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SUMMARY

A new class of prior distributions for metric based models in the analysis of fully
ranked data is developed. This class has two attractive features: first, it provides
a meaningful way to encapsulate prior information about the parameters of the
model; second, a full Bayesian solution is made possible via stochastic simulation
methods. The ideas are exemplified using illustrative analyses.
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1 Introduction

Suppose that each person in a random sample of n people is asked to rank
his preferences among a fixed set of k items. Each person produces a rank-
ing # = [x(1),...,m(k)], where 7(i) denotes the rank assigned to item
i,(1 = 1,...,k). The problem here is to characterize the population based
on a random sample 7;,7 = 1,...,n of rankings.

Historically, models for random rankings grew out of the literature on paired
comparisons. For example, the Thurstone (1927) model specified that item
¢ would be prefqrred to item j if X; > X; where the X's are i.i.d. normal
random variables with different means and equal variance. Mosteller (1951)
provided simple forms for the least square estimators of the means of X's
under this model. MacKay and Chaiy (1982) used Monte Carlo methods to
compare estimators of the means of X’s in the above model with those under
the unequal variance model. Clearly, these paired comparison models can be
extended to rankings by letting 7; = rank of X;.

Mallows (1957) also started with models for paired comparisons and used .
a conditional argument to extend these to models for rankings. His two-
parameter models are unimodal with the probability of a ranking 7 decreas-
ing as the distance in a certain metric between 7 and the mode increases.
These models were popularized by Feigin and Cohen (1978) and Schulman
(1979) who provided tables for their use. Other models for random rankings
have been introduced by Luce (1959), Plackett (1975), Fienberg and Larantz
(1976), Henery (1981), Berry (1979), Tallis and Dansie (1983). Gordon
(1979) introduced a model based on Ulam’s distance, while Fligner and Ver-
ducci (1986) investigated Cayley’s distance and Kendall’s 7-distance. Fligner
and Verducci (1990) did a Bayesian analysis of the generalized Mallows model
by introducing prior distributions on the parameters of the model. Diaconis
(1988) developed a second-order analysis for ranked data.



In this paper, we discuss the notion of conjugacy classes on the space of
permutations and use it to define two classes of prior distributions on the
space of rankings. The first one, called the conjugacy class prior distribution
uses properties of the permutation group to define the nature of the prior.
The second one, called the metric based prior distribution uses the notion of
metrics on conjugacy classes to define prior distributions on rankings. We
use the Gibbs sampling algorithm to generate random variates from the dis-
tributions of the parameters of the Mallows model, leading to a full Bayesian
analysis using both the priors.

The paper is organised in the following manner. Section 2 describes the Mal-
lows model and defines some of the different metrics on fully ranked data.
Section 3 discusses the notion of conjugacy classes of the permutation group
and describes the conjugacy class prior distribution for the Mallows model.
Section 4 defines metrics between conjugacy classes,-and discusses the metric
based priof distribution. Section 5 illustrates these priors via examples and
Section 6 concludes the paper with a discussion of the ideas proposed here.

2 Models and Metrics

2.1 The Mallows Model

Colin Mallows(1957) proposed a non-null probability model, that is a model
distinct from the uniform model (the model where all k! possible rankings of
the k items are equally likely) for fully ranked data. The model specifies a
particular ranking my € Sj, the permutation group on k objects, which can
be interpreted as the most likely or the modal ranking of the & items, and
states that the probability of any other ranking m decreases exponentially

according to the distance from 7 to .
So, P(m) = K(\)e2mm)_for all w € S, d(,) is a metric on Sk, m is the



location parameter and A > 0 is a dispersion parameter. The normalizing
constant, K (), is defined as K(A)™ = ¥ ¢ e™*4™™), and is independent
of the choice of my.. The model is centered about the ranking my, and as A

increases the distribution becomes more and more peaked about 7.

2.2 Some metrics on fully ranked data

By suitable choice of a metric on Sk, some well-known measures of association
of two permutations have been obtained; see, for example, Diaconis (1987).
These are:
R(m,0) = (2511 (n(i) — 0(i))?)"/? is Spearman’s rho distance.
F(m,0)= 21_1 \7(2) — o(z)| is Spearman’s footrule.
T(r,0) = number of pairs of items, (¢, 7), such that 7(z) < «(j) and o(2) >
o(7) is Kendall’s 7.

H(r,o)=+#{i=1,...,k : (i) # o(i)} is Hamming distance.
U(r,0) = k— the maximal number of items ranked in the same order by =
and o is Ulam’s distance.
C(m,0) = minimum number of transpositions needed to transform 7 into o
is Cayley’s distance.
It should be noted that all these metrics are right invariant, that is they

remain unchanged under arbitrary relabeling of the items.

3 Conjugacy Class Prior on S

Fligner and Verducci (1990) performed a Bayesian analysis on ranked data
by introducing prior distributions on the parameters of the Mallows model.
They assume a uniform prior for the modal ranking, 7 and an independent
conjugate prior for the scale parameter given 7. In this section, we develop a

new class of prior distributions for the modal ranking in the Mallows model;



the uniform prior, of course, is obtained as a special case.

3.1 Conjugacy Classes of the Permutation Group

Definition 3.1.1 For two permutations, m,,m, € Sk, 7, i3 said to be a con-
jugate of my in Sk, (or my ~ 7y), if there exists an element o in Si such that

M = OMe0 L.

Conjugacy is an equivalence relation on Sk, and so splits the group into

equivalence classes, called conjugacy classes.

Definition 3.1.2 Given an integer k, we say the sequence of positive in-
tegers, ky,kg,... ke, ky < ky < -+- < k. constitute a partition of k if
k=ki+ky4-+k.

Definition 3.1.3 The set of integers (i1, a,...,%,) is said to be a cycle of
the permutation m € S, 4f 7 sends 4, into iy, iy into i3, ..., i,y into i, and

i, into 41, and leaves all other items fized.

Definition 3.1.4 A permutation n € Sy has the cycle decomposition {ky, ks, ..

if it can be written as the product of disjoint cycles of lengths ky, ks, ..., k;,
k1 <ky <o Lk

For example, in Sy,

( 123456789
T=

132564798 ) = (12 3)(4,5,6)(7)(8,9)

has cycle decomposition {1,1,2,2,3} and 1+1+24+2+3 = 9.

Let p(k) denote the number of partitions of k. Each time we break a
given permutation in Sy into a product of disjoint cycles, we obtain a parti-

tion of k; for if the cycles appearing have lengths ki, ks, ..., k. respectively,
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ki Sk <o <k, thenk=k +ky+ - +k,.

A well-known result in algebra states that two permutations in Sy are con-
jugate if and only if they have the same cycle decomposition. The reason is
the following formula for computing the conjugate :

If 7 written in cycle notation is :

(@ b)(c-d)-+ (e f),

then, _

ono™ = (o(a) - o (B))(o(c) -+ o(d)) -+~ ((a(e) - -~ o(f)).

This results in the following

Lemma: The total number of conjugacy classes in Sy, is p(k), the number
of partitions of k.

Proof: There is one conjugacy class for each partition of k: thus the identity |
forms a class, the transpositions or 2 cycles {(i,j)} form a class, the 3 cycles
{(ijk)}, products of 2-2 cycles {(ij)(k1)}, and so on; each form -a conjugacy
class, whence the lemma.

3.2 Choice of prior distribution on S;

The Mallows model;
P(r) = K(X)e2dmmo)

has two parameters, 7 the location parameter and A > 0 the scale parameter.
It is well known [Serre, 1977; pp 32-33] that a natural choice for a measure
on a topological group is the Haar measure of that group. However, for
the finite permutation group, S, the Haar measure on this group with the
discrete topology is simply the uniform distribution on the group.

In the Mallows model, a prior distribution for the scale parameter A could
be :

P(}) o ezp~®*, X € R, i.e. Exponential(ag). Interest here is on developing
a prior distribution for the modal ranking .



~ We develop a new approach to constructing a prior distribution for .
This approach must satisfy two features: (a) can one exploit the structure
of the permutation group in which the data is observed to encapsulate prior
information about the random quantity m? (b) does the prior distribution
have a “sensible” interpretation?

Since the notion of conjugacy classes is central in the study of permuta-
tion groups, we wish to exploit this feature of the group to construct a prior.
In particular, the prior distribution on 7, will be taken to be constant on
conjugacy classes, and proportional to the number of elements in the con-

_jugacy class it bglongs to. Is this “sensible?” We think so because we are
assigning equal prior probabilities to all permutations that permute an equal
number of items and leave the remaining unchanged.

Let us consider a simple example to illustrate this. The group Sy has 24
elements. Since fo,ur can be partitioned in five ways, there are five conjugacy
classes in Sy. These classes are listed here along with the number of elements

in each class.

Partition | Conjugacy Class | # of elements

LLL1) | {MO®Q)} 1

(1L12) | {(DEE)} 6
(1,3) {(1)@E)} 8
(2,2) {@@)} 3
“ {4} 6

The elements within a conjugacy class are similar as they represent rankings
of items that were assigned by permuting the order in which the items were
observed in a similar manner.

In the above example, the first conjugacy class consists of the identity ele-

ment in which the items were ranked in the same order in which they were



observed, i.e. the item that was observed first received the first rank, the
item observed second was ranked second, and so on.

The second conjugacy class, {(1)(1)(2)} consists of those permutations in
which two of the items were assigned the same rank as the order in which
they were observed, corresponding to the two 1’s in this partition while the
remaining two had their ranks interchanged, corresponding to the 2 in the
- partition. For example, in the permutation (4231) which belongs to this
class, the items that were observed second and third were assigned ranks 2
and 3 respectively, while the items appearing first and fourth received ranks

. 4 and 1 respectively.

Due to this similarity between rankings within a conjugacy class we assign
equal prior probabilities to all these rankings. Also, conjugacy classes are
invariant to relabeling of the items, i.e. if all the items were observed in a
different order, the conjugacy classes would remain unchanged. Further, a
conjugacy class that has more elements is more likely to be chosen, hence
these probabilities are also proportional to. the number of elements in the
conjugacy classes they belong to or, more generally, to some function of the
number of elements in these classes.

Recall that in the Mallows model the probability of any rénking decreases
exponentially as its distance from the modal ranking 7y increases. We may
argue that the prior probability of the modal ranking increases exponentially
as the number of elements in its conjugacy class increases. This would give

rise to another rule for assigning prior probabilities to rankings given by:
P(x) o P

where ¢(7) = number of elements in the conjugacy class of 7, and § > 0
represents the strength of our prior belief. Larger values of £ indicate stronger
prior beliefs about the distribution of the modal ranking, and vice versa,

with # = 0 denoting the uniform distribution of the modal ranking. Since



the space of all rankings S is finite, the prior distribution on 7 is proper,

which implies that the posterior on 7y will also be proper.

3.3 A Gibbs sampler for the Mallows model

Here, we develop a Gibbs sampler algorithm to sample from the posterior dis-
tribution of the parameters of the Mallows model using the prior distribution
developed earlier. '
Suppose a group of k items are being ranked by n people. Let 7y, 7o, ..., 70
be the set of all possible rankings of these k items.
‘Let the data be (03,7 =1,...,n), the rankings of these items by the n people.
The joint likelihood is given by :

- ndamr
P(oy,...,0n|m,A) = (K(X))e '\;‘3( 0)

-A - nid(o;,
= (ke &
where
r= # of distinct rankings in the data
n;= F# of people with ranking o;
The prior distribution of the parameters is :
P(my,A) = P(mq) * P(A)
eﬁc("'o)
k!

Z eﬁc("’i)
j=1

—Aap

Qpe

where
¢(mo) = # of elements in the conjugacy class of .
The conditional density of A|data, g is :
P(data|mo, \)P(N)
P()\|data, =
(Ndata, 7o) [ P(datalmy, X) P(X)d(X )

--,\(ao+.):’,1 nid(o;i,mo))
j=

x (K(X\)"
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The conditional density of mo|data, A is :
P(data]ﬂ’o, /\)P(?Fg)

Y. P(data|r;, \) P(r;)
;€S

P(mo|data, X)

e—)\ :{"—;1 nid(o; ,1:0)e Be(mo)

kLo 3 nid;;
E e 1§1 d eﬂcj

j=1
where dj; = d(m;, 7;),
¢j = ¢(m;), j runs over all k! permutations in S.
Using the full conditional densities as described above, a hybrid Gibbs/Metropolis
Hastings algorithm can be used to obtain posterior estimates of the param-

eters. Details of the algorithm are given in the appendix.

Computation of ¢(m) : ,

Let mp correspond to the partition A; + As + -+ -+ A, = k, i.e. 7y can be writ-
ten as the product of r disjoint cycles of lengths Ay, Ay, ..., A, respectively.
Suppose that r; of these are distinct. Let Ay, Xg,. . ., A, denote these distinct
values and let the number of X's equal to X; be k;,i=1,...,7.

Then c¢(m), the # of elements of S; that belong to the above partition is

<5 (H(k A

/\1 )‘2 v 1‘1 i=1

With our choice of prior distribution on the parameters, we would now
be interested in finding the modal ranking in the posterior distribution. Or
for m,my € Sk, what are the conditions under which m; would have a higher
posterior probability than m,? When would the ranking with the highest
proportion in the observed data also have the highest posterior probability?
Is there a relationship between A the scale parameter in the model and 3
the scaling factor in the prior distribution that would determine which rank-
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ing gets the highest posterior distribution? The following theorem and its
corollaries attempt to answer some of these questions.

Theorem 3.1 Let D(m;) = ) d(oi,7;), the sum of the distances of the
=1

observed rankings from w;. For m, 7y € Sy,and given A\, > 0, m will have

a higher posterior probability than m, iff
A
c(m) = c(mg) > Y(D(m) — D(my)) where = 5
Proof:

P(m|data, A) > P(m|data, )

A doim)  ePelm) “AY doimg)  ePelma)
i=] —_ =1 ———

g > (K()" i
3 efelms) 3 efelas)

i=1 ) j=1
iff e AP(m)+Be(m) e~ AD(72)+Be(m2)

iff (K(X)%

iff  efle(m—n2))

iff  B(c(m) — c(ms))
iff  c(m) — c(ms)

MD(r1)=D(r2))
A(D(m) - D(m))
¥(D(m) — D(ms))

vV V V V

Corollary 3.1 Let @ be the m.le. of the modal ranking in the Mallows
n
model, i.e. & minimizes ), d(o;, 7). If c(m;) < c(#), m; will have a lower

=1
posterior probability than 7.

Corollary 3.2 For my,m; € Sk, if ¢(m) = ¢(w2), then m, will have a higher

posterior probability than my iff D(my) < D(ms).

Corollary 3.3 For m,m; € Sy, if ¢(m) > c(m;) and D(7r1) < D(my), then
w1 will have a higher posterior probability than ..
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4 A Metric-Based Prior Distribution for o

4.1 Metrics on Conjugacy Classes

For any set X, endowed with a bounded metric, d, the induced Hausdorff
distance d* between any two closed non-empty subsets of X is well defined
and satisfies the axioms for a metric on such subsets of X [Kuratowski, 1966:
pp 214-215]. Since conjugacy classes are subsets of Sk, each of the metrics on
Sy can be extended to compute the induced Hausdorff metrics on conjugacy
classes given by :

d*(Cr, Co) = max{max min d(e, f), » Iax min d(a, §)}

where C; and C, are the conjugacy classes of 7 and o respectively. The

induced metric d* in right-invariant if d is.

Theorem 4.1 If @ metric d on Sy, is bi-variant, then its induced Hausdorff
metric d* on the conjugacy classes may be computed according to the simpler

formula:
d*'(Cr,Cy) = min d(a, ) = m1n d(m, 8)

ﬁECa'

Proof:

max min d(o = max min d(ry7r7 L o)
BEC, aECy (o 6) TLESK T2€ES, (nmri, mor )

. ~1
= max min d(n7, oy 'ny
TIESE 7€) ( ’ 2 )

= max min d(r, 7 oy ln)
TLESk T26€Sk

= max min d(m,73073")  where 13 = 717,
T1ESK T3€5;

= d
1{3%%1 (7, 130737)

= mind(r, §)

Similarly, max érelgi da,f) = min d(m, B)

12



Hence, d*(CW,C',,) = /greucn d(m, B)

Al i = mind -
so, min d(m, B) min (m,7077")

= min d(m, 7 no(r )™
71,7268k

= min d(nwrrt, not)
71,72€Sk

= min d(a, §)
BECy

Among the six metrics defined in Section 2.2, only two are bi-variant: Ham-
ming distance and Cayley’s distance. The above theorem can thus be used
to derive simpler forms for these two metrics. However, any metric can be
made invariant by averaging it [Diaconis, 1987 pp 114-115]. Hence the above
theorem can be used to compute induced Hausdorff distances for all of the
metrics. The corollaries below provide the simplified forms of the metrics

induced by Cayley’s and Hamniing distance.

Corollary 4.1 The Hausdorff metric between two conjugacy classes mduced
by Cayley’s distance is the minimum number of transpositions required to
transform a permutation of one of the conjugacy classes into a permutation
of the other class.

This transformation occurs in the following manner:
Let the ranking 7 belong to the conjugacy class having the cycle decompo-

sition {k1, k2, k3, . . -, k- }. Suppose 7 is given by :

= (aly"'xakx)(bl‘a“'xbkz) ...(pli""’pkr) .

A transposition on 7 can be one of two possible types: the two numbers
being permuted could either belong to the same cycle of 7, (say a; and g;),
or they could belong to different cycles of 7, (say a; and b;).

A transposition of the first type results in a ranking with cycle decomposition
{(G —1), ks — (j — 1), ko, ...,k }, L.e. the cycle containing a; and a; is split

13



into two cycles with lengths depending on the positions of a; and a; in the
cycle, while a transposition of the second type gives the cycle decomposition
{(k1+k2), ks, ..., kr} where the two cycles containing a; and b; are combined
to form one cycle of length k; + ko.

Definition 4.1 For two conjugacy classes Cy and C, in S, with partitions
{ky, ko ..., ki} and {p1,pe,...,pm} respectively, the relative partition of Cr
w.r.t. C, denoted by Cr|Cy is the set of kis without those that are equal to

some distinct p;.

For example, consider the conjugacy classes Cy = {2,2,1} and C, = {3,2}
of Ss. Then, the relative partition of C, w.r.t. C; is given by Cr|C, = {2,1},
while the relative partition of C, w.r.t. C; is given by C,|C, = {3}.

Definition 4.2 For two conjugacy classes Cr and C, in S, with partitions .
{k1,kay ..., ki} and {p1,p2,...,Pm} respectively, C; and C, are said to be
divisible if 3 K G Cr|Cy and P G Cy|C, such that K, P # ¢ and

E{kl 1 ki € ]C} = E{pj 'Pj € P}
Then, {K,P} are called a pair of divisible subpartitions of {Cy, C,}.

For example, the conjugacy classes of Sy; given by Cr = {5,4,1,1} and
C, = {3,2,2,2,2} are divisible. A pair of divisible subpartitions would be
K = {5} and P = {3,2}. K; = {4}, P, = {2,2} form a second pair of
divisible subpartitions which is disjoint from the first pair.

Corollary 4.2 The Hausdorff metric induced by Hamming distance between
two conjugacy classes Cr and C, that are not divisible is the number of

integers in Cy|C, plus the number of integers in C,|Cr minus 1.

e, d'(CoiCy) = £{CoICo} + #{C,1Ca)} — 1
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Proof: Let {ki, k2,...,k} and {p1,ps,...,pm} be the partitions of C; and
C, respectively. Without loss of generality, suppose k; < p;. Then of the k;
elements corresponding to the first cycle of 7, atmost &, — 1 of them would
be equal to the elements in the corresponding positions of o. Hence the
minimum contribution to Hamming distance from these k; elements would
be 1.

Now consider &y and (p; — k). As before, if k3 < (p; — k1), minimum
contribution to Hamming distance from these k, elements of 7 is 1. If ks >
(p1 — k1), the minimum contribution from the (p; — ;) elements would again
be 1. Since C; and C, are not divisible, ky # (p; — £1). |
Continuing this pairwise comparison of cycle lengths of C, and C,, we see
that for each comparison, the minimum contribution to Hamming distance
is 1. Since the number of integers in the partitions of C; and C, are [ and m

respectively, there would be [ +m — 1 such comparisons, hence the corollary.

Corollary 4.3 When C, and C, are divisible, let r be the mazimum number
of disjoint pairs of divisible subpartitions of {Cy,C,}. Then the induced

Hamming distance between them is given by
d*(Cr, Cy) = #{Cr|Co} + #{C5|Cr} — 1

Proof: The proof of this result is the same as the previous one, except that
now since C, and C, are divisible, it is possible that ky = (p, — k1) when
K = {k),k;} and P = {p;} form a pair of divisible subpartitions. Then the
minimum contribution to Hamming distance from these elements would still
be 1 but the next pairwise comparison would now be between k3 and p,.

So we now lose one pairwise comparison, hence one contribution to the dis-
tance.

If r is the maximum number of disjoint pairs of divisible subpartitions of
{Cx,C5}, then in the pairwise comparison of cycle lengths of C, and C;, we

would lose a maximum of r — 1 such comparison s, hence the result.
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4.2 Prior Distribution via Metrics on Conjugacy Classes

In this section we introduce another prior distribution on rankings that is
based on the distance between conjugacy classes. Let us specify a ranking, 7*
which we believe apriori to be the modal ranking. Let Cy~ be the conjugacy
class containing 7*.

We argue that the prior distribution on a conjugacy class decreases exponen-

tially as its distance from Cj. increases, i.e.
P(C,r) o e—A*d*(C,,,C,,‘)’ >0

A* is a scalar that determines how peaked the distribution is around C,..
This prior distribution on conjugacy classes induces a prior distribution on
rankings, if we assume that all rankings within a conjugacy class have the
same prior distribution. The induced prior distribution on rankings is given

by:

e A 4" (Cr\Cpr)

P(m) = o)

1
KL A% (O )

E (i)

=1

Let us develop the Gibbs sampler algorithm for the Mallows model using
the above prior on g, the modal ranking :
Let the prior distribution on , A be Ezp(y).
The conditional density of A|data, 7 is :
P(datal|m, \)P(N)
J5” P(datalmo, X') P(X)d(X)

—,\(om+§3r1 nid(o;,m0)) -

P(A|data,my) =

x (K(\)e

The conditional density of mo|data, A is :
P(data|mo, A) P(mo)
2. P(datalm;, \)P(m;)

;€S

P(m|data,A) =

16



;
=\ Zx nid(oi,mo) e 2"d"(Crp,Cps)
€ "  e(m)

KL )Y nidi_~Avd* (Crj Ope)
b 4 {2t ¥] e XJ" x*

ye = ¢(m;)

5 Prior Distributions on Partially Ranked Data

5.1 Partially Ranked Data

Given a set of n items, a partial ranking of & out of these n items is a ranking
where only the first & choices are specified. An example would be when 10
candidates are contesting for an election and people are asked to rank only
5 of their most favorite candidates. A partial ranking of this type forms
an element of the coset space S,/S,_k, where S,_j is the subgroup of S,
consisting of all permutations which leave the first k integers fixed:

Spk={r € Sy :7(i)) =14,1<i<k}

The equivalence relation ~, defined on 5, by:

For m,0 € Sp, 7 ~ 0 &= w0t € Sp_, partitions S." into equivalence
classes such that for any 7 € Sy, the equivalence class containing 7, denoted
by Sp—xm is {rm : 7 € Sp_x} and is called a right coset of Sy_g.

It follows that to each partial ranking of £ out of n items, there corresponds
a unique right coset of S,_i, and two full permutations 7,0 € S, belong to
the same right coset of S, iff 7 and ¢ induce the same partial ranking of

k out of n items, i.e. 77(i) = 071(4),1 < i < k.

All the metrics on fully ranked data discussed in secfion 2.2 can be extended
to form metrics on partially ranked data and the Mallows model for such
data [Critchlow,1985 pp 100-101] can be written as :

P(x?) = C(N)e~ (" m0)

17



for all partial rankings #? € S,/S,-x. Here, #f is a location parameter
representing the modal partial ranking and A > 0 is a dispersion parameter.
dy(,) is the induced Hausdorff metric on the coset space Sp/Sp— and C())

is the normalizing constant.

5.2 Prior distributions via Coset Classes on Partially
Ranked Data

Recall that for fully ranked data, we divided the spabe of all rankings into
conjugacy classes, because we believed that rankings within a conjugacy class
were similar to each other as these rankings were assigned by permuting the
order in which the items were observed in a similar manner.
In the case of partially ranked data, we wish to argue that among all the
people who rank % out of the n items, those that choose to rank the same
set of % items are similar in some sense as they have the same choice of &
.favorite items, but may choose to rank them differently. With this in mind,
let us partition the coset space S, /Sy into coset classes, where each coset
class consists of all partial rankings that choose the same set of k¥ items out
of the n items but rank them differently.

On fully ranked data, the conjugacy class prior on m, assigned equal
probabilities to rankings within a conjugacy class that was proportional to

the number of elements in the class, ¢(m), and was given by:
P (‘R'j) (08 eﬂ"("f)

In the case of partially ranked data, each coset class has the same number of

elements, so the analog of the conjugacy class prior here would be :
P(7r;.’) « B

where f3; is a scalar quantity representing our prior belief on the coset class

containing 7r;’ . So our choice of f; for each coset class should be proportional
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to the strength of our belief in the k items being ranked in that class.

Using this prior on the modal partial ranking, and an independent expo-
nential prior for the scale parameter, ), the conditional density of nf|data, A
is calculated to be :
A 5 dylo?nt)
p e =1 0
P(nf|data, A) = —
Bk =AY dy(ofn})

k! Z e =1 ,Bj
j=1

where o7,7 = 1,...,m are the observed partial rankings and ny = (}), the
number of coset classes in S, /S,

The metric based prior on fully ranked data can be extended in a similar
manner to form the analogous prior distribution on partially ranked data.
Since the coset classes are bounded non-empty subsets of S,,/S,—, all the
metrics defined on partially ranked data can be extended to form the cor-
responding induced Hausdorff metrics on the coset classes [see section 4.1].
Then following the same argument as in the case of fully ranked data, if C;»
is our choice of the modal coset class, the prior distribution on any coset

class, Cy» is given by :
P(Cr) ox &~ % (Cr2iCap)

where d(, ) is the induced metric on coset classes. Assuming that all partial
rankings in a coset class have the same prior distribution, this induces a prior

distribution on partially ranked data given by :
e—A' d; (Cvri’ ,C,{f)

P(?) =

k! Zvé ¢ ¥4 (Cep Cp)

i=1
The full conditional densities can be calculated as in the previous case and the
Gibbs sampler algorithm can be developed in a similar manner to simulate

from the posterior densities of #f and A.
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6 Illustrative Analyses

The first example discussed here is a simulated example: the motivation here
is to illustrate the posterior distributions obtained under different prior/metric
combinations. The second example provides a comparative illustration with
the data set analyzed by Fligner and Verducci(1990).

Example 1:

Let us illustrate the conjugacy class prior on Sy with a simulated exam-
(2143) and A = 0.4, samples of size 80

were generated according to the Mallows model using four different metrics

ple. With the modal ranking, my =

and for different prior settings, the posterior probabilities of all the rankings

were computed.

Kendall’s 7

Footrule

Hamming

Spearman’s p

0
0.5

0.9901 (2143
0.9569 (2143

0.9999 (2143)
0.9999 (2143
0.9998 (2143

0.9997(2143)
0.9987 (2143
0.9940 (2143

0.9952 (2143)

0.9119 (1243

0.9789 (2143)
)

)
0.6973 (1243
0.3444 (4132)
0.4399 (4132)

5 | 0.4287 (3142
10 | 0.6026 (3241

)
)
1 |0.8321 (2143)
1.5 | 0.5250 (1243)
(3142)
(3241)

) )
) )
0.9991 (2143) | 0.9717 (2143)
0.5824 (1243) | 0.9581 (4132)
0.7700 (4132) | 0.9645 (1243)

The conjugacy class containing the true modal ranking, (2143),' corre-
sponds to the partition (2,2) and contains only 3 elements.
When f = 0, the prior is uniform over all rankings, hence the ranking with
the highest posterior- probability is the true modal ranking, using all four
metrics.
Changing @ to 0.5 gives similar results.
When § = 1.0, the highest posterior brobability is now given to the ranking
(1243) by one of the metrics, which belongs to the conjugacy class corre-
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sponding to the partition (1,1,2) and has a larger (6) number of elements.
When 8 = 5, all metrics give the highest posterior probability to some rank-
ing other than the true modal ranking, which belong to conjugacy classes
that have larger number (6 or 8) of elements. Thus, the choice of 8 can be
used to define the strength of our belief on the prior distribution.

Using the same data, but the metric based prior, the analysis was repeated
using the Hausdorff metric induced by Hamming distance. Two different
choices of 7* were used, 7* = (2143), the true modal ranking, and 7* =
(2134). For six different choices of A* the modal rankings in the posterior

models are tabulated below along with their probabilities.

A* = (2143) = (2134)
0 | 0.9998 (2143) | 0.9998 (2143)
0.5 | 0.9999 (2143) | 0.9996 (2143)
1 |0.9999 (2143) | 0.9989 (2143)
1.5 | 0.9999 (2143) | 0.9973 (2143)
5 | 1.0000 (2143) | 0.6228 (2134)
10 | 1.0000 (2143) | 0.8320 (2134)

So for the correct choice of 7*, the posterior model puts most of the mass at
the true modal ranking, whereas with the incorrect choice of 7, on increas-
ing the value of \*, maximum posterior probability is given to this incorrect

ranking.

Example 2: _

This example is taken from Fligner and Verducei (1990) in Wthh the Gradu-
ate Record Examination Board sampled 98 college students who were asked
to rank five words according to the strength of association with a target word.
For the target word “idea”, the five choices were (A) thought, (b) play, (C)
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theory, (D) dream, and (E) attention.

They fit both the Mallows and generalized Mallows model to the data. For
the Mallows model, they assume a uniform prior for the modal ranking, m,
and an independent conjugate prior for the scale parameter, A.

The conjugacy class prior for the Mallows model with 8 = 0 and Kendall’s
7 metric was used to analyze this data, and a Gibbs sampling algorithm was
used to obtain posterior estimates for the rankings. The results are tabulated
below along with the results from the previous analyses.

The first 7 ranks with the highest observed frequencies are listed along with
their mean posterior probabilities by the two methods. The numbers in
parentheses in the 3rd and 4th columns denote the ranks of the correspond-

ing permutations in the posterior models.

Obs ranks | Freq(prob) | Mallows(unif) | Mallows(conj. class)
15234 | 33(.337) | .032 (1) 8658 (1)
15324 | 18 (184) | .026 (2) 1039 (2)
14235 | 12(122) | .022 (3) 0220 (3).
14325 | 8 (.082) 019 (4) 0032 (4)
15243 | 6 (.061) 019 (5) 0021 (5)
95134 | 5 (.051) 019 (6) - 0021 (6)
15423 | 5 (.051) 016 (7) 0003 (7)

The posterior mean for lambda is 0.083. So our method not only picks the
correct modal ranking and most of the subsequent rankings, the posterior
mean of the modal ranking is a lot higher than that obtained by the previous

analysis, reflecting its high proportion in the observed data.
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7 Discussion

In this paper, we discussed the concept of conjugacy classes in permutation
groups and introduced the use of these classes to define two types of prior
distributions on metric based ranking models. The conjugacy class prior is
useful when we do not have any prior knowledge of what the modal ranking
could be, whereas the metric-based prior is useful when we have some idea
about what the most popular ranking is. Each of these priors can control the
strength of our prior belief through scale parameters, 8 and A* respectively.
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