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ABSTRACT

Document retrieval involves inquirers issuing computer-processable
queries in order to receive references to relevant documents, Commonly,
operational document retrieval systems fail to furnish many relevant document
references while also furnishing many that are not relevant. Probabilistic
models of document retrieval address this lack by providing a theoretical
basis for deciding which documents to retrieve.

In implementation, however, probabilistic document retrieval is more
problematic since it relies on unsatisfactory statistical assumptions and is
based on questionable means of estimation. This paper proposes using a novel,
adaptive approach to document retrieval which is inspired by the difficulties
in implementing probabilistic models. The approach associates a competing set
of descriptions with a document and employs a probabilistic, "genetic"
algorithm which alters this\set according to the queries used and relevance
judgments made in actual retrieval. A simulation experiment, discussed in
full, indicates the effectiveness of this approach in séreening relevant from
non-relevant documents, There are no serious difficulties in implementing

this approach, including those that arise in probabilistic models.






1. Introduction

Document retrieval involves inquirers issuing queries in order to receive
references to relevant documents., Commonly, the record stored in a
bibliographic database to describe a document consists of a set of subject
terms or "keywords" (sometimes with associated weights). In this research,
documents receive multiple descriptions in an attempt to resolve problems
arising from different inquirers seeking the same document in dissimilar ways.
A probabilistic algorithm is also used to adjust these descriptions and
provide a better means of getting documents to just those inquirers who will
find them useful, The algorithm is free of assumptions of subject term
independence that weaken most probabilistic models.

The paper begins by discussing the problem of representing documents.
Particular attention is paid to probabilistic models, primarily to see how the
limitations in implementing these theoretically-based models can inspire other
forms of document retrieval. Document redescription will then be considered,
and a probabilistic approach to to redescription relying on multiple
descriptions of documents wili be described. The effectiveness of that

approach will be reported and then discussed.

2. Representation
The number of documents stored in computer-accessible fashion is
quickly growing due to convenient, inexpensive word-processing and
subscription document retrieval services housing large numbers of document
references, As a result, both demand and need for effective document
retrieval systems are on the rise.
Document retrieval is primarily a problem of representation: representing

documents by storing some form of description of them in a database; and
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representing inquirers' information needs with computer processable queries.
If forming adequate representations of both documents and users' needs were
completely understood, there would be no need for further research in this
field., Inquirers would easily find just those documents useful to them.
Instead, providing adequate document representations and adequately expressing
an information need so as to have success in retrieving textual information
are actually quite difficult. Zunde and Dexter have documented the
inconsistency among trained experts in trying to describe identical documents
[20]. Blair points out that, if trained experts disagree so considerably in
representing documents, one cannot hope for inquirers to be any more
consistent in trying to retrieve them [1]. And, as many people are personally
aware, the results of performing a computerized literature search can often be
disappointing. Recently, a report of less than satisfactory full-text
retrieval effectiveness has appeared [2].

Because of the difficulty of representing documents adequately, various
theories have been advanced describing how documents might be best described.
For instance, by accounting for the discrimination value of a term, it is
argued that certain terms will make it easier to distinguish relevant from
non-relevant documents while others will make it more difficult [16].
Recently, models formally incorporating probability have been described.
Cooper and Maron give a utility-theoretic arguﬁent for deciding whether a term
be used to describe a document: wuse the term if and only if retrieval
satisfaction will be better with the term supplied than without [6]. Harter
claims the number of times a term occurs in a document is a theoretically
justified indicator of the term's suitability in describing a document [101].
Bookstein and Swanson explore the use of Harter's model as a decision-

theoretic tool for indexing documents [3].
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Indeed, models based on probability and decision theory are appealing
because of their theoretical nature. Two variants of probabilistic models
will now be discussed. A discussion will point out certain difficulties in
implementing these models that, if overcome, might lead to enhanced retrieval
performance,

In the Maron and Kuhns probabilistic model, each point in the sample
space is a triple indicating: the query an inquirer would use on some
occasion, the name of a document that might potentially be furnished for the
query, and the relevance evaluation the inquirer would give concerning that
document [13]. Thus, the events of primary importance in the model are of the
form:

P(documenti is relevant | particular query Y),
Y being a non-empty set of query terms, {yl, Yt *os yn} an inquirer might
use to look for documents. In words, what is suggested is that, at different
times, different relevance assessments of the same document will be made for
identically constructed queries; and what is to be predicted is the
probability that any given document will be relevant to such a query in the
future. Further, the model prescribes a method for indexing documents.

Whereas the model just described relies on past inquiring behavior in
estimating probabilities that inquirers will find documents relevant, the
second probabilistic model relies on the keywords (i.e., subject terms) used
to describe a document to estimate the same probabilities [14]. In this
model, sample points indicate: the subject terms with which a document is
described and the relevance judgment for that document with respect to an
implicit, undescribed query. The events of importance have this form:

P(documenti is relevant | documenti's description is X),
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where X is a set of binary keywords. We refer to this model as the Robertson
and Sparck Jones model for the work they did in deriving query weights [14],
noting historical antecedents to this approach in Bookstein and Swanson [31].
Van Rijsbergen more recently further articulated the Robertson and Sparck
Jones model [18]. Croft has extended the model to the case where keywords are
assigned probabilistically to documents rather than deterministically [T71].

Under both the Maron and Kuhns and the Robertson and Sparck Jones models,
Bayes' theorem is invoked to calculate probabilities, For instance, the
latter ultimately ranks documents according to

P(X | Rel) / P(X | ~Rel) or, identically, by the ranking

P(X | Rel) / P(X).
(X, Rel, and “Rel indicate the events that a document is described by the set
of subject terms, X; a document is relevant; and a document is non-relevant,
respectively.)

Whereas the attractiveness of probabilistic models comes from their
theoretical grounding, their implementation presents certain difficulties,
First, in computing the probability that a document is described with the set
of subject terms, X, the assumption is usually made that these terms are
distributed independently within both the set of relevant documents and the
set of non-relevant documents. (An independence assumption is also used in
the Maron and Kuhns model.) The assumption buys mathematical tractability,
but as Van Rijsbergen, among others, has pointed out, the assumption is
discrepant with the fact that it is precisely subject term combinations
(statistical dependencies among subject terms) that indicate the content of
documents [19]. Therefore, even though experiments report that probabilistic
models based on this independence assumption can improve retrieval performance

[8], efforts have been made to devise simple dependency models less restricted
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by the independence assumption [4] [19]. However, such models require costly,
computationally inefficient calculations, and also neglect dependencies among
more than two terms [17].

A second problem that arises in probabilistic models is estimation. The
Maron and Kuhns models relies on human estimations of the probability of using
a given search terms in retrieving and finding a document relevant. Thus, it
is hampered by the same problems in its implementation as manual retrieval
models: inconsistent and possibly unreliable human judgments.

The Robertson and Sparck Jones model, on the other hand, makes
empirically-based estimates of the distribution of terms within the relevant
and non-relevant sets of documents, Given a small number of retrieved
documents (usually ten or twenty) and an inquirer's relevance assessment of
them, frequency data are used to calculate both pi's (probability that termi
is used in indexing a relevant document) and qi's (same probability for a non-
relevant document). The model relies on this same pattern of subject term
distributions existing in the collection as a whole so that relevant and non-
relevant documents may be distinguished.

Such estimations of subject term distributions may be misleading,
however. First, what should be sought is a population parameter for pi's and
qi's. If documents are well described by subject terms, documents which are
likely to be found useful together will be similarly described and retrieved
together by inquirers searching for information. However, individual
differences and inconsistencies among inquirers suggest it will never be
possible to divide a document collection (here is one set of documents that
will be useful together; here is another; etc.) in the same way for all
inquirers. At best, then, subject terms can establish sets of similarly

described documents which, collectively, are likely to be useful to inquirers
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"as a whole." Therefore, if there is a pattern described by subject terms, it
is more likely to serve to demarcate relevant and non-relevant documents for
the population of inquirers in general than for any individual making a query.
Yet, in implementation, the Robertson and Sparck Jones model demarcates
relevant and non-relevant documents based on the assessment of a single
inquirer., To the extent that this separation is an artifact instead of
indicating some pattern existing in the document database at large, it will
not lead to useful prediction for retrieval. 1In addition, the point estimates
we obtain for parameters such as P; and q; may be quite unreliable due to the
small sample sizes on which they are based. In document retrieval, as Van
Rijsbergen points out, "it should now be apparent that the problem of
estimating binomial parameters from small samples has no obvious best solution
[191.n

A probabilistic model unifying the Maron and Kuhns and the Robertson and
Sparck Jones models has been proposed, too [15]. The model suggests the
distribution of query terms together with document subject terms should
provide evidence for retrieval., In this model, X is a set of binary random
variables, Xi each of which indicates, for arbitrary documentx, either that
it is described by termi (i.e., xi(documentx) = 1)) or is not (xi(documentx) =
0). Y is a set of binary random variables, Yo which indicate which terms
have been employed in a particular query. Probabilities of the form

P(Rel | X, Y)
are to be calculated in making a retrieval decision about a document. In
practice, by Bayes' rule, this requires knowing the joint distribution of X
union Y,

In a life-sized document retrieval system, document descriptions and

queries can each be composed from vocabularies containing thousands of terms.
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Even in principle, such a joint distribution of subject and query terms is
only available at exorbitant cost by analyzing all possible queries in
conjunction with any possible document description., Similarly, a Bahadur-
Lazarfeld expansion of a joint distribution of 1,000 terms exhibiting third-
order dependencies requires the estimation of over 166,000,000 parameters
[17]. Thus, any feasible implementation of this model would again rely on
less than realistic independence assumptions.

To summarize then, if a (probabilistic) retrieval model is to provide
satisfactory document retrieval we should hope to see the following:

1. the model should not rely on independence assumptions;

2. feedback data should not be based on single inquiries (or a

small set of inquiries);
3. the computational cost of the model should be acceptable.
In the sequel, a means of retrieval which satisfies these objectives will

be described.

3. Document redescription

Since describing documents well is so difficult, one way to improve
document descriptions is to perform the description process repeatedly. Each
repetition would attempt to improve the description attached to a document.
In essence, document redescription is an attempt to determine from past
inquiries how a document should have been described so that its description
can be modified and made more satisfactory to future inquirers. Such an
approach is based on the assumption that there will be identifiable
regularities in a large enough set of inquirers' requests for a given

document .
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Other attempts to modify a document's description has been reported.
Brauen adjusts document term weights to improve retrieval effectiveness [5].
Successful to some degree, his approach does worse when it receives feedback
concerning both successful and unsuccessful searches than when it receives
only the former, and "control" queries exhibit better recall-precision
performance as a result of document modification than the "test" queries
toward which document redescription is directed. More recently, Furnas has
described an adaptive indexing system that learns alternate terms to use in
identifying various sources of information (i.e., "documents") [9]. In
essence, once a sought document is identified, the system uses all the
(single-term) queries that searcher has used unsuccessfully in trying to
locate the document to update frequency counts relating it to these terms.
Furnas' approach has only been applied to very small databases (255 documents
in the system most extensively studied) and only permits analysis for single-
term queries. Clearly, customary bibliographic retrieval is of a quite

different character requiring correspondingly different approaches.

I, Genetic adaptation of documents

We have seen that representing documents so that they may be effectively
retrieved is difficult. Further, we have noted that an attempt can be made to
make document description an iterative process, but that research results have
not conclusively established the viability of this approach. In this section,
we will see a means of adaptive document redescription that provides improved
retrievability of relevant documents. Some initial remarks describe the
philosophy underlying the approach before it is described., 1In following
sections, results of simulation experiments documenting the success of the

approach are reported and comments on using the approach to represent

documents are made.
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As was pointed out, inquirers are bound to disagree about the proper
description of a document (that is, they'll each be requesting it somewhat
differently), so the best indexing results will arise from describing a
document to best represent it for the group of inquirers who will find it
useful (rather than for any particular individual)., As a result, a novel
approach to indexing used here involves simultaneously supplying alternative
descriptions to the same document and then deriving better descriptions based
on feedback indicating which of the alternative descriptions best describes
the document. The retrieval model, (its use of feedback momentarily
ignored), is this: a document is described by several complete descriptions
(for instance, several sets of keywords, or several sets of keyword weights);
an inquirer issues a query; and each description of the document is matched
against the query as if the document were described with only a single
description. The average of these separate matching scores serves as the
basis for retrieving or not retrieving a document. (Other functions of these
separate matching scores are possible, too, possibly the maximum or median.)

As mentioned, the retrieval model makes use of feedback to change the
way a document is represented, rather than keeping the representation static.
This is done with a "genetic" (or adaptive) algorithm which is of demonstrated
success in many domains [11] and currently is being studied in artificial
intelligence research aimed at promoting learning [12]. Consider a set of
objects, each of which is performing an identical task, and assume each object
can be represented by a string of symbols. The genetic algorithm operates on
such a set of representations, replacing it with another set, then another,
and so on. The replacement attempts to produce new sets of objects (more
precisely, object representations) in each succeeding "generation" which, on
the whole, are more fit (perform the designated task better) than their

predecessors.
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The algorithm, applied to the task of document redescription, iterates
this two-step process:
Repeat
1) For any particular document, measure the "worth"
(i.e., "performance" or "fitness") of each of its
(fixed number of) descriptions. That is, determine
how well each description serves in providing the
document to just the right inquirers.
2) Replace the set of descriptions currently associated
with that document:
a) Throw away its current set of descriptions
b) Establish a new set of descriptions out of the
set just discarded, using more "parts" of
descriptions which had higher worth. Each of
these descriptions will likely be different from
all descriptions in the just discarded set.

Until some criterion is obtained.

In other words, what is occurring is a process that attempts to mimic
genetics, promoting a population of descriptions built up of parts ("genes")
of its fittest members. The first step in the process seeks to determine
which descriptions are best doing their job (getting a document to just those
inquirers who will find it relevant); the second step exploifs the information
gained in the first but also introduces variety. Together, the two steps seek
regularities among the best descriptions, promote descriptions exhibiting such
regularities in succeeding generations, and try out completely novel

descriptions in an effort to improve upon the descriptions already tested.
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Even after adaptation, a document retains a set of descriptions. If deemed
desirable, these could then be replaced by a single description derived from
this set.

With this background, the results of performing adaptive redescription

are now described, and the details of the algorithm are left to the Appendix.

5. Results

The effectiveness of applying the genetic algorithm to document
redescription was tested experimentally. The basic paradigm assumes the same
set of queries (with identical relevance judgments) is repeatedly issued to
the retrieval system. The algorithm uses only knowledge indicating the
queries to which a document is relevant and the queries to which it is not in
adapting document descriptions. Thus, to adapt the way a document is
described, it was necessary to collect a set of "relevant queries" (queries to

’which a document is judged relevant) and "non-relevant queries" for each
document studied. The judgments providing these query sets were made by
undergraduate college students., In all, a "relevant query set" and "non-
relevant query set" were obtained for each of eighteen different documents .

On average, there were seventeen descriptions per document and a like number
of both relevant and also non-relevant queries. (Each was a set of unweighted
terms without any Boolean connective.) Using these, a series of eighteen
separate simulations was conducted:

For any given document, an initial set of descriptions was needed to
begin the simulation. The same college students used to make relevance
judgments about documents provided these initial descriptions. 1In fact, the
initial set of document descriptions and the set of relevant queries for that

document were identical, the assumption being that the query one puts to find
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a relevant document and the description one would provide for that document
ought to be the same. Each of the eighteen documents studied was treated
independently, meaning it had its own set of initial descriptions and its own
set of relevant and non-relevant queries.

A snapshot of generationg of the simulation for hypothetical documentx
can be seen in Figure 1. Several things should be noticed: One, there are N
generationg descriptions of this document, (Each of these is a set of subject
terms.) 1In generation1, these were the descriptions originally supplied.
Subsequently, they will have been modified. Two, there is an associated set
of M relevant queries for this document. Three, a Jaccard's score matching
function is used to compute the similarity of every description of documentx
to each of its relevant queries. (The Jaccard's score association between two
sets X and Y is #(X intersect Y) / #(X union Y), #(S) meaning the cardinality
of set S. In this case X and Y are the set of terms used to describe a
document and the set of terms used in posing a "relevant" query for that
document, respectively. The Jaccard's score is a common measure of
association in document retrieval [18], and use of other association measures
would not influence the operation of the simulation or the expected results.)
Four, notice that the Average Matching Score, i.e., "worth," of each of the
descriptions currently in force is indicated. It is this "worth" that is
exploited by the genetic algorithm in producing descriptions in generationg+1.
Finally, notice that the overall level of association (the Overall Average,
Gg) between descriptions in use during the current generation, g, and the set
of relevant queries is indicated. It is this statistic that indicates how
well the current generation of descriptions is performing its job.

If genetic adaptation were to succeed in improving document

descriptions, then, on average, the level of association between a document
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and its relevant queries should be higher in generation 40, upon completion of
the simulation, than it was in generation 1 using the original set of

descriptions. That is, should exceed G,. Such improvement did, in fact,

Gyo 1

occur for each of the eighteen documents studied (averaging approximately 25%
improvement in Jaccard score). Further, although a redescribed document
exhibited some increase in similarity to its non-relevant queries (used as
experimental control), in seventeen of eighteen cases this was less than the
increase relative to relevant queries, which, on average, was nearly five
times as great. See Figure 2 and Table 1,

In a second series of simulations, the adaptive procedure was put to a
more severe test: Redescription was attempted to raise the document's average
level of association to its "relevant queries" and, at the same time, to
reduce the document's average level of association to its "non-relevant
queries," (which were selected on the basis of their similarity to relevant
queries). In other words, the attempt was made to redescribe a document so
that it would more likely be retrieved by those who would find it useful and
less likely retrieved by those who would not. Again, each of the eighteen
documents was adaptively redescribed independently of all the others. As
before, these simulations were run for forty generations.

Figure 3 provides an in-progress snapshot of the redescription of
hypothetical documentx in conformance with the goals above. Notice that a
document has one set of descriptions associated with it, but that these will
be matched against both relevant queries and non-relevant queries. Gg, as
before, indicates how well, on average, the prevailing descriptions of the
document are at matching relevant queries. G'g makes that same indication for
non-relevant queries. For adaptation to succeed, Gg should increase from its

gener‘ation1 level while G'g should fall: in practical terms, this would mean
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that documents are more likely to be retrieved by relevant queries (since they
are now described more similarly to these queries) and less likely to be
retrieved by non-relevant queries (due to decreased similarity). Should Gg
and G'g both rise, adaptation still might be deemed successful if the increase
in the former is greater than the latter. The advantage, in that case, is
that there is now a greater difference between the expected level of
association between a document and a relevant query and the expected level of
association between that same document and a non-relevant query. Thus, when
presented with a query of uncertain relevance, it becomes easier to tell
whether or not to retrieve the document.

In conduct, Gg did increase as a result of adaptation for each of the
eighteen documents studied. 1In fifteen cases out of the eighteen, G'g dropped
(signifying that, absolutely, non-relevant queries matched worse a document
when it was redescribed to match its relevant queries). In the remaining
three cases, G'g rose slightly, but less than the corresponding rise in Gg for
the same document (signifying that, relative to the increased association
between relevant queries and adapted document descriptions, an improvement in

filtering non-relevant queries was made). See Figure 4 and Table 2.

6. Discussion

Earlier, we suggested that document retrieval can be improved if: 1) the
underlying model is not reliant on independence assumptions; 2) the feedback
pertaining to relevance assessments that is elicited is aggregated across a
sufficiently large group of inquirers with similar information needs; and 3)
these two criteria are attainable at reasonable computational cost. Success
in meeting each of these criteria is now examined for the model of genetic

adaptation described.
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For any document in the simulation, the distribution of query terms over
its set of relevant queries is easily tabulated. Let the proportion of
relevant queries (for a given document) using termi be P Then, one
procedure for indexing a document employing a set of M descriptions suggests
that this set employ subject termi for pi*M of its descriptions and not employ
termi in the remaining (1-pi)*M cases, Under the assumption that the
distribution of any termi is independent of any termj, (j <> i), and by
making use of complete knowledge of all relevant queries used to retrieve a
given document, we would obtain identical distributions of subject terms in
both the set of descriptions used to describe a document and the queries
employed in an attempt to retrieve it. Such a "theoretically derived" set of
document descriptions might be considered near optimal on the assumption that
maximal similarity between a set of document descriptions and its relevant
queries will arise when every term is distributed identically in both sets.

The actual effectiveness of describing a document with such a
"theoretically derived" set of descriptions was compared to the effectiveness
of genetically adapting descriptions for the same documents. The results
pointed out the superiority of adaptation: for each of the documents studied,
the adapted descriptions more effectively matched relevant queries than did
the "theoretical" descriptions, the improvement averaging approximately 25
percent (as measured by Jaccard's score).

The genetic algorithm is responsible for this improvement. By its
action, combinations of index terms which best serve to describe a document,
rather than just individual terms, proliferate from generation to generation.
More technically, in promoting competition among a set of objects represented
as strings of symbols, and then introducing variability after reproducing

these strings in proportion to their effectiveness, there will be increasing
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representation of the fittest "schemata" over time. (A schema names a
hyperplane, or set, Fbr instance, the binary schema 01#001# stands for the
set of four T-place strings {0100010, 0100011, 0110010, 0110011}, "#" standing
for "instantiate in any valid way possible.") In the case of document
descriptions, fit schemata are those subject term combinations that best
describe documents. Thus, descriptions of documents are built up out of index
term combinations quite differently, and more effectively, than if index terms
were supplied independently to documents. This is consonant with Holland's
commentary on the proof of the genetic algorithm: "In effect, useful linkages
are preserved and non-linearities (epistases) are explored ... giving a
performance ... which is not simply the sum of their [for us, subject terms']
individual performances." And, with a suitable number of descriptions
attached to a document, by the central limit theorem, sets of subject terms
"with the higher average fitness quickly predominate [11]." Or, again, the
genetic algorithm produces document descriptions which surpass in performance
those that could be generated from identical information using assumptions of
statistical independence. The operation of the genetic algorithm differs in
this respect from other document retrieval feedback techniques (used to alter
document descriptions or queries) which modify the weight of any given subject
or query term independently of all others.

A second desideratum of a document retrieval system is that it collect
feedback with which to base retrieval on knowledge gained about "inquirers as
a whole," rather than on the basis of an individual query or inquirer. This
criterion, which accounts for individual difference among inquirers, underlies
the operation of the system described, as the current descriptions associated
with a document are derived as a result of relevance assessments of the

document issued by all past inquirers who were furnished it.
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In being independence-free and describing documents to meet the needs of
a population of inquirers, the model has theoretical value. In addition, the
computational cost of the model does not outweigh its advantages. In
supplying a document with several (say n=15) descriptions rather than one, we
suffer a linear (i.e., fifteen-fold) increase in both the storage required to
store descriptions as well as the time required to match queries to document
descriptions. Although the increase in storage is inevitable, one expects
that efficient means of compressing descriptions and decreasing storage costs
could mitigate this disadvantage. (It is possible, too, to multiply describe
only the most actively sought documents in the collection or to replace the
set of descriptions with which a document is represented by a single,
"consensual" description once adaptation is complete.) Importantly, notice
that by incurring this increased storage cost, we obtain a distribution of
subject terms within the description set of a document which is more effective
than that "theoretically derived" using an independence assumption together
with complete information about relevant queries., In short, we are
accomplishing what, in probabilistic models, is so difficult: obtaining
effective "probability" estimates which can be used to improve the retrieval
of documents.

The matching costs, potentially more damaging, are more easily dealt with
in practice. With clustered files of document descriptions, or by means of
file index construction, the documents deemed potentially relevant to a query
can be restricted to a greatly reduced fraction of the entire database. Thus,
although we have a linear increase in the number of matches to be made,
constraining the search to a small subset of the database considerably lessens
this concern. (It is possible, too, to match a query against a few, not all,

of the descriptions of the set of documents initially suspected to be
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relevant, Then, using these matching scores, the retrieval system can
continue to match against all descriptions of just those documents indicating
greatest likelihood of relevance.) Research into improving the time and space
complexity of genetic adaptation of document descriptions should, of course,

precede implementation of a system based on this model.

7. Conclusion

The difficulty in describing documents well has been indicated.
Probabilistic models of document retrieval have been discussed to indicate the
difficulty in achieving theoretical soundness along with effective
implementation. Although less theoretically guided than strict probabilistic
retrieval models, an adaptive approach has been described which overcomes the
problems probabilistic models suffer: 1) implementations based on
independence assumptions; and 2) probability estimations either of uncertain
reliability or value or attained only at prohibitive cost. (We note, too,
that even rigorous probabilistic models are, in practice, heuristic to a
considerable extent. For instance, the Robertson Sparck Jones model formally
calculates probabilities of relevance without regard to queries at all! 1In
practice, though, queries are used heuristically to restrict computations.)
The effectiveness of the adaptive approach has been documented.

In an operational retrieval system, an initial set of descriptions for a
document could be obtained by means of competing automatic indexing
procedures. Alternatively, models suggesting the probable effectiveness of
employing given subject terms to documents could be used to stochastically
generate an initial set of descriptions.

The described simulation experiments model a document being repeatedly

requested by the same set of queries. In actuality, the way a document should
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be described is likely to change over time as it is requested differently.
Being a model that redescribes documents rather than leaving their
descriptions fixed, the adaptive model discussed automatically accommodates
such changes. Since the model employs multiple descriptions of any document,
one of these could include just those query terms from a recent query to which
the document was, or should have been, judggd relevant. In this way,
entirely new subject terms can be incorporated in describing a document. In
the model presented, what is occurring is that those terms already supplied
are being more effectively distributed across the various descriptions of the

document .
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APPENDIX

The genetic algorithm repeats the two-step process already outlined in
an attempt to provide increasingly effective document descriptions over time:
Repeat
1) Measure the performance of competing document
descriptions
2) Replace the set of descriptions
Until some criterion is attained.
Figure 1, in the text, helps explain the details of the algorithm as
used in this study. Each of the generationg descriptions of documentx shown

is really a binary document vector. For example, we might have:

T1 T2 'I‘3 Tu . . Tk
desc_x___g1 = < 1 1 1 0 . . 0 >
where each of T, through T, is a subject term (or phrase) that is either being

1 k

employed in describing a document (1) or is not (0).
Both of the steps in the algorithm above are now more completely
explained. For a proof of the effectiveness of this class of algorithms under

various conditions, see Holland [11].

1)  Measure performance of competing descriptions

The Average Matching Score for each description is indicated in the
right most column of Figure 1. This measures how well each competing
description "performs" (matches, on average, the M relevant queries for this

document). We call this a description's "fitness."



2)

a)

b)

c)
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Replacement of the set of descriptions

Relative Fitness:
Calculate, for each description, desc_x_gi,

Relative Fitness (desq_x_gi) (1 <= 1<=N).

Relative Fitness (desc_x g;)
Avg Matching Score(desc_x_gi) / F
where
N
F=(1/N) ¥ 1 Avg Matching Score (desc_x_gm)
m=1
Reproduction:
Create Relative Fitness (desc_x_gm) copies of desc_x__gm
(1 <=m<=N)
Treat fractional relative fitnesses stochastically.
Discard generationg descriptions.
Cross-over:

Randomly partition this newly created set of N
descriptions into floor (N/2) pairs (plus a single
remaining description if N is odd).

For each pair, j, pick a.random cross-over point,
p.y, 1 <= pj <= k = 1 (k the length of the vector).

J

Form the generation set of document descriptions

g+1
as follows (set initially empty):
Add to set:

initial (desc-pair j1) + final (desc-pair j2)

initial (desc-pair j,) + final (desc-pair j,)
2 1
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where

desc-pair j1 and desc-pair j2 are the pair of
document descriptions in the j-th pair;

initial (desc-pair jt) = first pj positions in
vector (desc-pair jt (t = 1,2)

final (desc-pair jt) = last (k - pj) positions in
vector desc-pair j, (t = 1,2)

+ = string concétenation.

For odd N, remove a randomly chosen description
from the set just generated. Pair it with the as yet
unpaired description. Apply cross over to this
additional pair and place this newly created pair into
set.

For instance, if the following two subject descriptions (below, left) comprise

the j-th pair, and pj is randomly selected to be 3, we would see

Before crossover After crossover
T1 T2 T3 TH . . Tk T1 T2 T3 Tu . e Tk
<1 1 1 o . . 1> <1 1 1 0 . . 0>
<0 1 1 o . . 0> <0 1 1 o . . 1>

The new set of documentX descriptions would replace those in Figure 1,

and the entire adaptive process would be repeated.

Note: Figure 3 presents a slightly more complicated situation,
differing in its calculation of relative fitness. There, the fitness of any
description depends on both its "recall" fitness (similarity to relevant

queries) and its "fallout" fitness (dissimilarity to non-relevant queries).
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That is, in Figure 3, the fitness of a document description, say desc_x_gi,
would be equal to:
(1) Avg Recall Matching Score (desc_x g.) +
wt ¥ (G'g - [Avg Fallout Matching Score (desc_x g,) - G'g])
Three observations pertain to this formula:
1) The first addend, Average Recall Matching Score (desc_x_gi), reflects
the description's similarity to relevant queries.
2) The second addend reflects the description's dissimilarity to non-
relevant queries. The term the G'g - [Avg Fallout Matching Score
(desc_x_gi) - G‘g] is exactly the same magnitude above G'g as Avg Fallout
Matching Score (desc—x-gi) is below it. This "inversion" is necessary so that
descriptions good at matching relevant queries and descriptions good at not
matching non-relevant queries both contribute in an "above average" fashion to
the overall fitness the description. (That is, descriptions which are quite
dissimilar to non-relevant queries should contribute "fallout fitness" values
greater than G'g.)
The relative fitness of desc_x g, was calculated to be:
N
fitness (desc_}_gi)/(1/N L fitness (desc_x_gj))
j=1
3) The weight, wt, in expression (1) was employed to balance the differing
effects of a description's Avg Recall Matching Score (recall fitness) and
"inverted" Avg Fallout Matching Score (fallout fitness) on its overall
relative fitness. Some experimentation indicated a weight of 0,50 was

appropriate to cause Gg to rise and G'g to fall in succeeding generations.
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Avg Matching

relev.x q, ... relev_x_qy Score
desc_;(__g1 I Jd(g1,q1) ees  J(gl,gM) 1/M £d(g1,qi)
| .
i
. ; . . .
. : . ] 0
. : . L] L]
i
desc_x_gN I J(gN,q1) eee  J(gN,qM) 1/M TJ(gN,qi)
i
N descriptions
of document Overall Average, G , =
in generationg 1 &
----- T I J(gk,qi)
M*¥N ki

Each of documentx's M relevant queries is matched against
each of the document”descriptions in force in generation . The
match between relevant query relev_x q. and document descgiption
desc x g. is indicated by J(gj,qi). RoWw averages give "Average
MatchingJScores" for each document description. G_, the grand
average, gives the overall average matching scofe for the
‘document descriptions in force in the current generation, g.

A set of descriptions of documentx which produces an
Overall Average matching score greater than™ G_ relative to the
same relevant queries is an improvement on tﬁe generation set
of descriptions, &

Figure 1--Matching of descriptions and relevant queries



-25-

pauUTqWoDd Ss3usunoop TIrB--3juUswaAoadwT TTEOON—--

1€

9¢

uo 13eI8Ud

91

[4

11

2anI Ty

™

Ls

| ¥4

¥

¥

-4

6¢

o4
4

(A
€4

1t
Sty

9t

Al
Bh

6

3aJ00§8 pJBIIBpP



-26=

Avg Recall
relev__x_q1 .+o relev X _qy Matching Score
4=
desc_x_g1 1 Jd(g1,q1) coe J(g1,qM) 1/M td(g1,qi)
| i
|
. ] . ] .
[}
. ] . . .
] : . . .
|
desc_x_gN i J(gN,q1) ces J(gN,qM) 1/M LJ(gN,qi)
i
N descriptions
of document Grand average, Gg, =

. X
in generatlong 1
—-—- I I J(gk,qi)
M*¥N ki
ERRERRNNNERR NIRRT RN RN RN RN RRRERRNRERRR AR
Avg Fallout
non-rel__x__q1 .os non-rel_}_gM Matching Score

desc_x_g1 I Jd(g1,q1) eeo Jd(gl,qM) 1/M %J(g1,qi)
, ;
i
. E . . O
3 : . 3 .
. : . . .
i
desc_x_gN i J(gN,q1) eeo J(gN,qM) 1/M ;J(gN,qi)
i
N descriptions Grand average, G' , =
of documentx 1 &
in generation - I I J(gk,qi)
g M*N ki

Each document description set is matched with each relevant
query and also with each non-relevant query. For each document
description, an average recall matching score is calculated with
respect to the relevant query set (row averages above the
starred 1line), and an average fallout matching score is
calculated with respect to the non-relevant query set (row
averages below the starred line) and then "inverted" around G!'

Note that, above the dotted line, J(gi,qj) indicates tﬁe
Jaccard match between description dese x 8 and relevant query
rel-x-q,., whereas below the line it indicates the Jaccard match
between the same description and non-relevant query
non=-rel x q.. and G are calculated with respect to
the pertlneﬂt qéerles.

Figure 3--Matching of descriptions with relevant
and non-relevant queries
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Change in Overall Average Matching
from gen, to gen

]

|

1

! 1 40

i
Document i relevant queries non-relevant queries

1

-
Doc 1 i 10.05 4,14
Doc 2 i 7.61 1.81
Doc 3 | 10.83 -5.10
Doc 4 | 13. 11 8.51
Doc 5 d 8.79 4.75
Doc 6 | 9.11 0.96
Doc 7 i 10.38 0.08
Doc 8 | 8.01 -8.18
Doc 9 i 10.81 -3.29
Doc 10 ' 8.06 6.87
Doc 11 i 8.51 11.43
Doc 12 H 9.79 3.05
Doc 13 ! 11.12 2.94
Doc 14 | 7.56 5.41
Doc 15 i 9.11 3.48
Doc 16 1 10.69 1.91
Doc 17 i 9.17 1.69
Doc 18 | 5.62 -5.82
Avg. i 9.35 1.92
S.D. | 1.62 4,89

Data expressed in units of Jaccard's score.

The pair of table entries in a row (like 10.05 and 4.14 in
row 1) indicate intentional and inadvertent  improvement,
respectively. That is, after Document-1 was redescribed for 40
generations, the Overall Average Matching score relative to its
relevant queries was intentionally elevated by 10.05 Jaccard
points; similarly, the same redescription inadvertently increased
document-1's overall average matching score 4.14 points relative
to a set of non-relevant queries.

H : For any document (table row), the greater change in
overall Average Matching is equally likely to occur with respect
to relevant queries (intentional change) or with respect to non-
relevant queries (inadvertent change).

Reject H , p < .0001, sign test;

Conclude: adaptation promotes greater recall improvement
with relevant than non-relevant queries.

Table 1--Increase in overall average matching for
non-relevant queries versus relevant queries
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FALLOUT
Gen 1 Gend0  %Chng

RECALL
Gen 1 Genld0  %Chng

i i

i i

I i
Doc 11 36.03 42.86 18.96 i 20.07 14,47 -27.90
Doc 2 | 44.45 50.59 13.81 | 17.83 7.69  =56.87
Doc 3 | 42.19 52.53 24.51 | 17.12 11.05 -35.36
Doc 4 | 39.36 50.58 28.51 | 21.08 25.87 +22.72
Doc 5 | 41.12 47.33 15.10 | 18.83 17.58 - 6.6M4
Doc 6 | 43.01 52,45 21,95 | 18.00 16.04 -10.89
Doc 7 { 33.45 40.09 19.85 | 18.11 13.87 ~ -23.41
Doc 8 { 31.81 39.98 25.68 { 12.92 4,28 -66.87
Doc 9 | 54.21 64.43 18.85 | 13.72 8.33  -39.29
Doc 10 | 37.92 46.65 23.02 | 17.65 13.25 -24,93
Doc 11 | 28.06 30.23 - 7.73 | 19.34% 14,52 -24.92
Doc 12 | 48.15 57.72 19.88 | 16.88 18.45 +9.30
Doc 13 | 47.36 57.09 20.54 | 16.69 16.81 +0.72
Doc 14 | 39.95 44,29 10.86 | 20.29 13.75 -32.23
Doc 15 | 36.80 43.95 19.43 | 18.25 16.16 =11.45
Doc 16 | 39.83 47.64 19.61 | 17.88 13.03 =-27.13
Doc 17 { 31.23 37.99 21.65 | 14.75 8.53  -=U42.17
Doc 18 | 36.66 41.68 13.69 | 16.35 8.31 -49.17

| [
Average] 39.53 47.12 19,09 | 17.54  13.44  -24,81

This table indicates the initial (pre-adaptation) level of
association between a document and its relevant queries and its
non-relevant queries, as well as final (post-adaptation) 1levels
of the same measures. For doc 1, for example, we see that
document redescription caused the average Jaccard's match
between relevant queries and document descriptions to rise from
36.03 (before adaptation) to 42.86 (an 18.96% improvement). The
same document redescription resulted in the average match
between doc 1's non-relevant queries and document descriptions
dropping from 20.07 to 14.47 (a 27.90% improvement).

Ho: For any document (table row), it is equally likely that
either” a) recall and fallout will both be improved because of
adaptation or b) one or both of recall or fallout will not be
not be improved.

Re ject Ho, p < .01, sign test.

Conclude: adaptation simultaneously improves both recall
and fallout.

Table 2--Recall-fallout improvement
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