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A General Bayesian Model for Compliance Testing

-J. T. Godfrey and R. W. Andrews
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Introduction

Statistical sampling techniques are accepted as procedures that may be
used by an auditor. In particular, in testing for compliance with internal
accounting control procedures, attribute sampling methods are widely used.l
For these tests the objective is to conclude whether or not a rate of non-
compliance with é specific attribute of an internal control system is greater
than or equal to a predetermined level.

In this paper we develop a Bayesian decision model for compliance testing
by auditors. We describe the process that may be followed by an auditor in
using our model. This process begins with an elicitation of a prior probability
distribution for the error rate and ends with a determination of the sample
size required to accomplish a set of auditing and statistical objectives.

We show that for a suitable set of alternative prior distributions from which
an auditor may choose, it is possible to develop tables of required sample
sizes for accomplishing alternative statistical objectives. The primary
emphasis of this paper is the statistical developments that lead from a very
general and flexible prior distribution on a population error rate to a dis-
crete posterior distribution on the number of errors in a finite population.

Through the posterior distribution we are able to calculate the required sample

size.

1
The AICPA has provided support in the statistical sampling area under the

Individual Study Program of its Continuing Professional Education. In this
program, Volume 2--Sampling for Attributes, Volume 4--Discovery Sampling, and
Volume 6--Field Manual of Statistical Sampling relate to statistical methods
for use in the study and evaluation of internal control systems.

Support for this research came froﬁ the Graduate School of Business Adminis-
tration at The University of Michigan and is gratefully appreciated.



Current Compliance Test Methodology

In compliance test applications a sample is usually taken without re-
placement from afinite population. Thus the hypergeometric distribution is the
appropriate probability distribution to use; in the case of large populations,
however, the binomial distribution is often used instead.2 We use the binomial

distribution given below to illustrate current attribute test methodology:

r* i .
Plr<rsl = [ Dop Q-0
i=0

where r = number of errors observed in a sample,

sample size, and

n

p = probability that an item will be in error.
If p* is the maximum tolerable error rate (desired upper precision limit), REL*
is the desired reliability level, and r* is the acceptance criterion for errors

in a sample, then we can solve the following for n, the required sample size.
r* i ]
Plr < t*] = ] (Iil) p¥ (1 - p¥)""" = 1 - REL*
i=0

If we already have sample results (n, r*) we can either insert p* into the equa-
tion and solve for the achieved reliability or insert REL*aad solve for the
achieved upper precision limit at the given reliability level, Thus, if we

have any three components of the set (n, r*, p*, REL*), we can solve for the
fourth., This is the procedure commonly followed in various attribute sampling
plans used by auditors. It is clear that for given r*, p*, and REL* the required
sample size is the same, despite any experience or knowledge acquired in prior

audits.

2The Poisson Distribution is sometimes used as an approximation of the
binomial for the purpose of calculational ease.
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The upper precision limit is a value for the unknown population error
rate such that if it were the true error rate, the probability of obtaining
the observed sample results (or worse) is equal to REL¥, the reliability level.

The upper precision limit, p*, is found by solving the following for p¥*,

n " »
b D apn = RELE,
i=r*+l

where r* = number of errors for acceptance of sample results. Implicit in this,
the classicial approach, is the view that the population error rate ié an un-
known constant. In the Bayesian approach the population error rate is viewed
as a random variable. A statistical conclusion resulting from the Bayesian
approach is a probablistic statement about the populatién error rate, while

a conclusion resulting from the classical approach is a statement about the
probability of getting results worse than those actually obtained, given that
p* is thé population error rate.

A Bayesian statistical model explicitly incorporates into a solution a
decision maker's past knowledge about a decision problem. This knowledge takes
the form of a prior probability distribution on a range of possible error
rates that may exist. TFor example, if control had been excellent in the'past,
then most(of the probability could be located near an error rate equal to
zero; on the other hand, if controls had been only fair, most of the probabi-
lity could be located on error rates greater than zero. Figure 1 depicts these
two situations by means of two different probability density functions,
fl(p) and fz(p), respectively. It is reasonable to expect that a sampling plan
for a current period will be influenced by the results from past sampling plans,

as well as by other knowledge gained from a preliminary review of a client's
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internal controllsystem. The Bayesian model we propose has this characteristic.
We believe that a Bayesian decision model is a more realistic representation
of the decision problem and provides a more logical conclusion than does the

classical model.
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Figure 1

Bayesian Model Development

The development of Bayesian decision models in auditing has been proposed
by other authors. 1In the compliance testing area, Kraft's analysis [1968] used
three specific prior distributions on six possible error rates and three sample
sizes. Kraft demonstrated how, for different numbers of errors observed in a constant
sample size, the cumulative posterior distribution changes, given a sPecifilc
prior distribution. His results also demonstrated how,) for a fixed number of errors
observed and fixed prior distribution, the cumulative posterior distribution

changes, given different sample sizes. Our model is more general than Kraft's
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in that our prior distribution provides greater flexibility than the three
specific prior distributions Kraft considered and is not limited to six pos-
sible error rates.
Tracy [1969] also suggested a Bayesian model for compliance testing and
used the hypergeometric distribution to produce a discrete posterior distribution
on the number of errors in a finite population. Our model also produces a

discrete posterior distribution, but we also show howsucha distribution

may be systematically linked to a general class of prior distributions and

used to determine required sample sizes.

Francisco [1972] investigated the choice between discrete and continuous
prior distributions on the error rate and proposed the beta distribution as a
reasonable continuous distribution to use. Our model uses the beta distribution

but, as will be seen below, we also propose a discreteprior distributionon the

parameters of the beta distribution in order to produce greater generality.

We view our model as an extension and formalization of the previously
developed models discussed above. Our formalized model provides an oppor-
tunity to implement the Bayesian approach in‘compliance testing by systematically
developing tables analogous to those currently used for compliance testing.

As mentioned above, we select the beta distribution,

f'(plr,’n') = F(r')llzgg'zr') pr - (l - p)n T-l

; 0<p<xl

n'>r'>0

as a prior distribution on p, the population error rate. The beta distribution
provides a rich family of possible distributions for p which can reflect a wide
variety of auditor beliefs. Felix and Grimlund [1977] also selected the beta

distribution, and we agree with them that "an auditor can adequately express
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his prior judgmental uncertainty for the population error rate (p) using the
beta distribution.! Corless [1972] used the beta distribution as an instru-
ment in his experiments on the elicitation of a prior distribution on p, and we
have already referenced Francisco[1972] and his use of the beta distribution.
In the most common case,where an auditor believes the error rate is very
close to zero, it is simple to alter the values of r' and n' to obtain a.distri-

bution for p with most of the probability mass between, say, 0 and 5 percent

error rates.' As an example of this, consider the three prior distributions used
by Kraft [1968] given in Table 1. These distributions were chosen by
Table 1
Kraft Prior Probability Distributions on Population Error Rate

Cumulative Distributions

Error [Prob (p < p*)]
Rate
—p* 1 2 3
.001 .60 - .25 .25
.01 .90 .75 .90
.02 .95 ' .90 .95
.03 .98 .95 .98
.04 .99 .98 .99
.05 1.00 1.00 1.00

Kraft to reflect typical auditing situations where the population error rate is
expected to be low. Kraft suggested that if an auditor could choose

one of the three'distributioﬁé, then predetermined tables cqQuld be developed
to give the appropriate sample size for whichever prior distribution is selected.
Table 2 coﬁpares Kraft's three prior distributions with three

specific beta distributions. It should be apparent from Table 2 that a choice

3Required sample size also depends on the maximum tolerable
error rate (upper précision limit) and the reliability level,
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of values for the parameters (r',n') of the beta distribution provides a wide
range of possible distributions for p. The flexibility of the beta distribution

makes it an appealing form for an auditor's prior distribution on the population

error rate.

Table 2

Comparison of Kraft Distributions with
Three Different Specific Beta Distributions

Prior Probability Distributions on Population Error Rates

Cumulative Distributions

[Prob (p < p*)]

Error Beta Beta Beta
Rate Kraft r'=,2 Kraft r'=.6 Kraft r'=.84
p¥ 1 n'=56.2 2 n'=84.6 3 n'=195.84
.001 .60 .606 .25 .245 .25 .246
.01 .90 .891 J5 .759 .90 .893
.02 .95 .956 .90 .914 .95 .987
.03 .98 .981 .95 .968 .98 .998
.04 .99 .991 .98 .988 .99 .9998
.05 1.00 .996 1.00 .995 1.00 .99997

Continuing with the example of three prior distributions, suppose an
auditor was indifferent with respect to a choice of one of the three distribu-

tions. In that case the parameters (r', n') could be considered as

joint random variables with the prior‘distribution given below.

Prior Distribution on the Parameters of
a Beta Distribution

(xr',n") f(r',n")
(-2, 56.2) i3
(.6, 84.6)

(.84, 195.84)

Hl—'li—‘ =
. ~SN
oW LW W
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Our general Bayesian model development will use prior distribution on (r',n')
which will provide model generality. For example, if an auditor could be
precise enough to limit his prior distribution to one specific beta distri-
bution, then only one set of values for (r',n') would be required. In another
situation, if an auditor were less certain about the cumulative prior distribu-
tion of p, then wider ranges of values for (r',n') would be necessary. Later
we will suggest a form for a specific prior distribution that presents an
efficient wéy of incorporating an auditor's prior belief into a distribution.

Let P'(r',n')4 be a prior distribution on (r',n'). A prior distribution
on  the population error rate p is a conditional beta distribution,

1 1oty = I'(n') r'-1
£'(p|r',n') = TGN —r) P (1 -

)n'—r'—l

n'>r' >0

0<p<l.
Next, let N be the population size (known) and R the total number of errors in
the population (unknown). Then the prior distribution on R is binomial, condi-
tional oﬁ Ps
P'(R|p) = (i) (- p)
for R=0, 1,..., N.
The prior distribution on R, given (r',n') is beta-binomial and can be found

by the following,

4We adopt the usual notational convention of a single prime to indicate
a prior distribution and a double prime to indicate a posterior distribution.
Also, we use P(*) to indicate a probability density function for a discrete
random variable and f£(*) for a continuous random variable.
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P' (R|z',n") = ft P (R|p)E'(pfc',n') dp =

dp

N T'(n'") 1 r'+R-1 _ )n'—r'+N—R-1
(R) r(x")r(n'-r") J‘0 P a-p

_ %y I@OIGE RN r R |
TR T()HT('-r")T("+N)

If n is the sample size and r the number of errors in the sample, then the distri-

bution of r, given R, is hypergeometric.

R, ,N-R
G
&

n

P (z|R) =

r=0, 1,..., min (n,R).
In that case, the distribution of r, given (r',n') (the likelihood function for

our sample data), is beta-binomial and can be derived as follows:

N
P (r]r',n") = ] P(z|RP'(R[t',n")
R=0

N (R)(N‘R)r(r'+R)r(n'—r'+N-R)

N, 'r’ 'n-r
RZO (g) T )

I'(n'")
I'(r")T(n'-x")

1]

B (n) T(n")I(r'+r)T(n'-r"+n-1)
T 'r T(e")T(n'-r')T(n"+n)

r=20, 1,..., n.
Now when a sample of size n is taken and r errors are observed, we can combine
the sample information with the distributions derived above to obtain certain
posterior distributions of interest. First, the posterior distribution of
(r',n'"), given r, is derived as follows.

P"(rin'|r) = P'(r|r',n")p'(x',n")

I p'(rlrt,n)P (e nty
r',n'
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where Z is the sum over all points (r',n') in the support of the

r',n'

prior distribution on (r',n'). If we assume a uniform discrete prior distri-

bution for (r',q'),then P'(r',n') is a constant and

R(r',n',r,n)

K(r',n',r,n) °
]

P"(r',n'[r) =

r',n

T(n")I(x'+r)I(n'-r "+n-1)
I'(r")T(n"-r")T(n"+n)

where K(x',n',r,n) =

Next, the posterior distribution of P, given r',n' and the sample information

r, is

I'(n'+r) r'+r-1 (l_p)n'-r'+n-r—l

" Tt =
f (Plr I ,l") T'(r'+r)I'(n'—r'+n-r) P

H
0<p<1
n'4n > r'4r > 0

i.e., a beta distribution with parameters (r'+r, n'+n).

Once a sample is taken and r errors are observed, the posterior distri-
bution of R (the total number of errors in the population) will be on the values
Rh= r, r+l,..., N-n+r. This leads us to the posterior distribution of R,'given
p and r:

R-r N-n-R+r
p) ;

| N-n
P "(R|p,r) = (R-r) P (1 - R =r,r+l,..., N-n+r.
Then the posterior distribution of R, given r',n', and r can be derived as

follows:

P"(R|r",n',r) = fé P"(R|p,r)f"(p|r',n',r) dp

N-n I'(n'+n) 1 Rir'-1l 1 - N+n'-r'-R-1 d
R—r) I'(r'+r)T(n'-r'+n-r) fO P ( P) P

_ (N-n, T(a'+n)T(R+x")T(N+n'-r'-R)
- (Rrr I'(r'4+r)T(n"-r"+n-r)T(N+n")

N-
(R—:) Q(r',n', R, N, r,n)

]
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T'(n'+n)T(R+x ") T (N4n'-x'-R)

] ?
where Q(r',n', R, N, 1,n) I'(xr'+o)T(n'-r"+n-r) T(N+n')’

R=r,r+l,..., N-ntr.
Finally, the posterior distribution of primary interest is that of R,

given the sample information r.

P"(er) = z [P"(er',n',r)P”(r',n'|r)]
r',n'

K(z',n',r,n)
Z K(r',n',r,n)

) (g:g) Q(z',n',R,N,r,n)

r',n' r'on'
N~n
(R-l‘) ro [
= r,n
'2 K(r"n"r,n) r|’n| Q(r ’n ’R,N,rQH) K(r ’n b b )
r',n'

where K(r',n',r,n) and Q(r',n',R,N,r,n) are as defined above, and R = r,r+l,...,N-ntr.
The posterior distribution, P"(er), is a discrete distribution with N-n+l points

to be evaluated. Evaluation is accomplished by inserting the known values of

N, n, and r into P"(R|r) and then, for each possible value of R, summing over the
domain of (r',n'). Since in auditing situations most of the probability mass

will be on low values of R relative to N, it will be reasonable to truncate

the evaluation of P"(R|r) for large values of R in order to provide computational

efficiency. This will be illustrated in an example below.

Prior Distribution on (r',n')

Earlier we discussed the flexibility provided by the
beta distribution in describing anauditor's prior belief about an uncertain
error rate. While it is true that the beta distribution can describe a wide
assortment of distributions of p, it is also a fact that auditors never directly
observe realizations of p; rather, they observe p = r/n, where n is sample
size and r is the number of errors observed in a sample. Only if an auditor ob-
served an entire population of N items would a realization of p be observed.

Thus we believe that an assessment of a prior distribution on (r',n') must
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begin with an assessment of a distribution on p or on r, given a specific sample
size. That is, we would like to develop a methodology whereby a direct a;sess—
ment of a distribution on p or r would lead to an indirect assessment of a
prior distribution on (r',n'). Our previously developed conditional distribution
on r, P(rlr',n'), provides a starting point for the development of an indirect
assessment of a prior distribution on (r',n').

We ieq D represent the support of a prior distribution on (r',n');

that is,
D= {("y,n"): p'(r",n") > 0}.

Then we can define another conditional prior distribution on r,

P(rlD) = X P(r]r',n') P'(r',n'").
) r',n'edD -

We assume that P'(r',n') is uniform on D and set w = P'(r',n"). Therefore,

F(n')f(r'+r)F(n'—r'+n-r)
I(r")I(n'-r")T(n"+n) °

prp) = w® ]
r',n'ed

where 0 < w <1 and w is a constant if we assume that P'(r',n') is a unifofm
distribution on D.

Recall that earlier we determined three pairs of values for r',n' based
on the three alternative prior distributions suggestgd by Kraft. Those
three points can be viewed as a support with equal probability (1/3 = w)
on each point. This provides an example of P'(r',n'), which then could be
used to develop the conditional distribution of r, P(r]D)

It should be apparent that diverse sets of points (r',n') may be contained
in D and can lead to diverse distributions of r. A proper selection of points
in D has the potential to provide a distribution of r (or p) that appears

reasonable to an auditor. This leads to our suggested approach which begins
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with an indirect assessment of a discrete uniform prior distribution on (r',n')

and culminates with a determination of the sample size required to meet auditing

and statistical objectives.

1. We construct alternative discrete sets of points (r',n'), say Ds’ s=1,..., S.
We construct each DS in such a way that'the resulting S distributions,
P(r|Ds), repfesent S alternative distributions of r that are reasonable
alternatives for auditors to consider.

2. We assume a sample size, of 100 (n = 100) andcalculate the§ distributioné,
P(rle). From these distributions we produce S graphs.

3. Next, in a specific compliance'testing situation where an attribute is
to be statistically tested, we present the S graphs to the auditor in
charge and ask the following question. If a sample of n = 100 items
were taken from the population of interest, which one of the S graphs best
reflects your belief about the number of errors you would see?

4. 1If graph s is selected, we know that the graph was generated by support
DS.

5. The prior distribution support Ds can then be used in making calculations
with a posterior distribution, P"(R|r). Given a specifization of statistical
objectives for our audit test, we can calculate the reéuired sample size.

An important question not addressed in this paper concerns the determina-
tion of what are "reasonable" distributions for r or p. It is possible to
generate almost any distribution that would seem to be of interest to auditors,
i.e., low expected error rates with most of the probability mass near zero.

Further research would be required to determine an array of prior distributions
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on p rich enough to capture a broad range of auditor eXpenct‘ations.5 Indeed, |
it may ultimately be appropriate to develop prior distribution arrays that are
specialized according to client or industry pecularities.

A Suggested Strategy for Selection of P'(r',n')

We will now discuss a strategy for selecting sets of points (r',n') that
could serve as the basis for development of reasonable prior distributions.

Consider the points (r',n') are depicted in Figure 2. The shaded area consists -

r
Figure 2
of points such that r' and n'-> 0, r' <n', and n' f-nb < w, Tt is
not likely that points near the r' = n' line would be included in. a prior

distribution support Ds’ since E(p|r',n")=1r"/n'=1.0 for pointson the line. Infact, we

5Francisco [1972, p. 62] suggested using sketches of different beta distri-
butions for assessment by auditors. Also, in Chapter VI, he discussed the
problems associated with the assessment process and the many factors that- can
influence an auditor's beliefs.
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can also make the following observations about the minimum and maximum values
of E(p|r',n') and Var(p|r',n') for the points included in the triangle depicted
in Figure 2:

Points (r',n')

Minimum Maximum
E(p|r',n") (O,no)* (x',n'=r")*%
Var(p|r',n')- | (O,n )% (0,0)*
*actually the positive neighborhood of r' = 0 and/or n'=0 since we cannot have

r=0 or n'=0. .
**Maximum for E(p|r',n') is for any point on line r'=n'.
Given the relationships indicated abo?e, we can make some observations

about subsets of points in the triangle. lConsider the triangle in
Figure 3, in which the three numbered circleg depict subsets of points.
The points in circle 1 would generate beta distributions with relatively low
values for E(p|r',n') and Var(p|r',n"). Thejpoints in circle 2 would generate
beta distributions with larger values for bo%h E(p|r',n') and Var(p|r',n")
than for points in circle 1. The points in circle 3 would generate beta
distributions with values of E(p|r',n') similar to those for points in circle
2 but greater than values of E(p|r',n') for points in circle 1. Var(p|r',n')
for points in circle 3 would be less than for points in circle 2 but greater
than for points in circle 1.

The shape of the distribution P(rTDS) would be heavily influenced
by selection of a support, DS, in the different areas described above. To
illustrate the way in which a choice of D can influence P(rle), we further
restrict the feasible region for selection of Ds as indicated in Figure 4.

Since n' = 10r', the maximum value of E(p|r',n') = .1 for points on the line.
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r'=n'

Figure 3
n‘
200 Figure 4
n'=10r'
1007

20
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The minimum value of E(p|r',n') = E%% for points r' as close to zero as is
reasonable. The three circled numbers repreﬁent diverse sets of points
(x',n') that make up three alternative prior distribution supports, i.e.,
s =3.

For our illustration, we will arbitrarily select five points for each

DS as follows:

D1 D D

2 3
(r',n" (r',n") (r',n")
(.1, 200) (.1, 1) (20, 200)
(.2, 200) (.2, 1) (18, 200)
(.2, 180) (.2, 21) (18, 180)
(.1, 180) (.1, 21) : (16, 180)
(.15, 190) (.15, 11) ! (18, 190)

Each of these clusters of points corresponds to the circle with the same number
in Figure 4. Table 3 lists the probability density (PDF) and cumulative (CDF)

distributions of r for g sampleasize of n=100givenD D2, D3, and, for comparison

l’
purposes, the three-point Kraft distribution discussed earlier. TFor calcula-

"tional ease we truncated calculations when the CDF > .99,

!

In Table 3 we can see that the divgrsity ofvvalues of
E(p|r',n') and Var(p|r',n') across D,, D,, and D3 is manifested in
the distributions of r. With D; we have a "tight" distribution of r with the
mode at zero, while with D2 we still have the mode at zero but the variability
is much greater (99th percentile at r = 91). D3 produces a distribution for r

with a mode at r = 9 (p = .09) and with more or less variability, respectively,

than with D, or D,. E(rlDS) and Var(rle) are given below.

E(rlDS) Var(r]Ds)
D, .079 121
D
2 6.558 314.133
D, 9.473 13.250

Kraft .501 1,075
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Table 3

Prior Probability Density (PDF) and Cumulative (CDF)
Distributions on r, Given n = 100 and
Four Different Prior Supportson (r',n')

Prior Supports

Kraft D / D D

1 2 3
r  PDF_ CDF PDF CDF_ PDF CDF _PDF CDF
0 715 .715 .938 .938 .634 .634 .0004 .0004
1 .170 .885 .049 .987 .082 .716 .003 .0034
2 064 - 949 .010 .997 .043 .759 .009 .012
3 .027 .976 .028 .787 .021 .033
4 .012 - .988 020  .807 .039 .072
5 .006 994 .015 .822 .061 .133
6 .012 .834 .082 .215
7 .010 844 100 .315
8 .008 .852 .110 425
9 .007 .859 111 .536
10 .006 .865 .104 .640
11 .005 .870 .091 .731
12 .005 .875 .975 .806
13 .004 .879 .059 .865
14 .004 .883 .045 .910
15 .004 . 887 .032 942
16 ‘ .003 .890 .022 .964
17 .003 .893 .015 .979
18 .003 .896 .009 .988
19 .003 .899 .006 994
20 .002 .901
91 .001 .990

The Kraft-induced distribution is most like that induced by Dl,although it still
is not as concentrated around r = 0.

Figure 5 presents graphical representations of thé data contaiﬁed in Table
3. We suggest that these graphs could be presented to an auditor for selection
of the graph that best represents the auditor's prior beliefs about r or ﬁ.
The selection of a graph will imply a support for (r',n'); we can then proceed

to plan the sample size requirement for our statistical test.
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Figure 5
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Posterior Distribution and Audit Planning

By specifying values of N,n,r, and a sgt Ds’ we can calculate the posterior
distribution, P"(R|r), for values of R = r,r+l,..., N-ntr. We assume N (popu-
lation size) will be known. Determination of n will depend on the auditing
and statistical objectives of a specific audit plan.

These objectives are characterized in terms of how precise and how con-
fident we must be in a final conclusion about an internal control procedure.

We let R* be the maximum number of errors that can be tolerated and REL* be

the required minimum probability in the posterior distribution that R < R¥,

i.e., P"(R < R*|r) > REL*. We also let r* b; the maximum number of errors

that we are willing to see in our sample while still accepting that P"(R < R¥|r%)
> REL*. Thus r* is an acceptance criterion, and, in the low error rate popu-
lations often encountered by auditors, we expectthat r* will be set equal to zero.
Also, selecting r* = 0 will minimize the required sample size.

Now, with specifications of N, R*, r*, and Ds’ we can proceed to find a
value for n such that,

P"(R < R¥|r*) > REL*, or

R*
) P"(R|r*) > REL*,

R=r*

The form of P"(R]r) does not allow a direct solution for n and therefore n must
be determined by an iterative procedure. Although the iterative procedure can
be costly in terms of computer time, once completed the results can be tabled
for use in subsequent audit situations. That is, 1f we can agree on a set

of reasonable alternative prior distribution supports (Ds) on (r',n'), then
tables of required sample sizes can be developed for each prior distribution,

given different specifications of N, r*, R*, and REL*. This is illustrated
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in an example beiow using the four alternative prior distributions contained in
Table 3.
Continuing our numerical example, we let N = 1,000, REL* = .99, r* =0,
and R* = 10, Thus, our conclusion of acceptance requires that P"(R < 10|r* =0) > .99,
or equivalently, P'"(R/N 5_.01lr* =0) > .99. 1In Table 4 we present the
minimum required sample sizes that will allow us to reach our acceptance con-
clusion with r* = 0, given each of the alternative prior distributions inTable 3.

Table 4

Required Sample Sizes

N = 1,000
R"{' = 1 0
r* =0
REL* = ,99
Prior Required
Distribution Sample
Domain Size
D1 ) 10
D2 154
D3 ‘ 759

Dg (Kraft) 186

It is clear from Table4 that the lessassurance reflected by the prior distribution
that the population error rate is less than .01, the more sample evi@ence is
required to allow the acceptance conclusion to be made. The diversity of the
three prior distributions selected as examples is reinforced by the relative
sizes of the required samples.

It is useful to compare the data in Table 4 with the calculation of the
required sample size in a classical attribute sampling plan. With the same
auditing objectives as before, the hypergeometric distribution is required and

we must solve the following equation for n,
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10, ,990
o) Gl
—_— = 0l:
1,000, et
n z

(1,000-n)...(991-n)
(1,000)...(991)

= ,01.

An iterative procedure must also be used in this case, and we find n = 367. Thus,
in a classical sampling plan, if no errors are observed in a sample of size n = 367,
the statistical conclusion is that we are 99 percent confident that the true
population e;ror rate does not exceed .0l, or equivalently, that there are no

more than 10 errors in the population of N = l,OOO.6

The calculation of n = 367_
is the same, regardless of how strongly an auditor feels about the likelihood

of seeing errors. In comparing this result with the sample sizes required by

our Bayesian model (Table 4), we see that it‘(n = 367) éxceeds all but one of

the same sizes contained in Table 4. Recall that for prior distribution support
D3, the distribution of r, given n = 100, was unimodal with the mode at r = 9.

In that case an auditor has a strong prior belief that errors will be encountered,
and it would requi;e a large amount of sample evidence (n = 759) with no errors

observed (r* = 0) for him to conclude there are no more than ten errors in the

entire population (N = 1,000).

Summary and Conclusions

In this paper we have proposed a Bayesian statistical model for use in
the testing and evaluation of an attribute in an internal accounting control

system. Our model is a generalization and extension of approaches suggested

6The literal interpretation of these sample results in the classical
setting is that P(r> O0{N=1,000, R=10) = .99, i.e., the chance of getting sample
results worse than were obtained (r=0) is .99, given there are actually 10
errors in the population, It cannot be interpreted as the probability that
R £10, as is the case in the Bayesian model.
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by Kraft [1968], Tracy [1969], and Francisco [1972]. The primary objective of
the Bayesian model is to allow the experience and judgment of an auditor to
become an explicit part of the model and therefore to have a direct effect on
the planning and execution of an attribute sampling plan. We have used a
numerical example to show how our model allows the required sample size to be
directly related to an auditor's prior knowledge. Furthermore, our‘example
shows that for the low error rate populations often encountered by auditors the
sample size can be considerably less than is required for classical attribute
sampling plans. The potential exists for the development of‘tables of required
sample sizes for our Bayesian model, just as tables have been developed for

classicial attribute sampling plans.

An area for further research is the assessment of prior distributions of
(r',n'). We have suggested a directionfor developing prior distributions by
illustrating how selectively restricting (r',n') to subsets of points in (r'y,n'")
space can reflect a diversg range of auditors' beliefs. We also suggested
that an auditor might be presented &ith visual representations, such as graphs,
of differentprior distributions of r and/or p which are related to specific
subsets of points (r',n'). This suggestion was based on the fact that much of
an auditor's experience consists of observations of p. However, more research
1s obviously required to determine a most efficient and consistent way of assessing
a prior distributionon the (r',n') space.

Another area of research is to extend the model proposed in this paper
to include the case where an attribute of interest exists at more than one site.
In many auditing situations alclient has multiple sites, geographically separ-
ated, but uses the same internal accounting control procedures for all sites.
An interesting statistical question is whether a specific attribute which exists
at multiple sites can be statistically evaluated by taking samples at fewer than

all sites, We are currently examining this problem.
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