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ABSTRACT

This paper considers the situation in which an auditor desires to
use statistical sampling procedures in the evaluation of compliance
with an internal control procedure which is in effect at multiple sites.
The objective is to reach a statistical conclusion about whether or not
at least one of the sites has too large a noncompliance rate. A se-
quential probability ratio test is proposed which is sequential in the
sites. A common density function is assumed to generate the error rates
at the sites. Some of the results that are reported have required sam-
ple sizes and numbers of sites to test that are significantly lower than

commonly used.
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1. INTRODUCTION

In this paper we consider the situation in which an auditor de-
sires to use statistical sampling procedures in the evaluation of an
internal control procedure which is in effect at multiple sites. The
approach typically taken is to apply statistical methods that were de-
signed for single sites. These methods include taking samples and cal-
culating upper precision limits for an attribute at each of a subset
of the sites and then reaching a nonstatistical conclusion about the
attribute for all sites. Leslie [1979] examined this situation and
suggested that the use of single-site methods in multiple-site situa-
tions causes two major concerns for an auditor: "l. How many locations
should be visited?" and "2. What size samples should be selected at
the locations visited?" Leslie addressed these questions in a dollar-
unit sampling setting, with the objective being to reach a statistical
conclusion about the_total dollar error at all sites. Our analysis
takes place in a pure error rate setting, with the objective being to
reach a statistical conclusion about the maximum error rate at any one
site. This conclusion is based on samples taken at a subset of the
sites.

For the single-site case a statistical conclusion usually takes
the form of stating that there is a certain percentage of confidence
that the true error rate does not exceed a prescribed value. The pre-
scribed value is a maximum tolerable error ratel which will be subjectively
determined by an auditor so that if it is concluded that the unknown true

error rate is greater than or equal to it, the internal control procedure
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represented by the attribute is judged to be out of control. Statistical
methodology has been developed for a single attribute at a single site.
The methodology we propose in this paper is designed for the case of a
single attribute occurring at more than one site. On the basis of our
model, a statistical conclusion will have the form of stating that thére
is a certain percentage of confidence that no site has a true error rate
greater than the maximum tolerable rate.

The model we propose is a sequential probability ratio test [Mood,
Graybill, and Boes, 1974, pp. 468-470] which is sequential in the sites.
Vance [1950] first suggested the appropriateness of a sequential prob-
ability ratio model for attribute testing in auditing. Roberts [1974]
proposed a sequential probability ratio test for the case of an attri-
bute at a single site (sequential in terms of items selected) and claimed
the following advantages: "(l) the simplicity of the procedure, (2) the
control of both risks, and (3) the saving of observations in comparison
to the corresponding fixed sample procedure.” Although the analytical
development of our model is complex, the development of appropriate com—
puter programs makes implementation simple. We also claim the other two
advantages for our model, that it accéunts for both types of risks and
that it requires a total sample size smaller than that required for a
valid statistical conclusion using traditional methods. In the latter
case, as we will show, the only statistically defensible approach would

be to take a minimum sample size at virtually every site.
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2. THE PROBLEM

In this section we develop a naive sequential probability ratio
model that may be compared with the primary model that we develop later,
in Sections ~ 3, 4 and 5. - The model we develop in this section is
naive in the sense that we simply assume random selection of sites and
of items at the selected sites. It can be viewed as an extension
of thé traditional single-site model, except that it is‘a sequential pro-
bability ratio model andboth types of risk are controlled. A compari-
son of the naive model with our later model will reveal that substantial
reductions in the amount of audit work can be achieved by assuming a
relationship among the error rates at the‘multiple sites.

Consider the situation where an internal control procedure is being
carried out at K'different sites. The auditor wishes to make a statis-
tical statement about the error rate of this control. Specifically,
he wants to be probabilistically assured that none of the individual sites

has an error rate above a certain level. We let

K = total number of sites;

k = number of sites to audit;

n = sample size at each site audited;

p. = the error rate at site i (i =1,..., K);

i
and x,
J

]

the number of errors observed at site j (j = 1,..., k).

We assume that x, conditioned on p, has a binomial distribution:

n Xj n—Xj
P..='>. 1-p) 5 i=1,..., k
G lp,) <Xj p,’ () Y5 3=1,

A hypothesis structure is as follows:

HO: All Py f_pa; i=1,..., K

Ha: All but one P; < Py and one P; z_pu



a = Type I risk

B = Type II risk
p, = an acceptable error rate
p, = an unacceptable error rate

This hypothesis structure describes the most difficult auditing sit:a-
tion, since under H only one site has a "bad" error rate and we wa=t
statistical assurance of finding it. By designing our test with rzgard
for this hypothesis structure we will have éven greater assurance oI
finding a "bad" site if more than one actually exists. To test thsse
hypotheses a sequential probability ratio model takes the followin: form:

first, we calculate

L(xl, Xyseees kuHO)

A, = :
k L(xl, Xyseees kuHa)

14

where L(xl, Koy eees xle) is the likelihood function for the samplz data
observed at the k sites audited, given hypothesis H. Then a decison
rule can be stated as follows; if

R e .
Ak 3;—5—, we accept HO, or if

o
A, <=, we reject H

K =T ; or if

0

(I%E < Ak < léﬂ., we continue by sampling more sites.

For hypothesis HO every possible set of outcomes for the k sites auvdited

is equally likely, and therefore

'

k n Xj n—xj

k

X, ) (n=x)

Il o~—=

. j .=
j=1 R b
P, (1-p,)

K n
ey
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For hypothesis Ha in which one of the K sites is out of control (p = pu),
the k sites audited will sometimes include the bad one and at other times
it will beexcluded. In fact, if the k sites are randomly selected,
l) -1
O
K > = k> "
k
iy
(O
()
k

Then we can write the likelihood function for Ha:

P(all k sites good) =

P(all k sites good, except one) = = —II%

K k n xj n--xj
L(Xl’ HPLRRRE Xlea) - (1 K .H<x.>Pa (l—pa) +
3=1""3
n-x

ny % j
( )Pu (1-p)

K\ 11 k Xj a xj n—xj
+(E'> k jzl n Xj n-—xj jgl <Xj) Py (1—pa)
(x,) Pa G2
J
K k a Xj n—xj
- (l - E) .H (x) Pa (1-p,) +
=1 7]
' 1-p \n-x k X n-x
1 Pu Vi u) j n i 3
+(“ Z<—j( < ) H( )p (1-p)
K) 321 P, 1 P j=1 Xj a
X n-x k ,p . /l-p\n—x
I S N I R S| (_u)‘3< )
- H( )P (1-p,) 1 1<+K,z P 1-p
J= J j=1 “a a
k k
) x ) (n-x,)
-1 J .2 k/p =P\ D-X
I p )=t ny L (_U>XJ (1 u> i
P, (1-p)) I=Il< J) AL _Zl 5. 5

Finally,



k
E xJ 'z (n—x.) k a
pJ—l (1- )3=l I < )
A, = Pa j=1
S )
X (n-x,)
. P\ X. /1-p\ n-x
pd=t (1~pa)‘]l n(“)% K-k+ ) —-‘i>3<l_“> ]
j=1 j=1 “Pa Py
—3 K .
k PN\ X. /1-p\ n-x,
K-k+ ) <_u>3<l_u) 3
j=1 Py Py

If we set an acceptance criterion for H, of observing zero errors in our

0

total sample (i.e., all Xy = (), then we can write our test statistic as

_ K N 1-a
Ak kK /l-p 278>
u) n
K-k+ ) (1
o j=1 Py
-0
= Kl— - B, and
Py\ n
K-k+k (:L- )
R Py
k > FK
(5)- 1
where F=

-

Thus, the minimum number of sites that must be audited is a factor F
times K, the total number of sites. F is a function of the sample size
n,and it can be seen that k and n have an inverse relationship which
satisfies our intuition; that is, the more sites we audit, the lower
the sample size requirement at each site.

Obviously we would prefer F < 1 since we would prefer that k < K.

If we set F <1, then



1z < 1; which becomes
(}— _ pu) n
B 1-p
In ‘%?a
2T DY
In 1=
Pa
Thus, given a, B, pa,and P> if we set
)
in <l—a

n = — ,
=)
In 1o
Py

then F =1,and wemust take initial samplesof sizen atall k = K sites. For

example, suppose we assume the following values,

a =B = .05,
) P, = .005,
P, = .05.

fhen, for HO to be'accepted, initial samples of size n = 64 must be taken
at all K sites and no errors Aay be observed. It is interesting to note
that in using a sequential probability ratio test model for the single-
site case and with the same specifications of o, B, P, and p, as above,

acceptance of H0 again requires an initial sample size of n = 64 with no

errors observed.

Returning to our test, we previously observed that k and n have
an inverse relationship. Thus,a reasonable question to consider next

would be how much k could be reduced by increasing n. If we let n - o,



which will be the minimum value of F. For the numerical example given

above,

. 205 _
min F=1 - 95 = L9474,

This result reveals that, even with an infinite sample size, we can re-
duce the number of sites to audit by only 5.26 percent. Furthermore, K
must be greater than nineteen before we can select k < K.

It appears, in general, that there cannot be a significant decrease
in the number of sites that must be audited when the simple naive model
approach is used. However, it is a fact that in the multiple-site situa-
tion it is common for auditors to test significantly fewer than all K
sites.2 A common rationale given for testing less than K sites is that
‘the same set of internal control procedures is prescribed at each site
and the procedures are well ﬂocumented. Therefore, there is an implicit
belief that the propensity for errors is similar across all sites. 1In
the context of the six essential characteristics of internal accounting
control,3 we might assume thét all but the "personnel" characteristics
are similar across all sites. 1In the case we might expect similarities
in the error rates but also differences caused by different personnel

implementing the same well-prescribed system.
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The model we develop below is a formalization of the auditing
environment described above. In this development the error rates at
the individual sites are assumed to be realizations of the same random
variable,and therefore related to each other, but not necessarily the
same value. This struéture will allow us to come to a statistical con-
clusion based on samples from k < K sites.

We will develop a method for making a statistical statement about
the largest error rate among the K sites by inspecting only a subset
of the sites. The procedure developed will be sequential in the sites.
That is, after auditing k sites (k < K), one of the following three de-
cisions will be made:

1. It will be decided at a specified risk level that all sites
are in control, i.e., all sites have an error rate equal
to or less than a specified maximum tolerable rate;

2. It will be decided at a specified risk lével that at least
one of the sites has an error rate larger than a specified
maximum tolerable rate;

3. It will be decided to audit at least one more site.

In Section 3 the symbology necessary for the statiétical develop-
ment is given and a model for the error rates is introduced. In Section
4 a sequential hypothesis test is set up in terms of the model para-
meters. Section 5 relates the auditing parameters to the sequential
test through probability statements. In Section 6. we derive the neces-

sary equations that will allow us to implement the test. Section 7

contains extensive computations which provide the required sample sizes

and associated decision rules.
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) 3.» _MODEL FOR THE ERROR RATES
Let K represent the total number of sites and P; be the proportion
of errors at site i, for i =1, 2,..., K. We assume that pq, pz,;.., Py

are independent and identically distributed from the density fP(p) where

. 1

. 1 - . <

fP(P)= %Y( p) ifFo<p<1 (3.1)
: 0 otherwise.

We call fP(p) the generating distribution, and it is a special case of the

beta distribution

r(n") r'-1 n'-r'-1
£= eyt ? P ’
with r' =1 and n' = y + 1. The beta distribution is often suggested

for the error rate p because of its ability to reflect a wide range of
potential beliefs by auditors [Felix and Grimlund, 1977; Corless,
1972; Francisco, 1972; Crosby, 197%]. Our rationale for using fP(p)
is that (1) it is flexible in its ability to reflect typical auditors'
beliefs and (2) it provides the link which ties the K error rates to-
gether. We test hypotheses about different values of the parameter vy
which represent different degrees of assurance that the unknown error
rate is close to zero.

By setting r' = 1,we restrict fP(p) to have a mode at zero (for
y > 1), and its general shape is shown in Figure A. For most auditing
situations it is expected that the probability mass will be close to
zero, and therefore this is a realistic shape for the generating dis-
tribution of error rates. The larger the value of y, the more concentrated
the distribution is cloée to zero. Therefore, if we accept a hypothesis
that says that y is very large we will have good reason, probabilisti-

cally, to believe that all the sites have low error rates and therefore
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. (Insert Figure A here)

are in control. However, if we reject the hypothesis that A is large in
favor of an alternative hypothesis that A is small, we will have reason to
believe, probabilistically, that at least one of the sites has an intoler-
ably high error rate. The next section will set up this hypothesis

structure.

4. HYPOTHESIS STRUCTURE FOR THE SEQUENTIAL TEST

 As stated in the previous section, we assume that Py» Pysee+, P, are
independent and identically distributed from fP(P)' The auditor then ran—
domly selects k sites which will be audited. A random sample of size n
is taken from each of the k sites and the n*k items are audited with
respect to the control procedure of interest. Since each item (it could
be a transaction, an account, or some other system component) is either
in error or not and since there will be a finite number of items in total
at each site, the number of items in error will have a hypergeometric
distribution which is conditional on Xj’ the total number or errors at

site j. If we let xj be the number of errors observed in a sample, then,
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N.-X,
-X.
J

n

N,
9)

n

X,
< i
"
£(x,]X,,p,) =
;[ %52,) (
where
Nj = total population size at site j,

j=1,..., k, and

xj 0, l,...,min(n,ij
We can relate this to our generating distribution (fP(p)) by observing

that, given an error rate pj generated at site j, the total number

of errors Xj will have a binomial distribution:

Ny X, N,-X,
£(X, |p. =( ) 3 (1-p, ;
( JlpJ) X, p,7 ( p,) ;

Then, the distribution of the number of errors observed in a sample Xj’
given pj, is

N'j—n+xj
(f(lexj,pj))(fnglpj))

) (9
R R T ANy nx, <¥>% N,-X,
p.” (1-p.)
N. X,
| |L e

n
- : J

0 xj n--Xj
. l" A .
<Xj> P ( pJ)

Now we can derive the marginal distribution of xj:

f(lepj)

1]
(&)
o~
.

-

[

i}
0~
-1

1
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1
£(x,) = [ (f(xjij>)(fp(pj))dPj
1 n, X. n-x, Y"‘l
- IO(X;)pJ.J s 3 vp) " ap
n F(xj+1)F(Y+ﬂ-xj)T(Y+1)
B <Xj> T'(y+1l4n) T (y) ?

for Xj =0,1,..., n.
The marginal distribution, f(xj), will be used in the calculation of the
likelihood functions which are required for the sequential probability
ratio test we describe below.
Based on a sample of k sites, from which we will obtain the sample

data X1y Xgseee, Xy, We want to test the hypothesis structure

H= e Y YO

HY Y =g <y
The qqll hypothesis, by virtue of a large value of y, will indicate
that all the sites are in control. For this hypothesis structure
we use the approximate sequential probability ratio test [Mood,
Graybill, and Boes, 1974]. Based on the sample data

Xps Xpseens Xy
the likelihood ratio is given by
) Lo(xl, Kyseens X3 YO)
ko Li(xps Xpseees X3 i

k
I f(x,) (with y = YO)
=t
Tk
I f(x.) (with y = Yl)

I
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k P(YO +n-x)T(y,+1) I'(y, +1+ n) I'(y,)
= I u! 0 1 L (4.1)
j=1 P(yo + 1+ n) P(YO) I'(y1 +n - xj) P(yl + 1)

The decision rule, based on Ak’ is:

1 - o* "o
If Ak Z_——E;—~3 then accept H%;

o*
—_—— 1 Ko
If Ak < - e then reject HO’

% - g%
a <}\ <l__d‘_

If 1- g% Kk g then audit at least one more site.

The size of the Type I error of the hypothesis test is a* and the size

of the Type II error is B*.

We can use the result that I'(X) = (X - 1) I'(X - 1) to refine -

the form of Ak given in (2).

k Yo (yl + n) (Yl +n-1) ... (Yl +n - xj)

= 1
- - 1) ... +n - x,
k 5=1 11 (g to) (g ta-1) (v, +n %)

Sn . S B S S
=[‘:{_Q]kr[:,/l+n]0[:(l+n—lj] l[-yl+n 2]2 [Yl-i-n m.Jm(42)
LN o +n Yo +n-1 LYo +n -2 o +n-m :
wheré § = the number of sites with at least i errors and i = 0, ..., m,
i

SO = k, since all sites will alvays have at least zero errors,

m = the total number of errors observed at all sites.

. Y
The first component of the right-hand side of(4_2))[}f§]k’ will be a

constant in any given application since it does not depend on the

\

sample data. Thus we can write our criterion for acceptance of Hg as

S
m +n - 7Y
I ‘13;__f1__;1 J'> l-oat 11 N
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Our criterion for rejection of Hg can be written as

: S
e e (2]
ol *r-dj = T-% (5]~

and our criterion to sample additional sites becomes

S,
ok FY1~]k m 1 +n-j j 1 - o 1 k
= L;r'l <t TTaos | < TR — | -
0/ 3=0 Y0 Yo

Because of later computational requirements we transform the develop-

ments above into logarithms. We let

m Ty +n-j
Am) = ] 8. In | =m0
=0 J Yo ™R 73

be our test statistic, and

% Y
L= o% I ()

c, (a*, g*%) = 1In ( g% Yo

A

be our acceptance criterion, and

A :Y
~ ) +k In c—l)

Cp (a%, 8%) = In (7= g% -
: 0

R

be our rejection criterion. Then our restated decision rule is,

If A(m) > CA(a*, g*), then accept Hg;

If A(m) < Cp(a*, g%), then reject Hi;

if CR(a*, B%) < A(m) < CA(a*, g*), then audit at least one
more site.
The value of our test statistic, A(m), will depééd on the number of
errors, m, observed at the k sites and the way in which these m errors
are distributed over the k sites. TFor a given value of m and a
specific distribution of the m errors the Sj's (G=0,1, ..., m) will

take on a unique set of values.

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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In order to perform this test in 'a sequential manner the following
two questions must be answered: (1) What should the values of Yo and Y;

be in order for this test to discriminate between a group of sites which

are in control and a group which has at least one site out of control?
(2) What values should be set for a* and B* in order to maintain specified

overall risks? These two questions will be addressed in the next section.

5. RELATING AUDITING PARAMETERS TO THE SEQUENTIAL TEST

As previously discussed, o* and B* are the probabilities of the

Type I and Type II errors, respectively, associated with the hypothesis

structure
% =
Ho Y= Y
xe = < .
B Y=v<7

However, it should be emphasized that the hypothesis structure of primary
interest is

H.: All p; < U,

0
H : At least one p, > u,
a i—
where p; = error rate at site ij
u = desired upper precision limit;
i=1,..., K.

For this structure we let o and B be the desired probabilities for the
Type I and Type II errors, respectively. Thus, our direct statistical

test of Hé and Hz will serve as an indirect test of H, and Ha. Since

0

it is o and B that we must ultimately control in reaching a conclusion

about the internal control system under evaluation, it is important that
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we establish explicit relationships between the two hypothesis structures.

To accomplish this,we define the following events:

C =

ol
1

)l
m

2]
m

Now we can

the event that we accept the null hypothesis H6: Y =Yg

and therefore conclude that all K sites are in control.

= the event that we reject the null hypothesis Hg: Y =Y

and therefore conclude that at least one of the sites is

out of control.

the event that all K sites have error rates less than or
equai to u.

the event that at least one of the K sites has an error rate
greater than u.

the event that the generating distribution has parameter Yo
the event that the generating distribution has parameter Yy

relate the two hypothesis structures as follows:

P(CMNL)

P(C|L) = P

_ P(CNLAG)+P (CALNG)

P(L)

_ P(C|LnG)P(L]6)P(6)+P(C|LNG)P (L|G)P(G)

| A

The latter

P(L)

p(€]6)2(L|0)P(@)+2 C|D P LDP (@)
P(L)

inequality holds since P(E]LnG) 5_P(E1G) and P(E]Lna) §_P(51§).

That is, the additional information that all sites have error rates less

than or equal to u would not increase the probability of rejecting the

null hypothesis (Hg). Next,

B

- (o) - EOD
_ P(CNLnG)+P (CNLAG)

P(L)
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6 - P(C|L0G)P(L]6)P(6)+P (C|TnG)P (L] )P (G)
P(L)

< Bc|e)p@]e)p(6)+P(c|6)P(L|G)P(G)

' P (L)
The latter inequality holds since P(C|LAG) < P(C|G) and P(C|ING) < P(C|G).
That 1is, thé additional information that at least one site has an error
rate greater than the desired upper precision limit (u) would not increase
the probability of accepting the null hypothesis (HS).

Next we observe that

Q
*
]

P(EWG) and

>
5%
1

P(C|G);

then the two inequalities may be rewritten as follows.

P a*P(LI~G)P(G)+(1—B*)P(LIE)P(E)
- P(L)

g < (1-a¥P@[G)P(C)+8*PLIC)P(G)

P(L)

We now have bounds on o and B that are each functions of a* and B* and

which serve as initial links between the two hypothesis structures.

Our intuition leads us to conjecture that we must have o* < ¢ and B* < 8,

i.e., the Type I and II risks for the direct statistical test of (HS, H:)

cannot exceed those for the indirect test of primary interest (HO’ Ha).

In Appendix A we show that this is indeed true when the necessary bounds

on the other components of the expressions are taken into account (e.g.,

P(L) =1 -P(L), 0<P(L) <1, P(L) = P(L|G)P(G) + P(L|T)P(T), etc.).
When values of a‘and B are set by an auditor and the two expres-

sions above are solved as equalities we would expect that the achieved

levels of o and B would be less than the nominal values initially set.

Next we solve the two inequalities as equalities and after some rearranging
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of terms we can write the resulting equations in terms of P(L). Then
we can equate the two equations.

PL[G) (1-a*-p)
P(L|G) (1-a=B) + (a-a¥)

P(L|G) (B-B*)
(1-a-B*) - P(L|G) (1-a-B)

= P(L) =

(5.1)

Writing the two equations in this form also demonstrates another

link between the two hypothesis structures. Both P(LIG) and P(LIE) are
probabilities‘that no error rate will be greater than the upper pre-
cision limit (u). However, P(LlG) is conditional on Hg being true
(Y=YO),while P(LIE) is conditional on Hg beiné true (y=y1<yo). Thus,
in the latter case, if P(L|G) > 0, the error rate may still bé under
control (all pif}ﬂ,although the alternative state of nature under Hg
is the true state of nature.

In order to implement our statistical test we can develop expres-—
sions for P(LIG) andP(L[G) in terms of our generating function. Let Y
= max (pl, Pyseees pK), i.e., we define a new random variable, Y,
which is the largest error rate at all K sitesr The density of Y is

given by

K-1
"

] - _ RS G
fY(y)=- Ry[1 - (1 -y) (1-y) ifo<y«<t

0 " otherwise.
Evént L is equivalent to the event that Y is less than or equal to u,
since if the largest of all the error rates is less than or equal to u
then all of them must also be. Therefore,

1

plLl6] = [ kv1- (- YOt - "0 gy (5.2)

1

[1- - Yok

Similarly,
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P[LIE] =[1- (1 - u)Yl]K;and therefore (5.3)
[Tl =1-[1- (- w0l and s
PIT[E) =1 - [1- - wYik (5.5)

We can now rewrite the previous expression.

Y Y
[1- @w 1 60 _ [1-(1-w) T* (1-0¥-p)

*+(5.6)
Y Y
(1-a-8%) - [1-(1-w) 21¥(1-a-p)  [1-(1-w) 11 (1-0-) + (a-a%)

It can be seen now that with expressions '(5.2) and (5,3)for P(L[G) and

P(Llﬁ) written in terms of fP(p), we can solve for YO and V..

1
1
_In{l - o)1) 5.7
Yo In (1-u) R
1
_ Inf1 - [p[®19 5.8
51 In (1-u) -8

Values for K and u will be supplied by the auditor and values for P(L|G)
and P(L|G) must be arbitrarily set by the one designing the statistical
test. In a later example we set P(L|G) = f99 on the basis of the reason-
ing that, given Hg is the true state of nature for the generating function,
we would like a large probability of all sites being under control

P(L|G) = 1.0 is not admissible since the generating function would be
undefined). Likewise, in a later example we set P(L|G) = .0l, since we
would like a small probability of all sites being under control when H:

is the true state of nature for the generating function (P(L|G) = 0 is

not admissible since the generating function would be degenerate).4

Expression (5.6) contains eight unknowns which may be subdivided

into two logical groups, as follows:



-21-

Statistical

Auditing Test
Parameters Parameters

a a*

8 B:‘:

u Y

X 0

Y1

Among the auditing parameters, o and B are the overall risks that the
auditor desires to control, u is the desired upper precision limit which is
determined by auditor judgment, and K is the total number of sites which
should be known.

We classify o*, B¥, Vo> Yy @8 statistical test parameters, since
Yo and Y, are the hypothesized values of y (theparameter of the gener-
ating distribution) and a* and B* are the specified risk levels as-

sociated with the hypothesis structure, Hg,

H*.
a
We can now perform a direct statistical test of the hypothesis
structure,
’ H6: Y = YO
‘:‘\‘: = <
Ha Y Yl Yo’
which will be an indirect test of the hypothesis structure,

HO:

<
All P, LU,
H : At least one p, > u.
a i
In the next section we describe a logical process for the develop-

ment of valuesfor the eight parameters.

6. DERIVATION OF PROCEDURES FOR IMPLEMENTATION

To implement our statistical test a planning phase must be con-
ducted in which we determine the number of sites and the sample size

at each site to audit initially. We must also determine the criteria
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which will lead to either accepting H%, rejecting Hg, or auditing ad-
ditional sites. We call this the initial planning phase; if it
becomes necessary to audit additional sites, we will have a second
planning phase, and so on.

At the initial planning phase we must decide on a decision
criterion for acceptance of Hﬁ. In keeping with the expectation of
observing few errors and the auditing strategy of minimizing sample
size, we develop equations for k and n based on accepting Hé only when

zero errors are observed at all sites audited.

From (7) recall that the criterion for acceptance of Hg is

m Y, +n -1 2 Y
= —-l—-——-—- 1-o* (__];> = * *
A(m) = '2 S, ln[: r— ii]_i 1n ( e ) + k In Y CA(a » B¥).

Y, +n B Y
1 1-a¥ ( 1)
kl{ Tn |11n<8*) tkinl~). (6.1)

0

It can be seen in (6.1) that values for the statistical parameters

(o®, p* , and Yl) must be determined before values of k and n can be

s YO
determined. Even then, there will be many possible pairs of values (k, n)
with a relationship such that as k increases (decreases), n will decrease
(increase). A formal approach to the selection of values for k and n
should include a consideration of sampling costs. Other cqnsiderations
might include a subjective assessment. by the auditor of the relative risk
associated with various sites. However, we restrict our development to a

consideration of costs only.

Let

C1 = fixed cost of auditing a site, and

Co = cost of auditing an item at a site.



23—

We assume that Cl and 02 are thé same for all sites. Thus, the objec~

tive at the initial planning phase would be to select values for k and
n such that we

e - - + )
minimize. z Clk + C2kn k(Cl Czn)
However, based on the acceptance criterion for our statistical test
(Hg, H;),we must select k and n to satisfy (6.1). We assume that
solving (6.1) as an equality will be compatible with the desire to

minimize costs, since we will be meeting the minimum requirement for

acceptance. By rearranging terms, (6.1)becomes

n = 1 . - (6.2)

Next we substitute (6.2) into the objective function,
s 3\
1

1
(697
Yoy B*
2

1
N\ k
_-q’_>
Yo = v, \B*
0" M1 )

This leaves the task of determining an optimal value for k

minimize Z = k ( Cl +C

«

\.

which will implicitly determine optimal n. However, the objective func-
tion now contains the statistical parameters a*, g%, Yo,and Yy Selec-
tion of values for these parameters will be restricted by expression
{5.6)developed earlier. Recall that(5.6) resulted from our analysis
which related the two hypothesis structures, (Hg, Hg) and (HO, Ha)'

By rearranging terms in expression(5.6) we are able to write a* as a

function of B*.
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byB% + b
P T (6.
b 6% + b,
where
b = (1-0-B)B(1-A) -aB(A-B) C(6.4)
b, = A-B (6.5)
b, = (1-a)B(1-A) - BA(1-B) S (6.6)
by = A(1-B) - (1-8)B(1-A) ' C(6.7)
Y0.x : .
A =P(L[G) = [1-(1-u) "] | (6.8)
— Y \
B = P(L|C) = [1-(1-u) 11X, | (6.9)

Values for a, B, u, and K will be determined by auditing judgment and
knowledge. Values for a*, g%, Yo,and'yl which satisfy (6.3) will guarantee
that both hypothesis structures are satisfied. Values for Yy and Y1

will be determinéd gy setting P(L,G) = .99 and P(L|§)==.Ol, as discussed
earlier. Selection of values for o* and B* will be restricted by our
earlier development that a* < o and B* < B. Furthermore, with respect

to (6.3),it is simple to show that da*/dB* < 0. Therefore as B* ap-

b,B* + b

approaches B, o* will approach its minimum value, —F———
blﬁﬂ + b2

> 0, and
for B* = 0, o* will equal its maximum value, b/bzi which is less than o.

Now, since in (6.3) we have written o* as a function of all other

variables, we can rewrite the objective function.

% - - l
B¥(by=by) + by-b) .
Yoq B*(b g% + b

. _ )
mlanlze z =k Cl + C2 2 « (6.10)
(k) g* »YO,'Yl)

==

) B“(bl-b3) + (bz-b)
Yo 71 B*(b B% + b

5)
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Constraints on values of the four decision variables are as follows:

0<B*<8

*
baB* + b

b
= — < — < 0
* —
blB + b2 b2

0 < o*%

O<'Yl<co
1 < k <K (integer)

This is a nonlinear, integer (in k) programming problem.

(6.10) through (6.15), it cannot be solved for a global optimum since the

constraints on o*, g%, Y

immediately apparent that the objective function is of a form that would
have a global optimum even if the constraints were not open sets.

Our approach6 to solution of the problem is to first assign values
for Yo and Y based on the rationale that was explained earlier. Then,

given values for vy, and y, , dz/dp* < O for any feasible value of k
0 1

(1 <k < K) when either

b - b, %
b-b, - b, ‘(bbl—bsz)
0 < g% < b b = » Or
1773
b - b, %
b-b,+ b Q)bl—bzb3>
1> 8% > T g ‘ .
1 3

(demonstrated in Appendix B).

Thus, weare assured that increasing g* in the ranges indicated by (6.16)
and (6.17) will decrease total sampling cost z. However, the range indi-

cated by (6.17) violates the restriction determined earlier, that

, and Y, are open sets. Further, it is not

(6.11)
(6.12)5

(6.13)
(6.14)

(6.15)

As structured in

(6.16)

(6.17)
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B* < B; i.e.,

Thus we direct our attention to the range for B* indicated by (6.16).This
range is particularly important for the purpose of finding solutiofns to
the cost minimization problem, because when it holds for B*, then

0 < B* < B also holds; i.e.,

" )%
b - b2 - bl bbl - b2b3
0 < B* < T : < B. © (6.18)
1 3
Also, when (6.16) holds for B*, then for a%,
0 < o* f_gh-< o (demonstrated in Appendix C). o (6.19)

2
The_iﬁportance of these findings is that we now have a closed interval
for values of B*, and z will be minimized for any k by setting B% equal
to its maximum value. Also, the constraint that relates the two hypothesis
structures will be satisfied. Further, our initial intuition referred
to earlier is fully supported in that in an .optimal sampling plan the
T}pe I and II risks of our direct statistical test, a* and B*, should
not exceed those of our indirect test, o and B, respectively. Finally,
a global optimum solution can be found by simply enumerating the minimum
z values for all values of k ahd then selecting the lowest one. A formal

presentation of the cost minimization problem can now be given.
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'B*(bl—b3) + (b,-b)
YaY o — -1
0'1 < B*(b 8% + b,)

=

minizize z =k Cl + C2 1 (6.20)
B (b "b,) + (b, b)) ©
Yo T\ TBFRG B + 1))
subject to
b-b '%
L b - b2 - [ bl (bbl - b2b3)]

g% = N (6.21)

1 < k < K (integer), _ (6.22)
where b, bl’ b2, b3 are as defined in (6.4) through (6.7).

It should be recognized that the cost minimization probiem in
(6.20) through (6.22) applies only to the initial planning phase.. If it
is necessary to audit additional sites (i.e., an accept or reject decision
cannot be made at the end of the initial sampling phase), the cost mini-
mizaéion problem can be solved again. In the second planning phase the
total number of sites remaining would be K - k, and p* would have-to be
kept at the same value as determined in the solution of the initial-phase
problem. Also, the objective function would have to be adjusted to re-
flect the data observed in the initial phase. Similar logic holds if
mofe than two planning phases are £equired. (This will be illustrated
later in a numerical example.)

The solution of successive cost minimization problems as described
above is, of course, an approximation of an optimal solution to an un-
specified dynamic cost minimization problem. A dynamic model would
be more complex both in formulation and solution and, perhaps, analytically

and calculationally infeasible. Thus we do not consider a dynamic
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formulation at this time but rather restrict ourselves to the problem

as described in (6.20) through (6.22).

- - §. COMPUTATIONAL EXAMPLE
* As as example of our cost minimization model we assume that.

an auditor has specified the following values for the auditing parameters.

K = 20 sites in total

a = .05, the type I error

B = .05, the type II error

u = ,01, the desired upper precision limit.

Then the primary hypothesis structure can be stated as
p; < .01
H : At least one p, > .01
a i-—
i=1,..., 20.

Following our earlier discussion, in order to make the two hypothesis

structures approximately equivalent we set

,
PLle) = [1-(1-w) ¥

.99 and

—_ Y
PL|G) = [1-(1-w) “IX

.01.

Then, inserting values for u and K, we calculate

1

_ 1n(1-.99%%

Yo = Tim@-.op - °®
1
20

_ -0

Y17 TIn(i-.on)
Thus the hypothesis stfucture tested directly is
% = =
HO. Y Yo 756

Hg: Y = = 157.

Y1
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Next we assume that the fixed cost of auditing a site is Cl = $100 and
the variable cost of auditing an item at a site is C2 = §1. We now
have all of the data inputs necessary to solve the cost minimization prob-

lem. Referring back to (6.3) through (6.9), we can calculate

A= .99

B = .01

b = -.00236
b, = .98
b, = -.04891 ‘
bg = .04891

. _ (.04891)g* - .00236
(.98)8% - .04891 °

Then the cost minimization problem ((6.20) through (6.22)) is

1
[: .95018% — L0475\ k _ 1]
(1) (756) (157) L\B*(B* - .0499)
1

L
.95018% - .0475
756-157 (B* (B*~-.0499) >

minimize z = k ¢ 100 +
k

subject to

~1
B [<:0489;§.0023€> (.000079{] 2
. .04891 - .00236 - L :

BE = .98 - 04891 = 04791,

1<k <20,
Solutions for this problem for all values of k are given in Table 1.
The lack of an entry in Table 1 for k = 1 indicates that it is impossible
to accept Hg by auditing only one site. The total cost for each value

of k is a minimum, since B* was set at its maximum value in the range

(6.18)for which dz/dB* < 0. The overall minimum total cost occurs for
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(Insert Table 1 here)

~k =6 and n(6) = 158. Thus, the initial sampling plan would be to ran-
domly select 158 items at each of six randomly selected sites. For com—
parison purposes, if we use the naive model developed earlier and set
P, = .01 and P, = .005, it is necessary to go to all sites and take a
sample of size 585 at each site. The traditional single-site model would
require a sample size of 300 for 95 percent reliability and an upper
precision limit of .0l.

Continuing our numerical example, the initial sampling plan is to
take samples of size n = 158 at k = 6 sites and, if no errors are ob-
served, to accept HS. The next question to consider is how many errors

it would take to reject HS. Recall that our test statistic is
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Iil [Y1+n—i]
A(m) = s; In| ——/——= | »
120 i YO +n i

and our rejection criterion is

Am) < C (a*,8%) = In (<) + k In (Ila
- "k 1-B# Yo
For our numerical example,

C, (0, 8%) = -14.13.

Thus we want to find the minimum value of m (number of errors), such that

m ' yphn-i p
Y s, In ——/———— < -14.13.

A(m) = i Y0+ n-i

i=0

Finding a minimum value of m is complicated by the fact that, given m > 1,
A(m) will take on different values which depend on how the m > 1 errors
are distributed over the k sites. Thus it is possible that for a given
m, some distributions will lead to rejection while other distributions
will lead tocontinued sampling. This is realistic, and reflects the rich-
ness of our model which is semsitive to both the number of errors and
ﬂow the errors are distributed throughout the k sites.

The maximum value of the test statistic A(m), given a specific
value of m, is achieved if the m errors are distributed among the k

sites as evenly as possible. We call this value AMAX(m). The minimum

value of the test statistic is achieved if the m errors are all at the

(m).

same site. We call this value AMIN
In building a decision rule for the hypothesis test we will first
check to see if AMIN(m) is larger than CR(a*,B*). If this is the case,
we will continue to sample more sites for all distributions of m
. i % R% i ‘
errors. 1If AMIN(m) is smaller than CR(a ,B%), we will check to see

if AMAX(m) is also less than Cp(o*,B*). If this is the case, we will
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reject H% for all distributions of m errors. However, if A _(m) is

0 MAX

larger and IN(m) is smaller than CR(u*,B*),then we must check all

possible distributions of the m errors among the k sites to see if we
reject or continue to sample. In Appendix D we present an integer-
programming model for which an optimal solution will determine whether
a distribution of m errors results in rejection or additional sampling.

In our numerical example we do not have the problem described
above. For m = 8 errors in any distribution over the k = 6 sites we
have A(8) < -14.13, while for m = 7 we have A(7) > -14.13. Thus, a complete
decision rule for the initial sampling phase is as follows.

Take samples of size n = 158 at k = 6 sites, and if

(1) Zero errors are observed, accept Hg; or if

(2) m > 7 errors are observed, reject H¥; or if

(3) 0<m< 7, continue sampling.

Next, continuing our example, suppose m = 4 errors are observed
at the k = 6 sites in the following distribution (2, 0, 1, 1, 0, 0).
Since the decision would be to continue sampling we must determine how
many additional sites to audit and the required sample size. We let
Ak be the value of our test statistic A(m), given the results of auditing
the initial k = 6 sites. We assume that the criterion for acceptance

of Hg at our second sampling stage will be to observe no additional errors.

Then, for acceptance of Hg, we must have

m' Yy, +n' - i Y s
o+ Lo ln[—l—————.—]f_ (k + k') In (=) + In (1—8%, (7.1)
- 0

k 120 Yo +n' -1 Y
where m' = total number of additional errors
si = number of additional sites with at least i errors
n' = sample size at additional sites
k' = number of additional sites to audit.
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% with m' = 0 we must have

For acceptance of HO

LA
>Y0P(k) Yl,
- 1-P(k'")

' Y ktk! —% -
where P(k') = [(——;- (1 i‘ ) e Ak]
YO 8"

Since B*, Yg» and'yl must remain the same as in the initial planning stage

1

n

and we assume the sampling costs stay the same (Cl = $100, C, = $1),
all that remains is to calculate total sampling costs for every possible
value of k'. The second stage problem can then be stated as

minimize z' = k' (100 + (1)n'") 7 -

kl
' Yo P(k') - Yl>
k [100 +( =T

subject to

In ?gble 2 we . ,give the results from the solution of the second
stage problem. The results in Table 2 indicate that at least three
édditional sites must be audited. Howevef, minimum cost will be achieved
by auditing eight additional sites with a sample size of 173 at each
site. The number of errors required for rejection or to continue sampling
can be calculated in a way analogous to the procedure given for the
initial planning phase.

This concludes our numerical example. Of course, it may be neces-
sary to go through more than two planning phases, especially when K is
large. Specific rules.for stopping must be developed, since it is pos-
sible to go through many planning phases without either accepting or re-
jecting Hé. An auditor may limit the number of planning phases, limit

the total sample size that will be taken, or limit the total number of
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(Insert Table 2 here)

sites that will be audited. The specific limit(s) that an auditor de-
cides upon will depend on cost-benefit considerations and the potential
impact that more sampling will have on his evaluation of the internal
control procedure being tested. Presumably, not being able to either
accept or reject HS will cause an auditor to lessen his reliance on an
internal control procedure. The judgments invoked by an auditor in
placing special limitations on the statistical test will have an impact

on the planned risks associated with the test.
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8. SUMMARY

Models for testing compliance with an internal accounting control
procedure that exists at multiple sites have been the subject of this
paper. Current statistical procedures are designed only for single
sites although they are sometimes used for the multiple-site problem.

The first statistical model we suggested for the multiple-site
problem was a naive sequential probability ratio model. That model was
naive in the sense that the probabilistic nature of the model was simply
generated by the sampling design. We showed that ﬁsing the naive model
would generally require auditing most of the multiple sites.

The model of primary interest - suggested was also a sequen- -
tial probability ratio model. However, the probabilistic nature of
that model was geﬁerated both by the sampling design and by an assumption
about the generation of error rates at the multiple sites. The basis
for ;he assumption was that for many clients with operations at multiple
sites there are well-prescribed and documented procedures for internal
acéounting control activities. However, different personnel have
responsibility for the internal control activities. Thus, while a case
can be made that there are similarities in the way errors are generated
at the sites, a case can also ge made that there are differences caused
by the different personnel. Our assumption was then manifested in a
common generating function for the error rates. However, the error rates
generated by that function were independently generated and likely to be
different from each other. |

Another important charaéteristic of the common generating func-—
tion was that the probability mass was greater on low error rates than

on high error rates. This reflects beliefs that have been expressed
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by auditors and which appear to be quite typical. It also, of course,
gives direction for a logical extension of the model into a full-blown
Bayesian model, on which we are currently working.

For implementation purposes we cast our model within a total
sampling cost minimization problem and derived the conditions for
finding an optimal solution. Numerical examples gave results which
showed the potential for substantial reductions in sampling effort (and
costs) when compared to the requirements of the naive wmodel developed
earlier.

For repetitive uses of our model in practice it would be simple
to develop an interactive computer program that would produce a samﬁling
plan for a specificAapplication. An auditor would input all auditing
parameters and the program would output the required sample size and
number of sites to audit which would minimize total cost, as well as the
number of errors necessary to cause rejection or to continue auditing
more sites. Because of the number of parameters that must be input by an

auditor (a, B, u, K, C CZ)’ we believe that the development of books

1’
of tables as traditionally done would not be feasible.
Besides the development of a Bayesian model, another area of re-

search would be to consider the robustness of our results to other as-

sumptions about the form of the generating function.
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APPENDIX A
In this appendix we develop bounds for a* and B* for use in
implementation of the sequential test. For notational convenience we
let
A = p(L|G),
B = P(L|G), and
W="P(G).
Then, P(L) = AW + B(1-W) and P(L) = (1-A)W + (1-B) (1-W), and the two in-
equalities developed earlier may be more compactly written as:

0%AW + (1-B*)B(1-W)

e = AW + B(1-W) ’ (8.1)
8 < (1-0*) (1-A)W + B*(1-B) (1-W)

=  (1-A)W + (1-B) (1-W) . (A.2)
If (A.1)and (A.2) are solved as equalities, the realized values of « and B

should be less than the nominal values initially specified. We now

write them ° ‘as equalities and solve each one in terms of W:
_ B(1-a—-B%)
W= Toma®) £ B(1-0-B%) : (A.3)
_ (1-B) (B-B*) . .
K (1-A) (1-a*-B) + (1-B) (B-B*) (A.4)

We cannot freely choose values for A, B, and W in (A.3)and (A.4) since we
must have P(L) = AW + B(1-W). Also, as discussed in an earlier section
of the paper, we will set 0 < B < A < 1, and, therefore, B < P(L) < A
and 0 <W < 1. Thus, with the latter condition holding for W, we are
assured that P(L) will be within its bounds. We now consider bounds

for a* and B* so that the bounds for W will be satisfied.

Analysis of (A.3)

For W <1, a* < a

For W > 0, B* < 1-a,



~38-

Analysis of (A.4)

For W= 0, B* = B
For the other cases, both the numerator and denominator of (A.4)
. must be positive or both must be negative.

For positiwe numerator and denominator of(a.4), B* < B, and

For W <1, o* < 1-8
For W > 0, B* < B.

For negative numerator and denominator of (A.4),B* > B + (%:—%) (1-a*-B), and

For W < 1, o* > 1-8

For W > 0, B* > B.

A summary of the analysis of (A.3)and (A.4)is below.

Equation W>0 W<l
(A/3) B* < l-a o* < a
(A.4) (with B* < B) B* < B ‘ o* < 1-B

(A.4) [with

1A B> B+ () (-wkB) ok > 1o
B* > B + () (1-0*-B)]

quations (A.3)and(A.4jmust be simultaneously satisfied; therefore,
the bounds on a* and B* (assuming a < l-..B and B <1-a) must be |
a¥ < a < 1-B, _ ~ (A.5)
B* < B < 1l-a. (A.6)
In the implementation of our sequential probability ratio test, if we
follow restrictions (A-5)and (A;_6~)’then we are assured that W and P(L) will

be within their’respective bounds.
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Although (A.5) and (A.6) guarantee that the bounds for W and P(L)
will be satisfied, we must make one further alteration of (A.5) and (A.6).
Since we assume in general that B € l-a and o < 1-8, then in (A.3)
o* = o and 8% = l-o, and equation (A.4) will not be satisfied.
Likewise, in (A.4), when f* = B8 and o* = 1-g, (A.3) will not be
satisfied. Thus, our final restrictions on o* and f* are

a* < « and ~ (A.7)

px < B. (A.8)
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APPENDIX B
In this appendix we show the general conditions for dZ/dg* < 0,
where Z is the total cost function to be minimized. A general form
for Z was given in expression k6.20), and for convenience we rewrite it

below.

1
k

)

[(Law(bl—bB) +b, = b
YoY- B*(b,B* + b,)
minimize Z =k/C, + C e 1 2

K 17 "2 1
L (sn(bl-bB) +b, - b>k
01 B"(b18“ + b2)

We set positive finite values for Yo and Y1 according to criteria that

(6.20)

are independent of the minimization procedure. Then, for fixed values

of k, (1 <k <K), we study the behavior of Z as B* is allowed to vary.

az | GYor1 (oY)
dp* - E__ 1 Q,
k k. 2
- P (vg = vy 2)
b, - b b, - b
1 3 2
where P = o + =% * >
b;B* + b, * B¥(b B* + b,)
- - - *
o (b1 b3)bl (b2 b)(2b18 + b2)
- 2 2 ’
* %* *
(b 8% +b,)"  [B#(b 8% + b))]
' . . dz
and C2, Yo Yl,and.k are as defined previously. To test for 8% © 0,
k-1
()
we know that P >0, since
I Wl U Tl _ ety g
b, 8% + b2 'B*(blB* + bz) B*

Also,
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and YO > Yy > 0.

Therefore, to show that gg* < 0, wemust show Q < 0. For Q < 0, we must

have

(b, = b)b, (b, - b)(2b.B% + b,)
I e i s B 1 2 | o,

% 2 %(b, B% 2
(8% + 5" (850,85 + )]

;':2 - %
(bl - b3)blB + (b2 b)(2blB + bz)

2 > 0
[8%(b, 8% +b,)]
and,sincebl =A-B >0 and [B*(blB* + b2)]2 > 0,
b

2 % —2-
(by = b8 + (b, = D) 28% 45 >0.

The result above is quadratic in B%*, and by completing the square we

obtain the solutions for B* that will give Q < 0 and dz_ 0.

dp*
b, - b L
b - b2 - (;Lb > ('bzb3 - bbl)
B* < bl -1 (6.16)
1 3
1
2~ 2
b - b2 + [: -—?gi—— (b2b3 - bbl):J
B:.‘i b = b ¢ (6-17)

In addition, it is not difficult to show that a value of B* satisfying
(6.16), will also satisfy B* < B, and a value of B* satisfying (6.17), will
also satisfy B* > B, The latter result is not admissible, however, as we

show in Appendix A. Therefore, it is (6.16) that is useful for implementa-

tion purposes.
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APPENDIX C
In this appendix we show that, for
0 < B* < p* , then
- —  max

0 <oa* <a,
In (6.3)we derived the relationship between a* and B* that guaranteed
the two hypothesis structures would be satisfied:
b_R*

38 + b

b B + b,

1.

o

(6.3)

Next, we derive

do* byby = bby

apx — 2
[B%(b; +b,)]

da*
For 3% < 0, we must have

b2b3 - bbl < 0.

Substituting for b, bl’ b2, b3 (as given in (6.4) through (6.7),

~AB(1-4) (1-B) (a48-1)% < 0,

AB(1-A) (1-B) > 0,
which will always hold. Therefore with do*/dB* < 0, we know that o
will have its maximum (minimum) value when B* is at its minimum (maximum)

value. Given the results of Appendix B, the bounds on B* are

. ~ 1
b, - 2
b-b, '[K&‘W;[‘j) (byby - bbl{]
| by = by

For B* = 0, the maximum value of a* will be

0 < B* <

< B.

a% =—£.
max b2
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Substituting for b and b2 (as given in (6.4) and (6.6)), it is not difficult

to show that

0 <'EE < a.
2
by - %‘
b - b2 - (: bl ;) (b2b3 - bbl)
If we let Bﬁax = T ,

1 3
then the minimum value of o* will be
b,B* 4+ b
3 "max

min lBﬁax + 2

Substituting for b, b,, b b3 (from (6.4) through (6.7)), we find that

1’ 72
bBB;ax +b
S max = %
0 < b.B*¥  +b < Yax
1 max 2

Summarizing, if B* is in the interval

0 < B* < B* < B,
- — max

then o* will be in the interval

b3B$ax + b b
0 < — io‘*i_<0"'
bleax + b2 b2
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APPENDIX D
In developing a decision rule for the sequential model, the trouble-
some case is when the minimum value of our test statistic for a fixed
value oflm, A(m), is less than or equal to CR(a*, g%), but the maximum
value of‘A(m) is greater than CR(u*, g%). 1In that case the distribution
of them errors over the k sites will affect the decision of whether to
reject Hg or to audit additional sites. - Even with a moderate value of
k and m it is cumbersome to enumerate all possible distributions of
the m errors. For all values of A(m), @ more systematic approach can be
taken by viewing the problem as one of optimization. Consider the
following linear integer programming model in which we find values of
the Si such that we
m g +n - j}
minimize Z = X S,ln[}—-—~—~if7- =A(m)
j=0 3 LYo *n-1J

subject to

Alm) :’_ln(l g*B*) + k ln(%i) = CR(a*, B*) (D.1)
So =k (D.2)
m
jzl s;=m (D.3)
Sg 2 Sy ‘
5,28, :

. (D.4)
Sm—l Z-Sm
520 ' (D.5)
Sj integer, j = 0,...,m. (D.6)
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We recognize the test statistic, A(m), as our objective of minimization.
The only unknown values are the S)s(j = 1,...,m), and constraint (D.1)
guarantees that sets of solution values of the Sj will correspond to
error distributions that cause rejection of Hﬁ. We are certain that one
such solution exists because we are considering the troublesome case.

In fact, the solution to our model above will yield the minimum possible
value of A(m) (let min Z = Zl) and the Sj will have the values

Sl = S2 = ... = Sm‘= 1 and, So = k. This solution corrgsponds to all

m errors being observed at one site.

Constraints (p.2)and (D.3)guarantee that the specific values of k
and m for the given situation are properly related to the Sis. Con-
straint set (p,4)preserves the ordering of the Sj as they are defined.
Constraint (D.5) is the usual nonnegativity requirement, and (D.6) re-
flects the requirément that only integer values can be obsérved.

Our goal is to find all sets of values of the Sj that will yield
values of A(m) between the minimum and maximum and which will cause re-
jection of Hg (i.e., which will yield A(m) j_CR(a*, B%)). Then, any
- other sets of values of the Sj will indicate that we should audit more
sites.

In order to accomplish our goal we adjust our optimization model
by adding a new constraint,

Am) > 2, +e. ~ (D.1l.a)

Recall that Zl is the minimum value of the objective function found in
the solution of our first model. By adding a nonnegative increment e
to Zl we will guarantee that we will not obtain the same optimal solution

(if one exists) to our second model as we did to our first model.
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Suppose that an optimal solution to our second model exists which

yields minimum Z = Z We will then have another distribution of the

9
m errors that will cause rejection of Hg and we can proceed to search
for more.

The search for distributions of m errors that cause rejection of
HO is a recursive process. fhis process consists of recursively forming
a new optimization program by altering the.right-hand side of constraint
(D.1l.a) after an optimal solution to the previous program is found.
These recursive models have the general form

minimize Zh = A(m)

subject to

A(m) E.CR(a*a g%) (D.1)
A (m) 3_Zh_l + e (D.1l.a)
SO =k (D-2)

- m )

J S.=m _ - (D.3)
j=1

So z-Sl .

S a

m-1 z sm

5,20 . . (D.5)
Sj integer, j = q,...,m .. (D.6)

where h = 2,... p,
p = c@e number of different distributions of the m errors that
will cause rejection of W%,

Zl = aminimum value of A(m) over all possible distributions of

the m errors.
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0f course, a priori, we do not know the value of p. We continue to
recursively generate solutions until we get to a program where the ob-
jective function is to minimize Zp+l and for which no feasible solution
exists. At that point we will have generated p different solutions which

represent p different distributions of the m errors at the k sites that

cause rejection of H%,

0

The only remaining question is whether we have found all possible
sets of values of the Sj that will cause rejegtion of Hg. That is, at
this point we will have found p of them, but ﬁow do we know we have not
excluded any? 1In terms of the objective function's value, the p solutions
we nave found have generated p vaiues of our test statistic, A(m), with
the following relationships:

Zl < Z?_ < ... < zp iCR(a*, *).

The question is, have we excluded any solutions that will yield Z values
in the interval Zl to CR(a*, B*)? The answer lies in the selection of
the nonnegative increment, e, which is part of constraint (D.l.a). The
increment ‘e is what causes a different solution to be-found and, therefore,
a different value for Z. If e is too large, it is possible that
we could unintentionally miss a solution that would cause rejection of
'Hé. The minimum increase in Z is
. (jl +n - 1) (YO +n - 2)
NC +n-2/p

11

which we can use to set the value of e. If the value of e is in the
interval

(Yl +n - l)(‘{O +n - 2)

0 <ec<1
n (o *n-D(y, +a-2

>

constraint (D.l.a}willprovide the condition necessary to guarantee
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that the p solutions we obtain -will represent all possible distributions

of the m errors that will cause rejection of HS.
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FOOTNOTES
The maximum tolerable error rate is also referred to as the
desired upper precision limit.
One international auditing firm has a client with over 1,000
geographically separated sites, and the auditing firm conducts
attribute tests at no more than thirty sites each year.
AICPA, "Statement on Auditing Standards No. 1," Section -32,

paragraphs .35 through .42.

. If we could have P(LIG) = 1.0 and P(L’E) = 0, and also

P(L) = P(G) = .5, then we would have a* = o and B8* = R.

a* is not really a decision variable since it is determined by B*.

Advice by Professor K. Murty on finding an optimal solution

to this problem was very helpful and is appreciated.
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1. Initial Planning Phase: Alternative Sampling Plans

k n{k) Total Cost
l P -
2 10,557 $21,314
3 642 2,226
4 321 1,684
5 212 1,560
6 158 1,548
7 126 ) 1,582
8 105 1,640
9 89 ) 1,701
10 78 1,780
11 69 1,859
12 62 1,944
13 57 2,041
14 52 2,128
15 48 2,220
16 44 2,304
17 41 2,397
18 39 2,502
19 36 2,584
20 34 2,680
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2. Second Planning Phase: Alternative Sampling Plans

k' n'(k') Total Cost
1 - -
2 - _
3 3,792 $11,676
4 769 3,476
5 418 2,590
6 285 2,310
7 215 2,205
8 173 2,184
9 144 ’ 2,196
10 123 2,230
11 108 2,288
12 96 2,352
13 86 2,418

-
S
~1
oo

2,492
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FIGURE A. Shape of Generating Distribution with y > 1

£,(p)

(0,Y)

(1,0)
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