevation above the reference el-
lipsoid are known for any point, the Geocentric Coordinates can be computed
by & comparatively simple conversion, as follows:

Tet:

= latitude of point

= longitude of point

elevation of point above surface of reference ellipsoid
= gsemi-major axis of reference ellipsoid

= sgemi-minor axis of reference ellipsoid

= eccentricity of reference ellipsoid, defined by:

® T ® 5 > O
i

e2 = (a2 - b2)/a2

N = length of normal to the ellipsoid, at latitude "@," perpendic-
ular to the tangent to the meridional section through the
point. Length is measured from the surface of the ellipsoid
to the intersection with the minor (polar) axis of the el-
lipsoid. The elevation "h" is measured along the outward
extension of the normal, from the ellipsoid surface to the
point, This is the radius of curvature perpendicular to
the meridian (or, in the prime vertical).

Since the ellipsoid of reference is an ellipsoid of revolution, the meridional
section is an ellipse. From the properties of an ellipse:

N = af(l- egsin2¢)l/2

and :
x = [(N+h)cos glcos A
v = [(N+h)cos glsin A
z = [N(1-e2)+h]sin 4.
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20, PARAMETERS FOR CONVERSION OF CLARKE 1866 SPHEROID

For conversion of geographic coordinates based on the Clarke 1866 Sphe-
roid, the following parameters must be used in the formulae stated above:

a 6,378,206.4 meters
e® 0.00676 86580
1-¢® 0.99%23% 13420

i

Sufficient significant figures are given for computation of coordinates to
millimeters. Ten decimal-place trigonometric functions must be used in the
computation to attain this accuracy.

21, PARAMETERS FOR CONVERSION OF INTERNATIONAL ELLIPSOID

For conversion of geographic coordinates based on the International El-
lipsoid, the following parameters must be used:

a 6,378,388 meters
e® = 0.00672 26701
1-¢° 0.99%27 73299

22, PROBLEM OF ELEVATION

In the formulae stated in preceding paragrephs, it has been assumed that
the orthometric elevation of a point above mean sea-level datum, as ordinarily
determined by spirit levels, will provide the numerical value for the quantity
"h," This will not theoretically be true, and, in precision operations, the
accuracy of position determinations will be adversely affected. The difficulty
lies in the fact that elevations determined by spirit levels are referred to
the mean sea-level surface which is a gently undulating surface which 1s, at
every point, normal to the direction of gravity. The direction of gravity at
any point is the resultant of all the gravitational forces acting at that
point (plus centrifugal force due to the earth's rotation), end these forces
are not systematic but are distorted by the unsystematic distribution of mass
in the earth. The mean sea-level surface is called the Geoid. This surface
is the one actually measured and determined by the arc-measurement method,
and the reference ellipsoid is thus a methematically-defined meen surface
which approximates the Geold.,

23, GEOID HEIGHTS
It is necessary, therefore, in transforming existing basic control points

from geographic coordinates and elevations above the Geold to Geocentric
Rectangular Coordinstes, to determine with some accuracy the reletionship at
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each point between the Geoid and the reference ellipsoid. There is, at pres-
ent, no direct method of measuring this difference. It can be inferred from
analysis of extensive observations of gravity, called the gravimetric method,
and it can be approximated by integration of a series of determinations of
the deflections of the vertical by comparison of astronomic and geodetic meas-
urements of latitude and longitude. This latter system is called the astro-
geodetic method.

ok, DEFLECTION OF THE VERTICAL

The deviation of the local direction of gravity (the normal to the Geoid)
from the direction of the normal to the spheroid through the same point is the
deflection of the vertical. It can be determined in terms of a particular geo-
detic datum by astronomic determination of latitude and longitude. Comparison
of these values with the geodetic latitude and longitude computed through tri-
angulation or other direct measurement technique will give the deflection of
the vertical resolved into two components as follows:

Deflection of the vertical in the Meridian = §
where

astronomic letitude—geodetic latitude

B - %

Deflection of the vertical in the Prime Vertlcael = 1

ure
1]

where

(astronomic longitude-—geodetic longitude) cosine
latitude
(Mg = Ag)cos §

=
n

1}

NOTE: In the ebove expression, EAST longitudes are POSITIVE, WEST
longitudes are NEGATIVE.

25, GECID PROFILE

If the deflection components have been observed at each station in a
series of control points all computed on the same geodetic datum, it is pos-
sible to calculate by numerical integration & Geoid Profile, that is to say,
e series of numbers which indicate, at each station in the serles, the change
in vertical displacement between the actual geoid end the reference ellipsoid
as represented by the geodetic datum used. It is importent to realize that
this method cennot, alone, give the sbsolute verticel displacement, but can
only, sterting with an assumed or estimated velue, give the sequential rel-
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ative relationships, in a manner analogous to a line of spirit levels which
is accurate internally but is not connected to mean sea-level datum.

26. DATA REQUIRED FOR GEOID PROFILE

The computation of a geoid profile requires that the proper astronomical
observations for latitude and longitude be made at each station in a con-
nected series of control points, for each of which a geodetic latitude and
longitude is available, all adjusted to a common geodetic datum. Also the
height of the geoid above (or below) the ellipsoid must be known from external
data, or assumed or estimated, at some one control point in the series. This
point will then serve as the "datum point." As pointed out before, the ab-
solute value of geold height cannot be determined from the astro-geodetic pro-
file technique.,

27. ©SIOPE OF GEOID

If the deflection components are known at a point, the slope of the geoid
at the same point can be determined because, by definition, the geoid is a
surface which is everywhere perpendicular to the direction of gravity. The
elemental section of the geoid at a point is thus & plane surface, on which
a meridional trace is inclined to the meridional tangent to the ellipsoid by
an angle equal to the meridian component (&) of the deflection, and, sim-
ilarly, on which a line at right angles to the meridional trace is inclined
to the tangent plane to the ellipse by an angle equal to the prime vertical
component (1) of the deflection. The slope of this elemental geoidal section
in any other azimuth can be computed by appropriate combination of these two
component slopes.

28, SLOPE OF THE GEOID ON A GIVEN AZIMUTH

If the meridian and prime vertical components of the deflection are
given at a point, the slope of the geoid in a particular azimuth is obtained
as follows:

Given:
¢ = meridian component of the deflection of the vertical (in
seconds of arc).
n = prime vertical component of the deflection of the vertical

(in seconds of arc).
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o = azimuth of direction in which geoid slope is wanted, stated
as direction away from the given point, defined in terms of
a clockwise angle from SOUTH, to conform to geodetic practice
in the U.S.

X = slope of geoid, in the direction of the azimuth ¢, in seconds
of arc, from the tangent plane to the reference ellipsoid,
at the given point. A POSITIVE sign indicates slope UPWARDS,
away from the center of the ellipsoid; NEGATIVE sign indi-
cates slope DOWNWARD, toward the center of the ellipsoid.

Then:
X = (& cosa+n sin Q)
NOTE: The convention used here is to assign the same signs to the trigono-
metric functions as in the traditional convention of trigonometry, &as

exemplified in U.S. Coast and Geodetic Survey Special Publication No.
231, Natural Sines and Cosines.

29. MEAN GEOIDAL SLOPE BEIWEEN TWO STATIONS

In calculating the difference in geoidal height between two stations,
given the necessary data for computation of geoidal slope at each station,
it is necessary to calculate the mean geoidal slope along the line connecting
the two stations. The essential steps are as follows:

Given:

For Station A: geodetic latitude (@#,), geodetic longitude (Ap)
deflection components (gA) and (np)

For Station B: geodetic latitude (#p), geodetic longitude (Ap)
deflection components (£p) and (np)

The compute mean geoidal slope from A to B.

1. Make geodetic inverse position computation. This will yield
the geodetic azimuth from A to B (opp) and from B to A (0,) end the
geodetic distance (SAB), on the ellipsoid from A to B. For purposes of
computing mean geoidal slope, use & "mean" value for the azimuth from
A to B (which will be designated Opp), thus:

Opg = 1/2lopg + (opy * 180) ] (180° is sdded to or subtracted
from opp, &8s required to keep 0° < (opy % 180°) < 360).
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2, Compute: Xp = (&, cos Qup + 1y sin Tpp) (this is in seconds).

3. Compute: Xg

(&g cos Oy + np sin aAB)(also in seconds).

L, Compute mean geoidal slope from A to B, the mean of the two pre-
ceding quantities:

XAB

l/Q(XA + Xp) (in seconds of arc)

=6

1]

(Xy + Xg) 2.42k - 10 (in radians),

Careful attention must be paid to the signs of all data. The value of mean
geoidal slope (Xpp) has a sign which indicates whether the geoid is rising
(+) or falling (-) with respect to the ellipsoid in progressing from A to B.
If the slope in the direction from B to A is required, then the azimuth used
must be:

opp = 1/2[aBA + (opp * 180) ], which will differ from Qjpp by 180°
and change the signs of both trigonometric functions.

Special note must be taken of the fact that in evaluating n = (A - kg)cos é,
the adopted convention assumes that longitudes are counted positively to the
eastward from 0° to 360°, or, alternatively, that west longitudes are negative.
This will give opposite signs to all values of n published by the U.S. Coast
and Geodetic Survey, as, for example, in Hayford's classic work "Figure of

the Earth and Isostasy from Measurements in the United States" or in Special
Publication No. 229. It is, however, necessary to use a mathematically-con-
sistent system in order to obtain the same sense of geoidal slope anywhere

in the world.

30, GEOIDAL HEIGHT DIFFERENCES

The mean geoidal slope between two stations may be used to compute the
difference in the geoidal height between the same two stations. Recalling
that the geoidetic distance between the two stations is obtained by inverse
computation, and assuming that the form of the geoidal profile between the
stations is fairly approximated by a curve of no higher than second-degree,
the difference between the geoid height at A and at B may be computed by the
simple procedure of multiplying the distance AB by the mean geoidal slope in
radians, thus:

ANpR = Spp(Xy + Xp) - 2.L42k-1076 (units same as "S").
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31, GEOIDAL PROFILE

By fixing the geoidal height (N) at some one point, it is possible to
construct a geoidal profile through any number of stations along a control
line or triangulation arc, provided the required astronomical observations
are made at each station. The computation is routine, in the form outlined
in the previous paragraphs. It is merely necessary to compute, for every
consecutive pair of stations, the mean geoidal slope, and multiply by the
geodetic distance, It is, of course, necessary, at each station, to cal-
culate the geoidal slope (X) along the line coming into the station and also
along the line from the station to the next point on the profile. The same
deflection components are used but they are resolved separately along the
two different azimuths,

The geoidal profile is thus constructed in much the same manner as a
construction profile; the distance is projected into a straight representa-
tion and the height above or below the reference ellipsoid is accumulated
as the continuous sum of the successive AN's, starting with one given or
assumed value, The result of the operation is a set of '"geoidal heights"
corresponding to the points at which observations were made.

32, ADJUSTMENT OF GEOIDAL PROFILE

The computation method outlined above is applicable to a single series
of points extending along a single route. If numerous such stations are
available in an ares distribution, or along a band such as in a series typ-
ified by the distribution of stations in a triangulation arc, it is possible
to use the availability of several stations in proximity to provide redundant
independent determinations of the geoidal height at any one station. Theo-
retically, geoidal heights brought into a station through several different
adjacent stations should be in exact agreement, Due to accidental errors of
observation, this will not be the case, in practice. Valuable information
as to the accuracy of a determination will be provided by this process, and
it should be utilized whenever the data are available. If such independent
determinations are made, the discordance should be eliminated by meaning at
the station, before proceeding to the determination at a succeeding station.
This provides a rough adjustment of the data as the computation proceeds.

3%, ALTERNATE COMPUTATIONAL METHODS
The method outlined above for computation of increments for geoidal pro-
files 1s completely general and can be accomplished with a minimum of tables

and special equipment. Two other methods have also been used with consider-
able success—the '"Canadian Method" and the "Hayford Method."
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3L, CANADIAN METHOD

The Canadian Method may be considered simpler because it does not require
the azimuth between a pair of stations in the computation of the geoidal pro-
file height increment between them. Thus, there is no need for the numerous
inverse position computations between successive stations as required in the
method described above. The basic data required are the same:

bl)¢2

il

geodetic latitudes of the two stations

AMshe = geodetic longitudes of the two stations

1,60 = meridian components of the deflections of the vertical
at the two stations (in seconds)

Ni,N2 = ©Pprime vertical components of the deflections of the

vertical at the two stations (in seconds).

A table of ellipsoid functions, giving the length of 1 second of latitude
and 1 second of longitude with latitude argument, is also required for the
particular reference ellipsoid used.

The geoidal height increment, AN;-.o, is computed by assuming the mean
meridional and prime vertical components to be valid for the distance be-
tween the stations, as the distance is represented by the meridional distance
and the mean latitudinal distance.

Let:
M = length, in meters, of 1 second of latitude, at latitude
(B1 + $2) /2
P = length, in meters, of 1 second of longitude, at latitude
(P2 + d2)/2
E o= (&1 +t2)/2
T = (n1+n2)/2.
Then:

MNi-2 = [(M)(E) + (P)(q) ] + 4.848-107° (meters)

A geoidal height for a single station computed by this method from several
adjacent will be subject to adjustment, as described for the previous method,
to give a single value, from which to proceed to the next station.
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35. HAYFORD METHOD

The Hayford Method is a semi-graphic procedure that is particularly
suitable for mass-production of geoid height determinations over large areas
in a wide distribution. This method requires too much preparation of maps
and diagrams for economical application to single profiles but is more
practicable for use in determination of geoidal contour maps where the shape
of the geoid is defined in terms of contours showing its deviation from the
ideal surface of the reference spheroid. The method was first applied by
Hayford in his original studies of isostasy and its influence on the deter-
mination of the size and shape of the earth, It is described in detail in
Heyford's classic work, "The Figure of the Farth and Isostasy from Measure-
ments in the United States" (1909) and it is not believed to be necessary
to recapitulate in detail here.

36. ACCURACY OF THE ASTRO-GEODETIC GEOID-PROFILE DETERMINATION

A method for estimating the accuracy of an astro-geodetic profile is to
consider the variebility of the rate of change of geoidal slope. If the
change in slope along the profile proceeds in smooth transition from point
to point, the method of computing geoidal height increments by utilizing the
mean geoidal slope between successive stations is mathematically sound within
the limits of the accuracy of the normal observing procedures by means of
which the data on which the computation is based are obtained. However, if
the slope changes greatly and erratically between stations, the probability
of inaccurate computation of geoidal height increments is indicated., This
situation can only be improved by the meking of additional observations for
the deflection of the vertical, thus reducing the interval between stations.
The shorter interval must be selected, as necessary, to provide sufficient
data to indicate smoother transition.

37. ESTIMATION OF ERROR IN GECIDAL HEIGHT

It is possible, by analysis, to meke a rough estimate of the error in
a geoldal height computed by the average slope method due to method of com-
putation wherein the mean slope over a section between two observed stations
is taken to be the mean of the two values at the two stations. This is, in
effect, an interpolation for the mean value between successive listed values
in a table.

A reasonable approximation to this situation can be made by tabulating,
for any profile, the successive values for X (in radians) for the successive
profile sections between observed stations. Having made such tabulation,
list the first differences and the second differences for all entries (there
will, of course, be no second differences computable for the first and last
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entries). Bessel's formula for the interpolation of a mean value between
successive entries in a table, assuming third differences constant (which
they are not but their significance may be ignored) , requires that the mean
of two successive entries be corrected by one-eighth of the mean of the suc-
cessive second differences corresponding to the two tabular entries. Thus,
an indication of the error in any section may be had by merely computing one-
eighth of the mean of the second differences corresponding to the two slope
values (a "section" here is a portion of the profile between mid-points be-
tween three successive observed stations). The standard error of the slope
of a typical section can be obtained from the standard statistical definition
(the square root of [the sum of the squares of the errors of all "sections,"
divided by the number of sections]). This standard error will be in radians,
and, when multiplied by the average length of a section, will give the
stendard error in geoidal height increment. The total error in geoidal
height can be estimeted by multiplying the standard error of geoidal height
increment by the square root of the number of sections in the profile.

38, RECOMMENDATIONS

Since geoidal heights are important to the conversion of geographic
positions to geocentric coordinates, it is important that the procedures be
improved. It is recommended that continuing study be directed toward the
development of field techniques that will increase the accuracy and reduce
the time and cost involved in making the observations for the determination
of the deflections of the vertical. If material progress can be made toward
these objectives, not only will the utilization of existing control be sim-
plified, but also the accuracy of computation of new control will be im-
proved due to increase in control of azimuth by astronomical observations.
The increase in computational load can easily be handled by electronic com-
puter applications.
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