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ABSTRACT

Tool management issues have been receiving increasing attention as more complex au-
tomated manufacturing systems have come on-line. Plant tooling systems affect process design
options, batching, machine loading and scheduling, and various real-time control decisions. The
evidence is clear that a lack of attention to structured tool management has resulted in the poor
performance of many automated systems.

This paper critically evaluates major decision problems and recent research efforts related to
the management of tools in automated manufacturing. These decisions range from selecting the
optimal machining parameters and the most economic processing rate for a particular task, to the
assignment of tools and parts to machines and the determination of the optimal tool stock levels for
a particular production schedule. We outline and use an integrated conceptual framework for
resource planning to examine how tool management issues, depending upon their scope, can be
classified into tool level, machine level, and system level concerns. This framework identifies the
critical control and information interfaces between the various manufacturing management tasks
associated with tooling. Further, we evaluate the appropriateness of various tool management
approaches in different manufacturing environments and point at several promising research
directions.






1. INTRODUCTION

There are critical tool management issues that affect the productivity of many automated and
flexible manufacturing systems (FMSs). Manufacturers and machine tool suppliers recognize that
a lack of attention to such tool management issues is a primary reason for the poor performance of
many facilities (Kiran and Krason [1988], Rhodes [1988], Martin [1989], and Gruver and
Senninger [1990]). Conceptually, tool management can be classified into tool level, machine level,
and system level issues. This classification allows us to portray how models of individual tools fit
into machine level models, how these machine level models fit into system level models, and how
technological constraints directly impact decisions at all levels.

To ensure the quality performance of an automated system, a high level of integration is
necessary between tooling capabilities and the other basic production functions, including process
planning, scheduling, part design, and part programming. An effective, well managed information
system is necessary to collect and distribute tooling data across these functions. Tool management
is broad in scope, requiring :

* a design strategy to coordinate tooling inventory, tool tracking, tool handling, and

tool loading and unloading,

* a planning strategy to ensure that the appropriate tools are available when needed and are

provided in the right quantities,

» a scheduling strategy to account for tool availability and tool changes,

* a control strategy to coordinate either manual or automatic tool transfers between

machines and tool cribs, and

* a tool monitoring strategy to identify and react to unexpected tool wear and breakage.

Besides being a critical issue in factory integration, tool management has direct cost
implications. Industry data suggests that tooling accounts for 25% to 30% of both the fixed costs’
and variable costs of production in an automated machining environment (Cumings [1986], Tomek
[1986], and Ayres [1988]).

In the metal cutting industry, as in other automated operations such as assembly and plastic
molding, a large number of different tools must be managed. These tools require a substantial
degree of sophistication to plan, schedule, control, monitor, and track them among the various
machines in the plant. Thus the Integrated Resource Planning Hierarchy developed in Section 2 is
applicable not only to the metal cutting industry, but also to other discrete part production systems.

Section 3 addresses tool specific issues. Individual tool level decisions include the
economic determination of tool types, feedrates, and cutting speed for émy given part operation.
Other decisions involve standardization of tool types, real-time data monitoring, and adaptive
process planning. In Section 3 we group the models into subsections on Tool Life, Cutting Tool



Economics, Tool Standardization, and Information Requirements for Tool Planning and
Monitoring.

Section 4 identifies machine level issues related to tooling a single automated machine. We
examine the technological capabilities of machine tools for storing tools, loading tools, and
monitoring the condition of tools in operation. Typical machine level decisions include the
simultaneous sequencing of parts and tools on a specific machine, the allocation of tools to
magazine slots, and tool replacement strategies. Machine level performance measures include tool
change times, machine throughput, tool replacement and tool regrinding costs. We cover these
topics in subsections on Equipment Selection, Tool/Part Sequencing on a Flexible Machine, Tool
Placement in a Magazine, and Tool Replacement.

Section 5 reviews system management tooling issues. It deals with the impact of tool
allocations among several machines, and the interactions among machining conditions and the
overall system productivity. Additionally, in this section we address decision problems involving
system setup, economic production rates, part routing and scheduling, tool requirements planning,
tool sharing among machines, spares management, and tool inventory management. We evaluate
the applicability of various methodologies to tool management and identify many open research
problems. Section 5 contains subsections on Master Production Planning, Machine Sequencing
and Process Monitoring, Process Planning for Economic Production Rates, Spares Management,
and Tooling Inventory Management.

Section 6 summarizes our conclusions. Conceptually, analyzing tool-specific, machine -
level, and system-level issues allows us to evaluate how models of individual tools fit into machine
level models, how these fit into system level models, and how technological and performance
constraints directly couple decisions at all levels.

From studying the literature, it is apparent that few models fully consider practical tooling
issues. Models for equipment selection seldom consider the selection of tool types and requisite
tool inventories. Most researchers have given little attention to the actual selection of tool storage,
handling, loading, changing, and monitoring technologies. Planning models that include tooling
constraints and the planning of tooling inventories are now being developed. Critical research
areas identified include tool replacement strategies, spares management, and integrating the various
tool management decision levels.

Scheduling research sometimes considers the size of the tool magazine, and there have been
some recent efforts to consider the number of magazine slots used by each tool. We noticed that
issues of tool life, loading of duplicate tools, and tool change times are often overlooked. Several
studies have proposed implementing adaptive control measures to optimize the machining
parameters for each tool during actual production. This work has progressed from initially
optimizing tool use on a single machine to optimizing system-wide tool use.



With further development, many existing design, planning, and scheduling models could
realistically account for tooling issues. The lack of appropriate attention to these issues, however,
invalidates many other models.

2. AN INTEGRATED TOOL RESOURCE PLANNING HIERARCHY

In automated manufacturing, resource planning consists of many interconnected decisions,
such as facility loading, tool allocation, and scheduling (see Figure 1). For example, critical
process planning decisions and tool selection decisions depend upon the key attributes of the
available machines (i.e., horsepower, precision, tool shank parameters), and upon the production
volume of each type of part. Expensive, high-speed cutting tools with custom profiles are used for
high volume manufacturing, whereas less expensive, general purpose tools are recommended for
high mix, low volume operations. The availability of high power, high precision machines may
permit both rough-cut and surface finishing operations at the same machine tool. Moreover, the
availability of multiple tools of a given type, and the availability of space in the tool magazine,
constrain the machine sequencing decisions. These decisions determine the allocation of part
operations and tools to machines. Existing resource planning models like MRPII address the
planning and control of material flows and machines (Nahmias [1989]), but are incapable of
dealing simultaneously with the constraints imposed by tool requirements.

The hierarchical structure of the conceptual framework in Figure 1 imposes a set of
interrelated resource planning and tool management decisions that guarantee the appropriate
coordination of key decision factors. The framework allows for the planning, scheduling, and
control of tools, parts, and machines.

In the resource planning framework, control flows top-down. The hierarchical structure
acknowledges that the options available at a higher level of the structure (e.g., system level) are
constrained by those available at lower levels (e.g., machine level and tool level). The Master
Production Schedule triggers the Materials Resource Planning (MRP) and the Process Planning
and Part Programming activities. The use of a Master Production Schedule enables the process
planner to consider desired production volumes and lead times when setting up part routes and tool
selections. Information from the MRP and Process Planning/Part Programming activities feeds
into the Tooling Requirements Planning (TRP) decision module, which generates the profile of net
tool requirements over time as a function of (a) the number of each part type to be produced, (b)
the machining times for each operation using each tool, (c) the tool types required, (d) the expected
tool lives, and (e) the probability of premature breakdowns. Several plants have already
successfully set up TRP systems (Gayman [1986]).

The allocations of tools, jigs, and fixtures to groups of machines facilitates machine
grouping, or the generation of group technology cells. Machine grouping may reduce part setups
and may reduce the traffic of both parts and tools. Scheduling can be particularly sensitive to the
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availability of the right type and number of tools. Certain custom-made tools require long lead
times for delivery. Their availability imposes tight constraints on scheduling. Some machines can
share several tools during one planning period. This allocation policy creates tool scheduling and
part synchronization problems.

The Tool Inventory Control function deals with maintaining appropriate safety stocks of the
various tools and mitigating the random effects of tool supply and demand. This function also
includes monitoring the gradual wear of tools, forecasting replenishment orders for worn tools,
and predicting tool regrinding requirements. Tool Allocation decisions are tightly coupled with
Machine Sequencing and provide input for determining the actual Placement of Tools in the
Magazine for each machine. As machines or tools break down, and as parts need reworking, there
is an immediate effect on tool availability. Wear rates are accounted for in real-time control through
the monitoring and Tool Replacement functions. The following sections discuss the impact of
these decisions and the models developed to execute them. Additionally, many design issues are
detailed. Since it is necessary to determine the tool handling technology and machine tool
magazine capacity before actual startup, these design problems do not appear in the integrated
resource planning hierarchy, but they clearly affect planning decisions.

Figure 1

3. TOOL SPECIFIC ISSUES

Tool specific issues include the number and types of tools, tool speed rates, tool feed rates,
and the technology used to monitor and control machining and tooling conditions. With a given set
of machine tools, these factors essentially determine the quality of the parts produced and the
effective capacity of the machines. In automated manufacturing, these are more critical choices
than in manual operations because of (a) the level of integration necessary between the various
production functions and (b) the greater capital and time involved in developing hardware,
software, and technical support for automated manufacturing.

The flow of control described in Figure 1 shows how the data collected by individual tool
monitoring activities affects tool replacement decisions due to wear and breakage. Individual tool
monitoring and process monitoring data relate machining parameters, such as feed rate and depth
of cut, to the rate at which tools must be replaced. This data is used to figure out the desired
number and type of tools to be assigned during the fool allocation to machines.

Classic tool life and tool economics models address the effects of limited tool life, tool
breakage, and tool change times. Yet, many of these studies appear to be unknown to many
researchers in the area of automated manufacturing management. As a result, certain published
planning and scheduling models ignore the effects of these critical variables. The following



subsections address four key tool related issues that represent the major tool management concerns
at the individual tool level: (1) tool life, (2) tool economics, (3) tool standardization, and (4)
information requirements.
3.1 Tool Life

The useful life of a tool depends primarily upon the machining environment, including the
speed and feed rate, the material composition of the part and of the tool, and the depth of the cut. In
pioneering research, Taylor [1907] developed the classical relationship between average tool life
and cutting velocity through an empirical study of tool wear. The Taylor tool life equation VI = k
relates cutting speed V to expected tool life T . The empirical constants n and £ depend on the
cutting conditions and on the material composition of both the part and the tool. The constant value
k is numerically equal to the cutting speed that gives a tool life of one minute. It is evident from the
Taylor tool life equation that tool life decreases rapidly with an increase in cutting speed. Including
the feed rate and the depth of the cut provides a better empirical description of tool life. Today
many use the extended tool life equation (Cook [1973] and Jain and Gupta [1987]). This equation

has the form V= , where V is the equivalent cutting speed (or the cutting speed for a given
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tool life), d is the depth of the cut, f is the feed rate per revolution, and C, x, and y are empirical
constants.

These tool life equations provide expected values based on random tool life data. Empirical
curve fitting of shop floor and laboratory failure data have justified the use of the normal, log
normal, Weibull, exponential, and gamma distributions (as well as various combinations of them),
to describe the life of a tool under various machining conditions (Wagner and Barash [1971],
Ramalingam [1978], Ramalingam and Watson [1978a, 1978b], and Ramalingam et al. [1978]).

Making decisions such as tool choice, cutting conditions, capacity planning, and tool
replacements mandates characterizing and distinguishing failure patterns of various tools. In
general, tool life distributions depend upon the nature of the failure mechanism (Cohen and Black
[1977], Batra and Barash [1978], Yaohua et al. [1987], and Wayne and Buljan [1989]). As an
alternative to selecting a single distribution, a failure rate function may be developed from the actual
tool failure data. This is most appropriate when the tool is more likely to fail due to a single injury,
such as a fracture, than due to gradual wear of the tool's surface, as is common (a) during high
speed cutting, (b) when using impact sensitive tools, and (c) during rough machining (Pandit
[1978]).

3.2 Cautting Tool Economics

Tool wear increases the probability of a tool chipping or suffering some other type of
catastrophic failure that may damage the part being machined (Yaohua et al. [1987]). To minimize
the risk of damaging expensive parts, it is more economical to replace the tool early than to damage
a part or have the machine shut down. The time interval between planned tool replacements is



referred to as the “"economic tool life." The economic tool life applies to (a) tools which are
reground or to (b) disposable inserts. Furthermore, as machining speed increases, tools must be
replaced more often and tooling expenses rise exponentially. With the increase in throughput rates,
however, a part requires less machine and labor time and also provides the potential for higher
revenues. This basic relationship illustrates that machining speed should be a variable when
considering the economics of the facility operation.

A simple relationship between the number of times a tool is reground and the total cost
of regrinding operations is given by Cook [1973]. Cook computes the mean edge cost (Y) as:
Y=( Yo + nG)/(n + 1) where Y, is the initial cost of the tool, n is the number of times that a tool
can be reground, and G is the cost of a single regrinding operation.

The number of possible regrindings and the cost of each are inversely proportional to the
relative time interval allowed between regrinds and to tool life. The economic tool life is found
where the mean edge cost is minimized. This problem has been extensively studied since Gilbert
[1950] presented a seminal work entitled "Economics of Machining."

The interaction between machining conditions and the economic performance of a given
machine is discussed by Hitomi [1971, 1976]. In practice, the task cycle time, which depends on
the machining speed, feed rate, and spindle revolution rate, is the decision variable used to op-
timize production. In different environments, this may require maximizing production rate,
minimizing variable cost, or maximizing profit rate. Hitomi [1989] derives the optimal machining
speed for the case where tool replacement can be made within the setup time for a part.

The extended tool life equation reproduced above is commonly used within the industry to
find both the most efficient feed rate and the cutting speed for single-pass operations (Drozda and
Wick [1983]). In multiple-pass operations, the number of passes and the cutting depth may be
determined (Lambert and Walvekar [1978]). It may be worthwhile to determine the sequence of
machine tools and part surfaces to be processed in order to meet the dimensional constraints of a
finished part with maximal accuracy, as is done by Iwata and Sugimura [1987] using a simple
branch-and-bound algorithm. Parameter optimization specific to milling, drilling, reaming, turning,
single-pass, two-pass or multi-pass operations have also been treated in the literature (McCullough
[1963], Crookall and Venkataramani [1971], Chang et al. [1982], Yellowley [1983], and Hough
[1986]). Additionally, Trappey et al. [1987] find optimal machining conditions under a fuzzy set
of constraints and Malakooti and Deviprasad [1989] specify a multiple-criteria approach aimed at
simultaneously minimizing the production cost per part, the machine cycle time, and the surface
roughness. Primrose and Leonard [1986] and Boucher [1987] stress the need to appropriately
trade off material, labor, and tool costs by omitting irrelevant overhead allocations historically
included in earlier studies. All of these studies deal with manufacturing a single part at a time and
assume that tool life is deterministic.



In attempts to more realistically capture tool life economics, tool life is treated as a random
variable whose distribution is determined by the cutting conditions (Ermer [1970], Hati and Rao
[1976], Levy and Rossetto [1978a, 1978b], Zompi et al. [1979], and Sheikh et al. [1980]).
Rossetto and Levy [1975] present a profit rate distribution function by superimposing random tool
fractures on a continuous random tool wear process. Conard and McClamrock [1987] develop a
stochastic control model that uses sensory feedback information to determine economic drilling
conditions. One study suggests, however, that deterministic models are fairly close to their
stochastic counterparts in prescribing the optimal cutting parameters, explained by the convex
structure of their machining cost functions (Fenton and Joseph [1979]).

The widespread industrial practice of using the same cutting tool for processing a mixture of
part types minimizes the number of tool changes and the number of tools required and increases
part routing flexibility. However, existing tool life models are unable to provide reliable
predictions of tool life under these conditions. The single machine studies discussed here are
important precursors to the system level decision models of setting cutting speed and optimizing
overall system performance.

3.3 Tool Standardization

Metal cutting facilities commonly require hundreds of tool types and maintain thousands of
tools in inventory. Standardizing tools can be done either through part or process redesign, or
simply by comparing the capabilities of similar tool types and assigning more operations to the
same tool type. Standardization results in substantial savings in tool inventories and data
management and may improve system reliability by reducing the need for custom tools with long
lead times for delivery (Hartley [1984]).

Group technology methodologies have been proposed to aid in process planning efforts
(e.g., Burbidge [1975, 1990] and Chang and Wysk [1985]). Most of these are limited to the
generation of tool commonality subsets. Daskin et al. [1990] is one of few recent studies aimed at
the practical issues of tool standardization. It describes a punch-and-die facility which was
converted to laser punch-press technology capable of cutting 900 round holes unique in diameter,
depth-of-cut, and tolerance. The study details an algorithm for selecting the smallest set of tools
that can punch the holes, subject to tool magazine capacity and tool change constraints. Industrial
implementation of tool standardization on a large scale, however, will only be possible once
general classification, coding, and pattern clustering schemes are developed for automating the
standardization process.
3.4 Information Requirements for Tool Planning and Monitoring

Interactions among different levels of the integrated tool resource planning hierarchy
(Figure 1) is better facilitated when a common tool management data base is used. The data record
for a tool type, for iﬁstance, should be linked to vendors, part types, machines, and specific
operations for each part/machine combination. Each of the numerous tools in the plant must be



located, tracked for use limits, checked for repairability, and followed through regrind and offset
processes (Gruver and Senninger [1990]).

Information requirements for both planning and monitoring tooling are extensive. Data on the
behavior of tools under different cutting conditions is required for tool selection, in process
planning, and in coding and classifying tools for standardization. Tools must be monitored for
wear to permit planning for replacement and regrinding. If wear is monitored continuously,
adaptive control can be implemented to adjust machine speed and feed rates appropriately.
Moreover, inspecting tool conditions off-line increases the non-productive machine times and may
result in workpiece damage when the tool fails between the scheduled inspections (Tarn and
Tomizuka [1989]). When tool breakage is detected the system can react by arranging for a
replacement tool, terminating the processing of the part if it is already damaged, and/or possibly
rerouting subsequent parts to other machines (Kendall and Bayoum [1988]).

Several companies have developed sophisticated information systems to (a) coordinate
delivery of the proper tools to specific machines in time, (b) provide location information, (c)
correlate the number of tools needed for the quantity of parts to be produced, and (d) offer
acceptable substitutes when needed (Gaymon [1986] and Wick [1987]). As shown in Figure 1,
these tool delivery systems interface with machine loading and sequencing functions. Bar-code
labeling of tools or tool cabinets, or memory chips embedded in the shanks of toolholders is used
to track tool and collect real-time data (Cumings [1986] and Ryan [1987]). In lieu of these
developments, it is possible to bypass many of the static-deterministic models of tool life and move
directly to adaptive control schemes, where tool performance is directly controlled during a
machining task. To do so it is necessary to understand the main issues associated with operating
individual machines with multiple tool types as discussed in the next section.

4. TOOL MANAGEMENT ISSUES AT THE INDIVIDUAL MACHINE LEVEL
Machine level decisions are influenced by both higher system level decisions and the
technology constraints and capabilities of the individual tools discussed in Section 3. Thus, as can
be interpreted from Figure 1, individual tools can be allocated to the magazines of the various
machines after capacity requirements planning decisions are finalized and machine grouping is
determined. There are three key tool management issues at the single machine level: (a) loading,
and sometimes placement, of a set of tools in the machine's magazine, (b) determining the part
input sequences to meet certain magazine constraints, and (c) establishing tool replacement
strategies. To ensure a smooth operation, rules for exception handling and the proper methods of
continuously monitoring the system must also be determined.
4.1 Equipment Selection

Several of the information and control features available on machine tools support tool
management. These options include tool holding and changing capabilities and tool breakage and



wear monitoring functions. Specifications of a tool magazine and an automatic tool changer
include (a) the tool storage capacity, (b) the type of accessing system, (c) whether cutter loading is
manual or automatic, (d) the tool shank system used, and (e) the maximum tool diameter, length,
and weight.

Tool magazines with 30 to 60 tool slots are common, and 70 to 100 tool slots are
sometimes available. Some vendors offer machines equipped with several interchangeable tool
magazines and others provide a carrier that shuttles the tools between the individual magazines and
a centralized tool storage which can contain several hundred tools. This capability is particularly
useful for lathes because of the relatively short economic tool lives of many turning tools.

Tool magazine speed and capacity are among the most significant parameters for the
determination of expected system throughput (Arbel and Seidmann [1984]). Yet, little work has
been done to evaluate the relative cost imposed on the system by the size of the tool magazine, by |
interchangeable tool magazines versus changing tools at the machine, or by manual versus
automated tool delivery and loading.

Most current research on equipment selection does not consider tooling costs, tool change
technologies, magazine size, tool commonalties and tool lives. Alberti et al. [1989] separate
tooling and fixture costs from the equipment investment decision, claiming that they do not affect
system performance. Believing otherwise, Graves and Redfield [1988] consider tool costs, tool
commonalties, and tool change times in equipment selection. They assume, however, that when
several tasks using the same tool are assigned to the same machine only one tool is required. This
accounts for tool commonalities and saves space in the tool magazine, but it may not always be
appropriate for tools with short lives relative to machining time, where duplicates may be
necessary, nor does it account for systems in which spare tools are used to ensure system
reliability. '

4.2 Tool Sequencing on a Flexible Machine

The total number of tools required to process a set of parts on a flexible machine is usually
larger than the available magazine storage capacity. As a result, a required tool may be absent from
the magazine and a tool change must occur before that operation can begin. Tang and Denardo
[1988a, 1988b] explore this issue for a single machine with a limited tool magazine, assuming that
production requirements are known in advance. The decisions are: (1) how should the parts be
sequenced, and (2) which tools to change on the machine prior to processing each part. Their
objectives are to minimize the number of group tool change instances or to minimize the number of
individual tools changed. The former is appropriate only when the changing time is roughly con-
stant regardless of the number of tools changed. These studies assume that there is a deterministic
change time and that all changes are due to part mix, ignoring tool changes due to wear.

Bard and Feo [1989] address the problem of minimizing the total setup, tool replacement
and machining times for individual batches subject to tool magazine and metal volume removal
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constraints. This approach requires that all feasible tool paths be generated manually before being
considered by the optimization algorithm.

Silver [1990] studies the possibility of slowing down the processing rate in order to reduce
the inventory holding cost in a single machine economic lot sequencing problem. Mittal and
Lewis [1989] present an MIP formulation to minimize the sum of the machining time, the tool
change times, and the tool travel times. They use a special set of constraints to handle tool life
economics and tool changes due to accumulated wear. Their model considers various tooling
aspects, but it does not include the option of loading duplicate tools in the magazine.

4.3 Tool Placement in a Magazine

The selection and placement of tools in a tool magazine involves many important issues.
The machining of a typical part can require a sequence of operations using many cutters of various
sizes. Usually a tool covers one or three slots in a tool magazine. Two three-slot tools may only
take five slots when placed side by side. This means that the number of magazine slots required
for each operation depends on the actual placement of the tools in the magazine. Another potential
consideration is weight balancing of a tool magazine (Stecke [1983] and Rajagopalan [1986]).
Tool magazine weight balancing and tool overlaps of magazine slots are formulated as a mixture of
integer and nonlinear capacity constraints.

Tool search time (Stecke [1988]) is important in some environments. This is not the time
to find the tool in the magazine (the computer tracks each tool location), but the time required for
the magazine to rotate into position for the next tool interchange. Tool search time can take eight to
ten seconds; however, if aluminum parts, for example, are being cut, some cutters might only be
used for two to three seconds at a time. For a high volume production, the resulting idle search
time can be high; however, the correct placement of tools in the tool magazine can reduce such idle
time.

Some operations may have several cutters in common. If these operations are assigned to
the same machine, only one copy of each cutter may need to be loaded, saving magazine capacity.
On the other hand, multiple copies may be beneficial, or even necessary, if they are used often or
have short lives. It then becomes desirable to load duplicate (sister) copies of these tools into the
magazine. This can reduce the number of times that a machine is stopped to change tools but
reduces the effective magazine capacity and the machine flexibility. An important, unanswered
research problem is the optimal number of sisters of each tool type to load into a magazine.

Walas and Askin [1984] address the problem of sequencing operations within part
programs and assigning tools to slots for punch presses to minimize the part cycle time, including
both table move times and tool change times. Their formulation is a combination of the TSP and
the quadratic assignment problem. Comparing three part programs generated by TSP-based
commercial software used by a specific company, the Walas and Askin algorithm generates cycle
times 8.2% to 24.5% shorter. This study uses two latent assumptions: (a) that it is possible to
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permute the sequence of operations, and (b) that weight balancing of the tool magazines can be
ignored.
4.4 Tool Replacement

A complete tool replacement strategy specifies a tool change schedule based upon the eco-
nomic service lives of tools, and a control policy regarding unscheduled tool changes following
breakage. Tool replacement strategy is two-fold, consisting of, first, a decision on when to replace
a particular tool due to wear or failure, and second, a decision on which additional tools to change
early, given that a tool change must take place.

The most realistic replacement strategies consider the distributed nature of tool lives under
actual machining parameters, as well as the option to change several tools once one fails (Bao
[1980] and LaCommare et al. [1983]), rather than considering only expected lives and single tool
replacement (McCullough [1963], Cook [1966], and Armarego and Brown [1969]). All of these
tool replacement studies consider one machine in isolation.

If the machine does not have the potential to create a bottleneck, then a tool change may not
result in lost system throughput. On a bottleneck machine, one would be more likely to change
several tools when one fails. Sharit and Elhence [1989] go beyond the single machine model to
examine tool replacement strategy at the system level. Rather than proposing an automated,
optimizing strategy, the study emphasizes the limitations of both human and computer at making
the tradeoff between economic tool replacement costs and system throughput in a real-time,
dynamic environment. They suggest determining an appropriate mix of human and computer input
into the decision process.

Currently, many tool replacement models are deficient because they (a) ignore the
relationship between the processing rates and the tool replacement policy, and (b) tend to overlook
the impact of sharing tools on setup times and on resulting production lot-sizing decisions.

5. SYSTEM MANAGEMENT ISSUES

At the factory management level, tooling issues arise in production planning, scheduling,
spare tool management and tool inventory management. Production planning involves machine
grouping and tool allocations to machines. Once scheduling is complete, facility loading takes
place, involving machine sequencing and tool placement in the magazine. The integrated resource
planning hierarchy presented in Figure 1 illustrates the necessary interface between the machine
level decisions presented in the previous section and the system level decisions discussed here.
5.1 _Master Production Planning

Each time production requirements for a facility change, the system set-up problems must
be resolved. The set-up problems for an automated facility are more difficult than for production
lines and job._shops because additional part mix and routing flexibilities greatly increase the number
of decision variables to be addressed simultaneously. Effective planning models must take into



account tool magazine sizes, tool commonalities, tool changing times, and tool lives. Choosing to
simultaneously produce a set of part types with common tooling requirements will reduce the need
for tool changes when magazine sizes are active constraints. Mazzola et al. [1989] propose an
MRP framework for automated machining which provides for tool magazine constraints and tool
commonalities. Their framework ignores tool changes due to tool wear and is generally
appropriate when tool wear is not a significant cause of tool replacements.

Because the entire system set-up problem is too large to be solved directly, it is often
decomposed into subproblems to be solved independently and iteratively. Each problem employs a
surrogate objective for some criteria, i.e., maximizing expected production or minimizing part
movements among machines. Stecke [1983] introduces various FMS production planning
problems (including part-type selection, machine grouping, machine loading, production ratio, and
resource allocation), which the FMS manager has to address to set up a system before production
begins.

Tool management issues are particularly visible in the part-type selection, machine
grouping, and loading problems. Tool/part scheduling for a particular single machine problem was
discussed previously, and in Section 5.1.1 we discuss how tooling affects part type selection. In
Section 5.1.2, approaches to jointly solve machine grouping and loading problems are discussed,
as are various approaches to solve the loading problem independently. In Section 5.1.3 we focus
on the choice of tool handling systems.

5.1.1. Part-Type Selection

There are two basic approaches to addressing the part-type selection problem. A batching
approach partitions the part types into distinct and separate batches and batches are machined one-
at-a-time (Whitney and Gaul [1985], Hwang [1986], Rajagopalan [1986], and Afentakis et al.
[1989]). When a batch is finished, all tools are taken out of the tool magazines and other tools are
loaded for the next batch. A flexible approach selects the part types to be produced next, and
machines them according to ratios that balance workloads until all requirements for some part type
are met. Then the tools for this part type are taken out of the tool magazines and new tools are
loaded for another part type (Stecke and Kim [1989, 1991]).

Although tools are changed more frequently with a flexible approach, the time to change
tools is much less. The flexible approach results in a more uniform utilization of machines and set-
up personnel. It leads to better system performance than batching in terms of decreased order
leadtimes and increased productivity (Stecke and Kim [1988]). But the flexible approach is likely
to require more duplicate tooling and may require a more sophisticated tool transport system.

5.1.2 Machine Grouping and Loading

The machine grouping problem is to partition the machines into groups in such a way that
each machine in a particular group is able to perform the same set of operations. The objective of
the loading problem is to allocate the operations and required tools of the selected part types among
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the machine groups subject to technological and capacity constraints. These two problems can be
considered jointly or separately and iteratively..

Balancing the aggregate expected workload across machines has been suggested as a
potential surrogate for maximizing expected production in a flexible machining environment. Bal-
ancing is an objective of Kusiak [1983], Stecke [1983, 1985a, 1985b, 1988], Ammons et al.
[1985], Stecke and Morin [1985], Whitney and Gaul [1985], Berrada and Stecke [1986], and
Stecke and Kim [1989]. Stecke and Solberg [1981] show that the loading and control policies
which may work towards maximizing production in a conventional environment may not be
suitable for application in a more flexible environment because they do not take advantage of the
potential system flexibility.

Stecke [1983] investigates machine grouping and loading decisions under five different
loading objectives, including balancing machine processing times, maximizing the number of
consecutive operations on a machine, balancing the workload per machine for a system containing
groups of pooled machines of equal sizes, and unbalancing the workload per machine for a system
containing groups of pooled machines of unequal sizes. The major problem constraints are tooling
requirements and tool magazine capacities. The common solution has been to solve the MIP after
linearization of the nonlinear terms.

The loading problem for a nonstationary part mix and machine dependent processing times
is considered by Shanker and Srinivasulu [1989]. They use a bicriterion objective of minimizing
the workload imbalance and maximizing the throughput rate while considering critical resources
such as the number of tools available and the number of magazine slots.

Tomek [1986] suggests several approaches to allocate operations and cutters to machines
based upon his experience in planning several Czechoslovakian FMSs. These systems have
difficult tooling problems (many tools required for each part being machined), identical machines,
and a tool delivery system that can deliver up to five cutters at a time. The loading approaches
suggested include (1) assigning part types (all operations) to specific machines subject to
throughput requirements, current tool magazine content, and technological (process) constraints,
(2) assigning a set of tools to a group of parts considering common tooling requirements, and (3)
assigning tools to machines and allowing parts to travel between machines. The appropriate
approach is a function of the time and complexity of changing tools and of moving parts between
machines versus moving tools between machines and a tool crib or spare tool magazine.

Machine grouping and loading has also been studied for some more restrictive system
configurations. Chakravarty and Shtub [1984] consider these problems for a flexible flow line,
where similar part types must follow the same route. Parts of different types are first grouped
together by similarities among tool requirements. Na et al. [1987] present a nonlinear integer
programming formulation for facility loading with workload balance constraints aimed at



minimizing the amount of tool traffic among machines and between machines and a central tool
crib.

The studies by Kusiak [1983], Ammons et al. [1985], and Na et al. [1987] do not consider
tool commonalities. They ignore the fact that when operations requiring the same tool type are
assigned to the same machine, (a) space is saved in the tool magazine, (b) fewer tools may be
needed, and (c) tool changeovers may be avoided. Models that do consider tool commonalities
often assume that only one tool of each type is needed to process several parts types on the same
machine. This may not be the case if tool lives are short relative to processing requirements.

Overall, we found a lack of consideration for tool lives and tool reliability to be one of the
major limitations of some planning and scheduling papers in this area. Most approaches center on a
single period planning horizon. Many culminate in a solution found by partial enumeration which
limits the size of the solvable problems. Reports of their applicability to real production problems
are rare.

5.1.3 Manual versus Automatic Tool Handling and Loading

Some vendors (i.e., Cincinnati Milicron) offer automatic tool delivery and loading. In the
Mazak FMS (Florence, Kentucky), automated guided vehicles are used to transport magazines
with a capacity of forty tools to the presetting rooms and back to the required machine tools. The
parent company of Mazak, Yamazaki, in Nagoya, Japan also has interchangeable tool magazines
but never uses this capability. The foreman prefers to change only the few tools that are worn.
Using tool transporters requires a very large additional investment in the tools, magazines, and the
delivery system. Some setup time on the tool magazines is reduced but at the expense of requiring
a parts batching approach, which can result in system idle time. Sometimes, special tools are
delivered to the machine on the same pallet as the part itself. Also, all tools are changed although
they are worn to varying degrees. This option necessitates another level of coordination and
causes additional scheduling problems. Even if automated, interchanging tools takes some time.
Typically, tools are changed in the magazines manually. A study of a COMAU-Torino FMS notes
that the major operational problems are tooling and loading (Stecke [1989]). The scheduling
problems in this industrial facility turned out to be relatively easy.

We noted that currently there is no formal characterization of the operational tradeoffs
between automated and manual tool handling (and loading) systems. This is one of the many open
design problems in automated manufacturing.

3.2 Machine Sequencing and Process Monitoring

Scheduling and control issues arise upon completion of the capacity requirements planning
stage (Figure 1). The complexity of scheduling and control generally increases with machine,
operation, and routing flexibilities. Few scheduling models fully consider the implications of
tooling constraints. Although tool changeovers due to part variety and tool magazine constraints
may be included, seldom are tool life and tool changeover times due to tool wear included. Tools
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are resources which must be scheduled and controlled along with parts. When a machine breaks
down, workpieces must be rescheduled and delivered along with tools to alternate machines
(Carrie and Bitici [1989] and Veeramani et al. [1989]).

In a scheduling and control model, Chakravarty and Shtub [1986] include tool magazine
capacity constraints and tool changeover times for part-mix changes and allow for periodic review
of schedules to correct for problems such as bottlenecks, machine breakdowns, and urgent orders.
An order release policy may take into account the time necessary to interchange entire tool
magazines instead of individual tools (Chakravarty and Lin [1989]). The rate of tool exchange can
be a basic measure of the workload on the tool management system (Rhodes [1988]).

Several heuristic scheduling techniques intended to reduce the need for tool changes are
presented in the literature. One strategy is to sequence parts on each machine, or on the system as
a whole, to minimize tool changeover time between part types. In an empirical study, Carrie and
Petsopoulos [1985] found that part sequence has little effect on the performance of a modeled
FMS. This is because the availability of fixtures largely determines when parts are input; if parts
return several times to a few key machines, their progress depends on the utilization of these few
machines. The implications of fixture/pallet availability constraints and of priority scheduling on
FMS performance are studied by Shalev-Oren et al. [1985].

Another technique is to sequence parts so as to minimize both the part variety and tool va-
riety at any one time. Menon and O'Grady [1984] suggest sequencing parts so as to minimize a
weighted sum of deviations from a desired level of six factors: machine hours, due dates,
magazine capacity, number of tools available of each type, number of standard tools at each
machine, and the number of nonstandard tools required by each part type. While this approach
appears promising, it is not clear how to classify tools as standard or nonstandard, nor how to
determine appropriate weights for each factor.

Carrie and Perera [1986] post-process data from simulation models of a particular FMS in
Anderson-Strathclyde, UK, to compute tooling requirements for several schedules and to evaluate
these schedules based on the frequency of tool changes driven by part variety and tool wear. They
find that tools are changed ten times more often due to wear than due to part mix. This observation
indicates that greater consideration should be placed on minimizing tool changes due to wear. This
is in contrast to most recent research, which focuses on minimizing tool changes dictated by part
variety.

5.3 Process Planning for Economic Production Rates

Schedules are sometimes implemented while assuming a given processing time for each
operation on a part type using a particular machine tool. Once a throughput target is set, however,
the processing times can be manipulated to reduce costs and increase tool lives (as well as improve
surface qualities) at no expense to system throughput. This interaction between machining
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conditions and the overall system throughput suggests that improved scheduling performance can
be based on a production rate/tool wear tradeoff.

Hitomi [1976, 1977] tackles the joint problems of determining the optimal machining
speeds and optimal cycle time in a deterministic multi-stage flow line. Unlimited buffer space is
assumed between machines. Cost savings are obtained by slowing down noncritical machines
until their cycle times match that of the bottleneck machine. McCartney and Hinds [1982]
introduce a procedure to review the machining rates of parts which are first scheduled using
maximum production rates. Their procedure will slow some machining rates to reduce production
costs (on machines which are not on the critical path) while maintaining due-date performance.
Their policy is similar to classical PERT/CPM heuristics (see for example, Whitehouse [1973]).

Determining buffer capacity along with optimal cutting speed and tool replacement policy in
a two-machine system is discussed by Koulamas et al. [1987]. A penalty cost is imposed for tool
failures during production. They show that the tool replacement policies determined independently
for each operation do not change when these two operations are coupled, and that the buffer size is
sensitive to the tool change times.

Queueing network models are used in a large aerospace FMS to optimize the process rates
and to determine changes in bottlenecks and queue lengths as the processing rates are altered. This
problem is particularly intricate due to the problem of shifting bottlenecks. Schweitzer and
Seidmann [1988, 1990] present several nonlinear queueing network optimization methodologies
which determine the minimum cost processing rates given the FMS throughput target, the work-in-
process level, part routes, transporter delays, and tool cost functions. Using industrial sample
data, they show that a slight acceleration of the processing rates at a few economic bottleneck
machines allows for significant rate reductions in others. This provides for substantial gains in
tool lives as compared with the conventional one-machine process planning models. Their results
also prove that it is not optimal to balance utilization of all machines, to balance waiting times at all
machines, or to use the processing times to compensate for local transporter delays.

Watanabe and Fujii [1988] find that when adaptive control systems adjust machine
feedrates and cutting speeds due to changes in workpiece hardness and tool dullness,
predetermined schedules are often violated. They propose a heuristic control model which links
the operation speed to the order tardiness. The system proposed is likely to result in major
operational improvement. Given the heavy computational demands of this control scheme,
however, its applicability to full scale, real-time adaptive control is currently unclear.

5.4 Spares Management

Ensuring the availability of required tools is critical to system performance. Even if a
specific tool is present at a machine tool at the start of a day, its unplanned replacement may be
necessary upon detecting a problem such as breakage, wear, poor quality finish, or excessive
cutting temperature.
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Results presented for spares management in multi-echelon inventory systems can be
extended to the optimal allocation of spare tools among machines. There is a trade off between
spares levels and the capacities of repair facilities which is examined by Gross, Miller, and Soland
[1983] using a hybrid queueing network optimization model. Spares may be allocated among
machining centers. Vinod and Sabbagh [1986] present a closed queueing network model for this
allocation, capturing the availability of tools by requiring that the necessary tools be located at the
machine before a part is dispatched to it. The cost of spares and of repair capacity is minimized
considering failure rates for multiple tool types.

The specific storage locations of spare tools -- in magazines, in racks near machines, or in
remote tool cribs -- can affect system performance (Kusiak [1986]). Pan et al. [1986] analyze
tooling reliability using models for serial systems performance. They predict the reliability of an
automatic tool changing system with various carbide inserts and spares subject to Weibull failures.

Many studies of multi-level spare parts allocation have appeared in the management science
literature (e.g., Bryant [1983], Baker et al. [1986], and Gerchak et al. [1988]). Most are aimed at
generic machine component spares and may be extended to handle the particular characteristics of
spare tool allocation. In designing a spare tools management policy, one needs to account for the
following major system attributes:

(1) the capability of the tool handling system, required and existing,

(2) the number of machine tools that can perform the same operations,

(3) the ability to substitute non-identical tools,

(4) the need to provide alternate part routes,

(5) the number of identical tools required,

(6) the tool magazine capacities,

(7) tool life distributions, and

(8) tool costs.

Tooling Inventory Management

A large number of tool types is often required to facilitate operational flexibility. Berr and
Falkenburg [1985] provide statistics indicating that in practice, for each tool type, there are at least
three duplicate tools required: one in a tool magazine, one as a backup (centralized or on a relevant
machine), and one in preparation (i.e., refurbishing, inspection, reconditioning, presetting, or
mounting into the tool shank). Moreover, the number of tool types in storage increases over time
due to such factors as new product introductions, engineering changes in existing products, and
the availability of more advanced cutting materials. The appropriate number of tools to be
purchased of each tool type must be determined (Graver and McGinnis [1988]).

Optimal tool reorder points and safety stock levels are not addressed in the literature.
Custom tools can shorten processing times, but are more expensive and require extensive purchase
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lead times. This tradeoff has not been studied; nor has the tradeoff between tool availability,
manufacturing capacity, tool reorder points, and the overall investment in tooling stocks.

6. SUMMARY AND CONCLUSIONS

We have outlined several approaches to tool management problems in automated
manufacturing. Our analysis clearly indicates that tooling decisions strongly affect plant capacity,
scheduling flexibility, and a significant portion of the variable production costs. Several industrial
applications have been described whereby integrated tool management systems have resulted in
significant operational savings and improved facility performance. We have presented a conceptual
framework for tool management decisions in the context of resource planning in automated
manufacturing. This framework shows the control and information interfaces between the various
manufacturing management tasks associated with tooling.

Table 1 presents a taxonomy of the major tool-based research problems discussed here. It
conceptualizes the taxonomy around design, planning, and control aspects at the tool, single
machine, and system management decision levels. Our analysis of the tool management decision
issues explains why decisions made at one level constrain those at lower levels, and how
information from lower-level decisions feeds back to higher levels. For example, the choice of
machining parameters depends upon tooling economics (a tool level decision) which is used as
information in determining the spare tool allocation (a system level decision); but spare tools
inventories influence system reliability and the potential for parallel processing of identical parts on
several machines (a system level decision). Similarly, a decision to increase the number of
identical tools loaded simultaneously into the tool magazine of a single machine reduces its product
scope. This limits the grouping and loading strategies (a system level decision), reduces the
number of setups needed for changing worn tools (a single machine level decision), and allows the
process designer to increase the cutting speed for certain operations (a tool level decision).

The increase in the number of automated facilities, and the corresponding increase in the
number of scientific publications associated with modeling the impact of tool management
decisions, clearly attests to the increasing concern of properly integrating tooling considerations
within production management. Many of the studies discussed here prove that significant
operational benefits can be realized with proper tool selection and allocation policies.

Our study points at several promising research directions in this area:

* Analysis of particular decision problems: These include such research issues as tool
inventory levels and the dynamic allocation of duplicate tools to machines (see Table 1). We need
to study the impact of design decisions, such as tool magazine capacity, on tooling costs and the
effect of the subsequent tooling constraints on system capabilities.

* Integration of various tool management decision levels: To date, most research efforts in tool
management focus on single-level decisions. Ignoring the impact across levels leads to suboptimal
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results. The current research incorporating tooling economics within production scheduling
exemplifies the benefits of integrating decision levels.

* Improved modeling of actual industrial practice: Certain studies still make unrealistic
assumptions, for example (a) that all tools require only one magazine slot, (b) that each operation
requires exactly one tool, or (c) that tool costs are independent of machining rates.

* Field driven empirical studies: There is a need for systematic evaluation of current industrial
tool management policies, and of various approaches recently suggested in the academic literature.
In addition, useful tool-related data is scanty, particularly when it comes to estimating the expected
tool life (and costs) for tools shared by multiple part types and machines.

* Strategic role of tool management in product designs: In an era when product life cycles
continue to shrink, managers are searching for better means to integrate product design, testing and
manufacturing functions. Incorporating appropriate selection and loading models within the
tooling information systems will facilitate concurrent tool/product design efforts, reduce the time-
to-market for new products, and economize on existing manufacturing resources.

Table 1
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