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Abstract

A general purpose computer vision system must be capable of recognizing three-
dimensional (3-D) objects. This paper proposes a precise definition of the 3-D
object recognition problem and discusses general concepts associated with this
problem. The relevant literature is then reviewed and summarized. Since depth
maps, or range images, are often considered as input rather than intensity
images, techniques for obtaining, processing, and characterizing range data are
also surveyed.

Index Terms: 3-D object recognition, computer vision, depth maps, 3-D object
representation, 3-D object reconstruction, surface characterization, surface match-
ing '
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1. Introduction

Vision is a complex perceptual process which involves the physical elements
of illumination, geometry, reflectivity, and image formation as well as the intel-
ligence aspects of recognition and understanding. Human beings have little
trouble understanding stationary or moving, color or black-and-white three-
dimensional scenes in the real world, in movies and television, or in photo-
graphs. The ultimate goal of computer vision researchers is to endow computers
with human-like visual capabilities so that machines can sense the environment
in their field of view, understand what is being sensed, and take appropriate
actions as programmed. Object recognition is critical to understanding sensor
data.

Most of the computer vision research performed during the last twenty
years has concentrated on using digitized gray-scale intensity images as sensor
data. It has been extremely difficult to program computers to understand and
describe these images in a general purpose way. One particular problem is that
digitized intensity images are rectangular arrays of numbers which indicate only
the brightness at individual points on a regularly spaced rectangular grid and
contain no ezpliest information which is relevant to depth perception. Yet
human beings are able to correctly infer depth relationships quickly and easily
among image regions in such images whereas automatic inference of such reia-
tionships has proven to be quite difficult. In recent years digitized range data
has become available from both active and passive sensors, and the quality of
this data has been steadily improving. Range data is usually produced in the
form of a rectangular array of numbers, referred to as a depth map or range
image, where the numbers quantify the distances from the sensor plane to the
surfaces within the field of view along parallel rays on a regularly spaced rec-
tangular grid. Not only are depth relationships between depth map regions
explicit, the three-dimensional shape of depth map regions approximates the
three-dimensional shape of the corresponding object surfaces in the field of view.
Therefore, the process of recognizing objects by their shape should be less diffi-
cult in depth maps than in intensity images due to the explicitness of the infor-
mation. For example, since correct depth map information depends only on
geometry and is independent of illumination and reflectivity, intensity image
problems with shadows and surface markings do not occur. In our literature
review, object recognition papers are categorized according to whether or not
the use of range data is discussed.

This paper closely examines the three-dimensional object recognition prob-
lem. An outline of the covered material is given below:

(1) Autonomous single arbitrary view three-dimensional object recognition is
defined as a worthwhile goal which computer vision systems might achieve.

(2) The necessary components for an object recognition system are discussed
from a general qualitative point of view. The characteristics of an ideal
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system. for solving the particular well-defined object recognition problem
stated in (1) are proposed.

(3) The existing literature and subject matter relevant to this problem are
reviewed. The 3-D object recognition systems presented by different
authors are discussed with respect to the general purpose goals set forth in
(1). Techniques for obtaining and processing range data are also surveyed
since these methods are fairly new compared to the corresponding tech-
niques for intensity image data.

2. Problem Definition

Three-dimensional object recognition is a somewhat nebulous term. A brief
survey of the literature on this subject is sufficient proof of this statement [30]
[57] [73] [113] [129] [130] [150]. Therefore, we first attempt to give a reasonably
precise definition to the object recognition problem. The problem which we
present is more general and more useful than many other recognition problems
addressed in the literature, and yet it should still be solvable. First, we present
a brief qualitative summary concerning desirable visual capabilities which
motivates the detailed definition that follows.

The real world which humans commonly perceive both visually and tac-
tilely is primarily composed of solid objects. When humans are given a new
object they have never seen before, they are typically able to gather information
about that object from many different viewposnts. The process of gathering
detailed object information and then storing that information in some format is
referred to as model formation. Once human beings are familiar with many
objects, they can identify those objects from an arbitrary single stationary
viewpoint without further investigation in most cases. In particular, humans
can tdentify, locate, and qualitatively describe the orientation of objects in
black-and-white photographs. The black-and-white photograph capability is
significant because only the spatial variation of a single parameter within a
framed rectangular region corresponding to a fixed single view of the real world
is involved whereas human color vision generally involves a three-parameter
color variation within a large, almost hemispherical solid angle corresponding to
a continually changing viewpoint. Since we are interested in an automatic, com-
puterized recognition process, we must restrict allowable input data to be com-
patible with digital computers. The term digitized sensor data will be used to
refer to any input matrix of numerical values (which can represent intensity,
range, or some other scalar parameter) and associated auxiliary information con-
cerning how the matrix of values was obtained.

The above paragraph motivates the following definition of the autonomous
single arbitrary view three-dimensional object recognition problem:

(1) Given any labeled rigid solid object, that object may be ezamined in any
way desired as long as the object is not deformed.

(2) A model for the labeled object may be formed using information from this
examination in any way desired and given that object’s label.

6 Three-Dimensional Object Recognition
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(3) (i) Given digitized sensor data corresponding to one particular, but arbi-
trary, field of view of the real world as it existed at the time of data
acquisition;

(ii) given any data stored previously during the model formation process;
and

(iii) given a list of labels of distinguishable solid objects; answer the follow-
ing questions for each object in the list using the capabilities of a single
autonomous processing unit:

a) Does the given labeled object appear in the digitized sensor data?
b) If it does, how many times does it occur?

¢) For each occurrence of a given object, determine the location of
that object within the sensor data and, if it is possible using the partic-
ular type of sensor data, determine the three-dimensional location of
that object with respect to some convenient coordinate system.

d) Also, if possible, determine the three-dimensional orientation of each
occurrence of a given object with respect to some convenient coordi-
nate system.

(4) Finally, if there exist regions within the sensor data which do not
correspond to any of the objects in the list, characterize these regions in a
way that they might be recognized if they occur again in any future
images.

We will refer to the problem of successfully completing these assigned tasks
using real world sensor data while obeying the given constraints as the 3-D
object recognition problem. This problem is not successfully addressed in many
of the object recognition systems discussed in the literature review; more con-
strained problems are usually addressed which are limited to particular applica-
tions. If our stated 3-D object recognition problem is solved successfully by
some system, that system would be extremely useful in a wide variety of appli-
cations, including automatic inspection and assembly and autonomous vehicle
navigation. The problem is posed so that it is feasible to use computers to solve
the problem, and it is also clearly solvable by human beings.

How do we know whether or not a particular approach solves the problem
and how can we compare different approaches to see if one is better than
another? The performance of object recognition systems could be measured
using the number of errors made by a system in performing the assigned prob-
lem tasks on particular standardized sets of digitized sensor data which chal-
lenge the capabilities mentioned in the problem definition. The following list
enumerates some of the possible types of errors that can be committed by such
systems:

(1) Miss error: The presence of an object is not detected when it is definitely
present,

(2) False alarm error: The presence of an object is indicated when it is not
really there,

Three-Dimensional Object Recognition 6
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(3) Count error: The non-zero number of occurrences of a particular object
may be wrong,

(4) Location error: Object occurrences may be identified correctly, but the
location of the object in the data may be wrong,

(5) Orientation error: The object occurrences and positions may be determined
correctly, but the orientation may be wrong.

Different object recognition systems could be compared and the term ‘‘success-
ful” could be made quantitative by establishing a performance index which
quantitatively combines the number, the type, and the magnitude of the various
errors. Currently published information make it practically impossible to quan-
titatively compare existing object recognition systems since different researchers
do not evaluate their systems in any consistent manner. Hence, subsequent
comparisons in the literature review will be subjective and qualitative.

3. General Object Recognition System Concepts

The common components of all object recognition systems are discussed
below. By identifying these components, comparisons can be made between dif-
ferent systems by comparing and contrasting these components. For instance,
two systems might be equally general with respect to their object models but
may differ significantly in their sensor-data processing or matching algorithms.
Characteristics of the ideal system are proposed.

3.1. Object Recognition System Components

The specific tasks to be performed by an object recognition system are
given in the problem definition above. We also suggest that we could measure
how well these tasks are performed. But how can these tasks be accomplished?

First, how can one recognize something unless one knows what one is look-
ing for? Therefore, even though model formation is not specifically required by
our problem definition, it is practically demanded by the circumstances. The
literature survey reinforces this basic idea since all known investigators in this
subject area have utilized some sort of modeling process. Many different types
of models, both view-independent and view-dependent, have been used for
modeling real world objects for recognition purposes. We will survey different
view-independent object representations because representation is such a criti-
cal factor in object recognition system design. We will not survey view-
dependent techniques as a separate topic because these types of representations
are clearly not advisable for single arbstrary view recognition. For now, we
shall assume that the necessity of model formation has been established and
that some representation is required to store object model data. Thus, a world
model of some sort is a necessary object recognition system component.

The next issue can be stated as follows: Once one knows what one is look-
ing for, how can one go about finding it in the digitized sensor data? In other
words, a method for matching the model data to the sensor data must be con-
sidered to determine how recognition will take place. A simple-minded

7 Three-Dimensional Object Recognition



RSD-TR-19-84

straightforward blind search approach would entail transforming all possible
combinations of all possible known object models in all possible distinguishable
orientations and all possible distinguishable locations into the digitized sensor
data format and computing a matching error quantity to be minimized. The
minimum matching error configuration of object models would correspond to
the recognized scene. All the tasks mentioned in the statement of the object
recognition problem would be accomplished except possibly the characteriza-
tion of unknown regions not corresponding to known objects. Of course, this
would take an extremely large amount of processing time even for the simplest
scenes. Therefore, a better algorithm is required. Note that since the world
model will usually contain more object information than the sensor data, we
are usually prohibited from transforming sensor data into complete model data
and matching in the model data format. (However, this does not prevent one
from matching with partial model data.) As a result of these problems and the
natural desire to reduce the large dimensionality of the input sensor data, it is
often advantageous to work with an intermediate domain which is computable
from both the sensor data and the model data. For lack of a better term, we
will refer to this domain as the symbolic scene description domain. In the
literature review, it is seen that sensor data is usually processed until it reaches
some form of symbolic scene description. The model data can also be
transformed into an equivalent symbolic scene description. Some sort of
matching procedure can then be carried out on the quantities in this intermedi-
ate domain, which are often referred to as features. The best matching results
should occur when the hypothetical object model configuration accurately
represents the real world scene represented in the sensor data. Thus, we pro-
pose that a matching procedure and intermediate symbolic scene description
mechanisms are necessary object recognition system components.

The interaction of the individual object recognition system components is
diagrammed in Figure 1. The key domains are the real world, the digitized
sensor data domain, the modeling domain, and the intermediate symbolic scene
description domain. The key functions are the image formation function which
might create intensity or range data or both, the description function which
acts on the sensor data and extracts features, the modeling function which pro-
vides object models for real world objects, the understanding, or recognition,
function which involves some sort of matching algorithm, and the rendering
function which can produce synthetic sensor data. It is proposed that any
object recognition system can be discussed within the framework of this system
model. This description is basically in agreement with the ideas brought forth
by Brooks [29], except for the rendering function. The rendering function is an
important feedback link because it can allow an autonomous system to check
on its own understanding of the sensor data.

3.2. Characteristics of Ideal Object Recognition System

What are the characteristics of the ideal system which handles the object
recognition problem as we have defined it? Of course, one would like it to

Three-Dimensional Object Recognition 8
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Figure 1. General Object Recognition System Format

have human-like performance, but we can be more specific than that. Below,
we summarize some of the capabilities that might be realized by object recog-
nition systems in the near future:

(1)

It must be able to handle arbitrary viewing directions for the sensor data
without preference to horizontal, vertical, or any other directions. This
implies the usage of a good view-independent modeling scheme within
such a system which is compatible with recognition processing require-
ments.

It must handle arbitrarily complicated real world objects without prefer-
ence to either curved or planar surfaces.

It must handle arbitrary combinations of a relatively large number of
objects in arbitrary orientations and locations without being sensitive to
superfluous occlusions (i.e., if occlusion does not affect human understand-
ing of a scene, then it should not affect the ideal automated object recog-
nition system either).

It must be able to handle a certain amount of noise in the sensor data
without a significant degradation in system performance.

Three-Dimensional Object Recognition
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(5) It should be able to analyze scenes quickly and correctly.

(6) It should not be too difficult to modify the world model data to handle
new situations and new objects.

(7) It is desirable for the system to be able to express its confidence in its own
understanding of the sensor data.

4. Literature Review

The existing literature and subject matter relevant to the three-dimensional
object recognition problem is now reviewed within the framework established by
the previous section. Individual works will be considered within the context of a
particular general category. It is difficult to establish a natural order to these
general categories; therefore, we have chosen one convenient ordering for our
discussion. The topics which we consider relevant to the object recognition
problem are the following:

3-D Object Representation Schemes

DD

3-D Surface Representation Schemes
3-D Object and Surface Rendering Algorithms
Intensity and Range Image Formation

o~ e~ -~
G W
N— —

Intensity and Range Image Processing
3-D Object Reconstruction Algorithms
3-D Surface Characterization

(=]

3-D Object Recognition Systems using Intensity Images

O 00 =3

3-D Object Recognition Systems using Range Images

The treatment of some of the above topics is necessarily very brief. They were
included to put the main discussion contained in the last three topic areas into
perspective. We have attempted to collect all published (English language)
works in these last three areas (7-9); we apologize to any authors inadvertently
omitted.

This paper is not intended as an overview of computer vision. Gevarter
[53] presents a short easily understandable introduction and summarizes the
state of the art. The book by Ballard and Brown [7] is a reasonable place to
start for the more serious reader who is not already familiar with the field.
There are also several overview papers which survey computer vision and treat
3-D issues but consider only intensity smages as input [5] [11] [27] [28] [127].
Binford [18] has written a survey of model-based intensity-image analysis sys-
tems. Dyer and Chin [43] have reviewed 2-D and 3-D object recognition litera-
ture with an emphasis on industrial systems.

Three-Dimensional Object Recognition : 10



RSD-TR-19-84

4.1. 3-D Object Representation Schemes

In order to recognize a particular object, you need to know what that
object ‘“looks like.” How can a computer “understand’” what an object looks
like? Computers can understand 3-D object structure and appearance through
use of object models which are independent of viewer position and orientation.
How can such a model be stored in a computer? There are many different
answers to this question, and each different answer gives rise to a different
object representation scheme.

We now briefly review the basic categories of 3-D object representation.
This overview will make it easier to understand the limitations of some of the
object recognition systems reviewed later. First, we discuss object representa-
tions used primarily by systems where the goal is to create realistic digital
images from models (i.e., existing computer graphics representations). Then we
look at other representations used by systems where the goal is to understand
digital images using models (i.e., existing computer vision representations).
The two types of systems mentioned here perform basically opposite opera-
tions. Both systems need the same kind of object information, but the utiliza-
tion of that information is quite different.

The 3-D object representations commonly used By contemporary
computer-aided-design (CAD) geometric solid object modeling systems can usu-
ally be categorized as one of the following:

1) Wireframe Representation:

The wireframe representation of a three-dimensional object usually
consists of a 3-D vertex point list and an edge list of vertex pairs, or
can be formatted as such. This representation is quite common
because it is so simple. However, it can also be an ambiguous
representation for determining quantities such as the surface area and
volume of an object. See Figure 2 for the block-within-a-block exam-
ple of this ambiguity. The single wireframe model can be interpreted
as three different solid objects.

2) Constructive Solid Geometry Representation (CSG):
The CSG representation of an object is specified in terms of a set of
3-D volumetric primitives (blocks, cylinders, cones, and spheres are
typical examples of bounded primitives) and a set of Boolean opera-
tors: union, intersection, and difference. See Figure 3 for an example
of a CSG description of an object. The storage data structure is a
binary tree where the terminal nodes of-the tree are instances of prim-
itives and the branching nodes represent Boolean set operations. CSG
trees define object volume and surface area unambiguously and are
capable of representing complex objects with a very small amount of
data. However, free form sculptured surfaces, such as the head sur-
face shown in Figure 4, are not easily represented using CSG
modelers. A general purpose modeling system should be able to

11 Three-Dimensional Object Recognition
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A CSG REPRESENTATION _ A BOUNDARY REPRESENTATION

Figure 3. CSG and Surface Boundary Representations for Solid (from [122])

represent such surfaces.

3) Spatial Occupancy Representation:

Spatial occupancy representations define non-overlapping regions of
3-D space occupied by a particular object and unambiguously define
an object’s volume. The following single primitive representations of

this type are commonly used:

1) Voxel Representation:
Voxels are small volume elements of discretized 3-D space
which are usually fixed-size cubes. Objects are represented
by the list of voxels occupied by the object. This

Three-Dimensional Object Recognition 12
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Figure 4. Intensity Image of Head Surface (from [142])

representation tends to be memory intensive.

2) Oct-tree Representation: [98]

An oct-tree is a hierarchical representation of spatial occu-
pancy. Volumes are decomposed into cubes of different sizes
where the cube size depends on the distance from the root
node. Each branching node of the tree structure represents a
cube and points to eight other nodes which describe object
volume occupancy in the corresponding octant cube of the
branching node cube. This representation offers the advan-
tages of the voxel description but is much more compact.
The basic idea of oct-trees is displayed by considering the 2-
D analog of oct-trees, usually referred to as quad-trees, as
shown in Figure 5.

3) Tetrahedral Cell Decomposition Representation.

13

Decomposition of 3-D space regions into tetrahedral elements
is very similar to the lower-dimensional analog of decompos-
ing flat surfaces into triangles. (The tetrahedron is a 3-
simplex where as the triangle is a 2-simplex.) Tetrahedral
decompositions define volume and surface area and are

Three-Dimensional Object Recognition
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. Image Quad-tree

Figure 5. Hierachical Approach to Spatial Occupancy (from [62])

useful for many mathematical purposes.
Voxels and oct-trees are useful for a number of computer graphics
applications whereas tetrahedral models are often useful for finite ele-
ment applications. Many other spatial occupancy schemes are possi-
ble.

4) Surface Boundary Representation (B-Rep):
Surface boundary representations define a solid object by defining the
three-dimensional surfaces which bound that object. Figure 3 shows
an example of the boundary representation concept. The simplest
boundary representation is the triangle-faced polyhedron which can be
stored as a list of 3-D triangles. Arbitrary surfaces can be approxi-
mated to any desired degree of accuracy by utilizing many faces. The
head surface image shown in Figure 4 was generated from a list of tri-
angles and quadrilaterals (the union of two triangles) which describe
the surface. A slightly more compact representation allows the
replacement of adjacent, connected, coplanar triangles with arbitrary
n-sided planar polygons. This sort of representation is popular
because model surface area and volume are well-defined and all object
operations can be carried out using piecewise-planar algorithms. The
next usual incremental step in generality is obtained using quadric
surface based boundary representations. Many other techniques for
representing surfaces with higher order polynomials or splines exist
and are discussed in the next section. For surfaces more complicated
than planar polygons, some data structure or algorithm must be used
to determine where surface intersections occur. That is, there must

Three-Dimensional Object Recognition 14
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be some mechanism for bounding the extent of individual surface
patches which bound an object. In addition, there might also exist
mechanisms to describe the structural relationships between bounding
surfaces. There are many ways to do this; Lin and Fu [90] have even
proposed a syntactic approach which uses a context-free 3-D plex
grammar for this purpose. The common element of surface boundary
representations is a list of the bounding object surfaces.

Any representation which adequately represents a real world object should be
usable by some type of graphics algorithm to render synthetic sensor data
images very similar to real world semsor data. The above object modeling
schemes have been used successfully to provide very realistic shaded image
renderings of real world scenes. On the other hand, any representation chosen
for computer vision object recognition should also be suitable for matching
algorithm purposes. It is desirable for each real world object shape to have a
unique description within the framework of a given representation to be suit-
able for matching. It turns out that several of the representations above do not
yield unique numerical descriptions of object shapes. That is, it is often possi-
ble to reorder or reorganize points, edges, faces, and/or primitives of a given
representation to obtain an identical shape. Model-based matching algorithms
for computer vision systems must be made insensitive to this non-uniqueness if
the modeling scheme suffers from this problem. Much more can be said about
the above representation schemes, but a full discussion of the details and the
relative merits of these representations is not the intention of this paper. We
refer the reader to [4] [33] [122] [123] [124] for more details. For convenience,
we include two self-contained figures from [122]: Figure 6 summarizes the his-
tory of approaches to 3-D object representation, and Figure 7 is a table of com-
mercially available solid modelers.

The 3-D object representations mentioned in the computer vision litera-
ture can usually be categorized as one of the above schemes or as one of the
following:

1) Generalized Cone, Generalized Cylinder, or Sweep Representation:

Generalized cones or generalized cylinders are often called sweep
representations because object shape is represented by a space curve
which acts as the spine or axis of the cone, a two-dimensional cross-
sectional figure, and a sweeping rule which defines how the cross-
section is to be swept and possibly modified along the space curve.
These ideas are shown for a simple cylinder in Figure 8 This
representation is well-suited to many real world shapes. However, it
becomes just about impossible to use this representation for objects
that are not suited to this sort of description; consider the body of an
automobile or the head image in Figure 4. Therefore, this scheme by
itself is not general purpose. Despite this difficulty, many papers
prefer the generalized cone object representation for vision purposes

156 Three-Dimensional Object Recognition
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1973.78  BETTERNC: POLYHEDRAL SMOOTHING; LOFTED/DIGITIZED SURFACES; CSG-, AND SWEEP-BASED
MORE CONVENIENCES FASTER SIMULATORS; B-SPLINE CURVES AND SURFACES  SYSTEMS DEMONSTRATED:
3-D ANIMATION THEORETICAL FOUNDATIONS
EMERGE
BOUNDED SURFACES; SPECIAL COMPUTER B-SPLINE SUBDIVISION DEVELOPMENT OF
197g-94  BETTER ANALYSIS HARDWARE; ALGORITHMS INDUSTRIAL PROTOTYPES:
PACKAGES; COLOR; IMPROVED DISPLAYS; EARLY PRODUCTION VERSIONS
‘ MORE CONVENIENCES ~ ANIMATION LANGUAGES
\ \‘ / _/
B : Y
1985-95 A NARROWER SPECTRUM OF MORE POWERFUL SYSTEMS

Figure 6. Historical Summari of Approaches to Object Representation (from [122])

MODELER VENDOR/DISTRIBUTOR CORE SOFTWARE GENRE
CATIA 18M DASSAULT (FRANCE) 8-REP
CATSOFT CATRONIX CSG
DOM-SOLIDS CALMA B-REP
EUCLID MATRA DATAVISION/ CNRS (FRANCE) B-REP

DEC
GEOMOD-HI SDRC/ SORC B-REP
GENERAL ELECTRIC CAE
ICEM SOLID MODELLING coc SYNTHAVISION (MAG!) CSG
ICM GMS ICM 8-REP
MEDUSA PRIME CIS/CV (UK) B-REP
PADL-1,2 U. ROCHESTER CSG
PATRAN-G PDA ENGINEERING CELL DECOMP.
ROMULUS EVANS & SUTHERLAND SHAPEDATA (UK) B-REP
SOLIDESIGN COMPUTERVISION B-REP
SOLIDS MODELING-H APPLICON SYNTHAVISION (MAG!) CsSG
SYNTHAVISION MAGI CsG
TIPS-1 CAM-| HOKKAIDO U. CSG
UNIS-CAD SPERRY UNIVAC BAUSTEIN GEOMETRIE B-REP
(T. U. BERLIN)
UNISOLIDS MCAUTO PADL-2 (U. ROCHESTER) CSG

Figure 7. Solid Modelers Available in US in May 1983 (from [122])
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Figure 8. Generalized Cylinder Concept (from [62])
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[2] [31] [83] [105] [106] [108)].

2) Multiple 2-D Projection Views Representation:

For particular applications, it is convenient to store a library of two-
dimensional silhouette projections to represent three-dimensional
objects. For recognition of 3-D objects with a small number of stable
orientations on a flat light table, this representation is ideal if
silhouettes of different objects are different enough. This technique
has also been used to recognize aircraft against the well-lit sky back-
ground in any orientation [150]. It is not a general purpose technique,
however, for it is possible for many different 3-D object shapes to pos-
sess the same set of silhouette projections. A more detailed approach
of a similar nature is the characteristic views technique used in [35].
All of the infinite 2-D projection views of an object are grouped into
topological equivalence classes of which there are a finite number.
Different views within an equivalence class are related by a linear
transformations. This representation is general purpose in nature
since it specifies the 3-D structure of an object even though it may
turn out to be a very verbose form. Figure 9 shows several represen-
tative characteristic views for a particular non-convex polyhedron.
Similar ideas are presented in a different form in [81]. Aspect is
defined to be the topological structure of singularities [82] in a single
view of an object. For almost any vantage point, small movements
do not affect aspect. When a change in aspect occurs, this is referred
to as an event. An object can be described by a graph, referred to as
the visual potential, where the aspects form the nodes of the graph
and events form the arcs of the graph. One can then measure visual
object complexity by using a measure for the diameter of the visual
potential, or aspect graph. Figure 10 shows the visual potential for a
tetrahedron; in this case, there are three types of aspect: one, two, or
three faces are visible. Scott [132] has looked at these ideas with the
aim of implementing a graphics system which understands what it is
displaying in terms of the projection topology and the visual potential
neighborhood of a given view.
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Figure 9. Representative Characteristic Views for Polyhedron (from [35])

Figure 10. Visual Potential of Tetrahedron (from [81])

3) Skeleton (Stick Figure) Representation:
Some researchers have found it convenient to describe shape using
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skeleton models [146]. This representation is very ambiguous and is
not suitable for general purpose 3-D object shape description. Skele-
tons are similar to the generalized cone descriptions but are more:
abstract. They can be viewed as a subset of the generalized cone]i
information; skeletons consist only of the spines, or axis curves, of i
generalized cones.

4) Generalized Blob Representation:
Generalized blobs have been used by some investigators as a 3-D
object shape description scheme [103]. Objects are described by
sticks, plates, and blobs. This representation is certainly not detailed :
enough for general purposes.

5) Spherical Harmonic Representation:
Some objects can be represented by specifying the radius from a point .
as a function of latitude and longitude angles about that point. This
representation may be useful in very restricted situations, but it is not
general purpose.

6) Overlapping Sphere Representation:
O'Rourke and Badler [112] have proposed the use of overlapping
spheres as a solid object representation. Many spheres are required to .
yield relatively smooth surfaces. This single primitive representation
seems better suited to molecular display algorithms than object ¢
modeling. Although it is a general purpose technique, it is rather
awkward for precisely representing the majority of man-made objects.

Most of the object representation methods discussed in the computer vision
literature are not capable of describing arbitrary solid objects. These methods :
specialize in particular shapes or are symbolic or abstract in nature. They may |
be suitable to particular applications, but they are not general purpose.

All of the above categories have been listed to put the object representa- :
tion methods prevalent in the literature into perspective. Each method has its |
own advantages and disadvantages with respect to different applications, but ¢
some are inherently more limited than others. The stated object recognition
problem requires a representation which can model arbitrarily complicated i
objects with fine detail. Note that each of the above representations could
allow object models to be built by the human designer or by automatic )
methods if possible.

4.2. 3-D Surface Representation Schemes

In the previous section, we discussed surface boundary representations of :
three-dimensional objects. Since surfaces of objects become sampled depth
map surface regions under the depth map projection, we feel that surface boun-
dary representations will be extremely important to object recognition in depth
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maps. These representations all employ lists of surfaces. But how are these
surfaces represented? We saw previously that polyhedral models can be
represented as a list of planar polygons so we will not discuss this surface
representation further. How can smooth surfaces be represented?

A general surface in three dimensions can be written as

S = { (z,9,2) : (2,9, =0 }

This is referred to as an smplicst representation of a surface. If the gradient
vector 7 F exists, is continuous, and is non-zero for every point (z,3,2) , then S
is a smooth surface. The implicit surface representation is very useful for low
order polynomials of the spatial variables. Planar surfaces are precisely
represented with only four coefficients (which describe three degrees of free-
dom):

Fiane (2,92) = Az + By + Cz + D

(A,B,C) specify the direction of the single normal to the surface whereas D
specifies the distance of the plane from the origin of the coordinate system if
A,B,C are properly normalized. Quadric surfaces require ten coefficients in
general (which describe nine degrees of freedom):

Fquadn‘c (:t,‘y,Z) =A.’l‘2+ By2+ 022+ Gzy + Hyz + Izz+ Uz + Vy+ Wz+ D

Only three coefficients are needed to describe the shape of a quadric surface of
a given type whereas six parameters are needed to locate and orient the surface
in space. If a quadric surface is properly translated and rotated, at least six of
the ten coefficients will be zero. All quadric surfaces can be then classified as
one of the six following types using the three or four non-zero coefficients in
that particular coordinate system:

(1) Ellipsoid (A>0,B>0,C>0,D=-1),

(2) Elliptic Paraboloid (A>0,B>0, W=-1),
(3) Hyperbolic Paraboloid (A>0,B<0, W=-1),
(4)
(5)
(6)

-

Hyperboloid of One Sheet (A>0,B>0, C<0,D=-1),
Hyperboloid of Two Sheets (A>0,B<0,0<0,D=-1),
Quadric Cone (A>0,B>0,C<0).

Unfortunately, the implicit surface representation is not generally useful for
arbitrary surface descriptions unless surfaces are decomposed into locally homo-
geneous patches. The reason is that it becomes more and more difficult to deal
with polynomial surface functions as the order of the polynomial increases.
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Imagine trying to fit a polynomial surface of some order to the surface shape in
Figure 4.

The standard alternative approach is to use an ezplicst parametric surface
representation:

S = { (z,9,2) : 2 = Mu,v), y = g(u,v), z = [ (4,v), (u,v) € D C Rz}.

where f,g,h are smooth scalar functions of two variables. A significantly less
general, but still very useful parametric description of surfaces is given via the
Monge patch representation:

S={ (zy2):z=uy=1v 2= f(yv),(yv) €D C Rz}.

Gray level surfaces in intensity images and depth map surfaces in range images
are often analyzed using this common representation.

There are many different types of parametric surface representations dis-
cussed in the computer graphics and computer-aided-design literature. The
differences between these surface representations are due to different choices of
representations for the individual f (u,v), g(%,v), &(v,v) functions. Coon’s patch
and tensor product composite surfaces are useful when the parameter domain
D is rectangular. Coon's patches are represented using one-dimensional boun-
dary curves and blending functions. Tensor product surfaces and surface
patches are represented as a “‘quadratic” form §u,v) = B, (u){Q]B, T (v) where
the {@] matrix is a function of a set of control points and the B vectors consist
of one-dimensional basis function components. The following is a list of the
various types of tensor product surfaces (the first six surfaces are described in
Faux and Pratt [48] while the last surface type is described by Tiller [142]):

(1) Ferguson bicubic surface patches,

(2) Bezier bicubic surface patches,

(3) Rational Biquadratic surface patches,
(4) Rational Bicubic surface patches,

(5) Parametric Spline surfaces,

(6) B-Spline surfaces,

(7) Rational B-Spline surfaces.

The use of homogeneous coordinates allows rational and non-rational tensor
product surfaces to be put in the same form. Rational B-spline surfaces are
quite general in that they can precisely represent quadric primitives, free-form
surfaces, and polyhedral objects using one mathematical form. (As a result,
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this representation has been adopted as an IGES standard for 3-D surfaces for
the CAD/CAM industry.) They are fairly complicated, however, and it requires
substantial effort to implement them.

York et al. [157] [158] discuss the use of Coon's surface patches with cubic
B-spline boundary curves as a surface representation for computer vision. The
use of this surface type within the VISIONS system Long Term Memory
(LTM) layered network database is presented in detail. A preliminary example
of matching using the shape features of a 3-D circle is presented in [157].
Although the scope of these papers is very limited, it is one of the few works to
discuss CAD surface representations in the computer vision context.

Sometimes it is necessary to represent surfaces over arbitrary domains D.
Barnhill [10] surveys the use of triangular interpolants and distance-weighted
interpolants to create smooth surface descriptions from arbitrarily located
point data. Hence, another type of surface representation is one where a set of
data points is given along with an interpolation scheme. These surface descrip-
tions can be categorized according to whether the smooth surface passes
through the given points or whether the surface approximates the given points
while minimizing some error criterion. There are too many different techniques
of this sort for us to attempt to survey them here.

We have seen that there are many different ways to represent objects and
surfaces. Three-dimensional object recognition must use one of these known
techniques to describe objects or invent new ones. Each known method has its
own advantages and disadvantages. One needs to be aware of all these model-
ing issues when constructing a object recognition system in order to make
informed, intelligent decisions.

4.3. 3-D Object and Surface Rendering Algorithms

Once an object and/or surface representation has been selected as a model
data storage mechanism for an object recognition system, it would be very con-
venient to have some technique to transform the model data into synthetic sen-
sor data and/or a symbolic scene description. This would allow the introduc-
tion of a feedback loop which could be used to evaluate a computer vision
system’s understanding automatically in terms of confidence factors. How can
this rendering task be accomplished?

The computer graphics literature discusses many techniques for generating
line drawings and shaded images in color or black and white from geometric
models. These topics are discussed in the computer graphics textbooks [50]
and [107]). These techniques are usually divided into display space algorithms,
object space algorithms, or hybrid algorithms. Some kind of sorting of graphic
primitives is usually required which makes these algorithms compute-intensive.
However, techniques are continually improving and may impact computer
vision research. If the model data is adequate for general purpose vision, rela-
tively realistic intensity images or range images and the corresponding symbolic
scene descriptions can be generated automatically upon request within a vision
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system by using an appropriate algorithm.

Much research work is specifically interested in depth map sensor data.
The z-buffer or depth-buffer algorithm from computer graphics can be used to
generate synthetic depth maps from arbitrary polyhedral object models. It is
easy to implement such an algorithm in software. In fact, hardware implemen-
tations of this algorithm are commercially available for generating intensity
images. Therefore, it may not be unreasonable to assume the availability of
extremely fast rendering algorithms in the design of future object recognition
systems if needed.

4.4. Intensity and Range Image Formation

In order to use sensor data to yield information about the real world, it is
important to understand the image formation process. This process has been
studied in detail by both computer vision and computer graphics researchers.
Ballard and Brown (7] contains a good treatment of this subject. At each point
in an intensity image, the brightness value encodes fnformation about surface
geometry (shape, orientation, and location), surface reflectance characteristics
and texture, scene illumination, the distance from the camera to an object sur-
face, the characteristics of the intervening medium, and the camera charac-
teristics which include spatial resolution, noise parameters, dynamic range,
brightness resolution, and lens parameters. Over the years, increased under-
standing of intensity image formation [69] and the constraints of the physical
world has led to important computer vision research developments, such as
shape from binocular stereo [56], shape from motion [77] [147], shape from
shading [71], shape from photometric stereo [36] [155], shape from texture [153],
and shape from contours [80]. (These methods will be referred to collectively
as shape from (xxx) techniques.) These developments are directed toward the
goal of correctly inferring the three-dimensional structure of a scene from only
brightness values. The great difficulty in reaching that goal is certainly related
to the large number of factors encoded in each brightness value during the
intensity image formation process.

Range image formation is also generally a very complicated process. At
each point in a range image, the depth value encodes snformation about surface
geometry, the distance from the camera to an object surface, and the range-
finder characteristics which include spatial resolution, range resolution,
dynamic range, noise parameters, and other rangefinder parameters which
depend on the type of rangefinder used. One important difference is that scene
illumination and surface reflectance are not directly encoded in range values.
Moreover, rangefinders directly produce the depth information which the shape
from (xxx) techniques mentioned above seek to produce. Even though range-
finders are sometimes regarded as specialized non-vision instruments since they
do not address vision as humans experience it, they are receiving a great deal
of attention and can be very useful sensors in many situations. Since range-
finders are not nearly as common as cameras and digitization equipment, we
discuss different techniques for sensing depth. This review is a condensation of
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the material found in (7] [78] [79] [115].

Rangefinders can be classified as using either active or passive methods.
Active methods are regarded as such because they project energy onto a scene
to measure range. Ultrasound and radio wave techniques can be used for range
determination, but do not currently possess high enough resolution for most
range imaging purposes. Lasers can be used as pulsed-mode or modulated
continuous-wave range sensors. A pulsed-mode time-of-flight laser rangefinder
determines distance by measuring the elapsed time between pulse transmission
and signal reception and therefore requires signal processing electronics with 70
picosecond time resolution to obtain a depth resolution of 1 centimeter. A
laser rangefinder of this type is discussed in [89]. A schematic for a rangefinder
of this type is shown in Figure 11. Amplitude-modulated continuous-wave
laser rangefinders determine distance by measuring the phase difference
between the received wave and a reference signal. A laser rangefinder of this
type is discussed in [141]; the range ambiguity problem with this sort of sensor
is also discussed. A diagram for a rangefinder of this sort is shown in Figure
12. Both types of laser rangefinders tend to be fairly expensive, spatial resolu-
tion is typically about 128x128 pixels, depth resolution is usually about 1 ¢m
for objects in the 1-4 meter range, and these instruments are often very slow
compared to TV cameras. The state-of-the-art in close-range high-resolution
laser rangefinders can be summarized perhaps by listing the specifications of
the Environmental Institute of Michigan laser rangefinder discussed in [141]:

(1) Source: Gallium Arsenide Laser Diode, 20mW
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Figure 11. Pulsed-Mode Time-of-Flight Laser Rangefinder Schematic (from [78])
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Figure 13. Continuous-Wave Phase Detection Laser Rangefinder Diagram (from [78])

(2) Dynamic Range (Ambiguity Interval): 6 inches to 3 feet.

(3) Range Resolution: 0.001 inch to 0.1 inch (13 bits quantization)
(4) Field of View: 1.6 degrees square to 35 degrees square

(5)

(6)

Frame Rate: 1 frame per second typical
Scan Control: Programmable (capable of 512x512)

It is important to note that the accuracy of both types of laser rangefinders
depends on the return signal power, which in turn depends upon (1) transmit-
ted power, (2) the inverse fourth power of the distance to the object, and (3)
the object’s surface reflectance. For this reason, the laser power .is sometimes
large enough that human eye damage may result if safety precautions are not
exercised.

Lasers are also used in triangulation based rangefinders where a spot or
line of light is projected onto a scene. Cameras or infrared sensors are used to
detect the light, signal or image processing techniques are used to determine
the position of the spot or pieces of the line, and trigonometry is used to esti-
mate the distance to the detector. See Figure 13 for an example of triangula-
tion rangefinder geometry. Depth resolution depends on how well positions,
distances, and angles can be measured. Triangulation methods always suffer
from the ”missing parts” or shadowing problem due to the separation of the
source and detectors whereas laser range sensors with coaxial source and
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detector are not subject to this problem. Figure 14 show a detailed categoriza
tion of the rangefinder discussed in [115]. This gives one an idea of the variet)
of laser rangefinders.

Non-coherent white light is also used for range finding in much the same
way that laser light is used. A spot, line or stripe of light, or even an entire
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Figure 14. A Classification of Rangefinders (from [90])
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grid of light [118] [143] can be projected onto a scene and the reflected light is
detected by cameras. Image processing techniques are then needed to isolate
the bright pixels in the image, and depth is determined by triangulation.
Other patterns and M01re fringe techniques [70] have also been used for range
finding.

An interesting approach for range imaging using white light has been
developed by Inokuchi et al. [76]. A scene is not scanned as in spot and
line/stripe approaches. Instead, the scene is sequentially illuminated with a
series of Gray code bit-mask patterns, and a stack of binary images is gen-
erated. This set of images is combined and transformed into a depth map. See
Figure 15 which shows the Gray-code patterns and the overall system confi-
guration. The range image shown in the paper looks quite good. Using only n
binary images, this technique can generate the equivalent range lnformatlon
generated by a light stripe rangefinder which has scanned and processed 2"
light stripe images. Altschuler et al. [3] devised a similar instrument which
used non-coded binary patterns. Rangefinders will probably become more com-
mon as this sort of innovation continues.

Passive range finding techniques are considered as such because they do
not project energy onto a scene. Focusing techniques use the shallow depth of
field of large aperture lenses to determine the depth of different parts of a
scene. The shape from (xxx) methods mentioned above are other types of pas-
sive range finding techniques.

The major passive range finding technique is stereo [9] [56] [110] [156].

The correspondence problem of matching scene points in different images must
be solved to obtain good depth values from stereo rangefinders. Even then,
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Figure 15. Gray Code Patterns and Rangefinder System Configuration (from [59])
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stereo and other passive techniques generally only provide depth at isolated
points in the field of view. Surfaces can be interpolated from these points to
obtain entire depth maps for a scene [144]. In general, passive range finding
techniques are usually computationally intensive, but it is expected that these
methods will also improve with time.

As a result of the difficulties involved in passive techniques, depth maps
are usually obtained from active sensors in practice. As active rangefinding
techniques improve, high spatial resolution (512x512pixels), high depth resolu-
tion (16 bits) sensors should become available at relatively reasonable costs.
This type of data could be extremely useful in many applications, including
automatic inspection and assembly.

Range images and intensity images both contain a great deal of scene
information, and some attempts have been made to combine data from these
two sources [154]. In addition, laser rangefinders can produce reflectance
images where pixel values represent the surface reflectance at each point.
These images are similar to intensity images except that no shadows can occur,
and it can also be advantageous to form registered sets of these two type of
images of 3-D scenes [41] [109]. Combined use of range, intensity, and reflec-
tance images for computer vision has not really received a great deal of atten-
tion yet. This paper will not examine such combinations although multiple
sensor data integration is certainly an important research area.

4.5. Intensity and Range Image Processing

The field of intensity image processing is a relatively mature field com-
pared to the computer vision or image understanding field. Textbooks on the
subject [55] [120] [126] discuss the topics of enhancement, restoration, coding,
and segmentation of digital intensity images. Since range images or depth
maps have the exact same mathematical representation as intensity images,
many intensity image processing techniques are directly applicable to range
images. Image segmentation is a key low-level process in image understanding
systems. Most segmentation work for single intensity images is based on sim-
ple thresholding, correlation, histogram transformations, filtering, edge detec-
tion, region growing, texture discrimination, or some combination of the above.
The technical literature on these subjects and their applications is so vast that
we shall not attempt to survey it. Instead, we will focus on the relatively small
amount of literature concerned with range image processing and make com-
parisons with intensity image processing.

Duda et al. [41] discussed the use of registered range and reflectance data
to find planar surface regions in 3-D scenes. A sequential planar region extrac-
tion procedure is described which utilizes both range and reflectance images
obtained from a modulated-continuous-wave laser rangefinder which is
described in [109]. A priori scene assumptions concerning man-made horizontal
and vertical surfaces motivate the procedure. First, horizontal surface regions
of significant size are segmented and removed from the images using a filtered
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range (z) histogram. Second, major vertical surfaces are extracted from the
remaining scene data utilizing a Hough transform method. Third, arbitrary
planar surfaces are identified with the help of reflectance (histogram) data. In
this way, all planar surfaces are segmented and labeled; -all unlabeled regions
correspond to depth discontinuities, non-planar regions, or very small planar
regions not found in the three main processing steps. The paper mentions
many adjustable algorithm parameters which were assigned values on an ad
hoc basis. The overall technique seems to work quite well on their three test
scenes, but it is not a theoretically unified approach and relies heavily on its
horizontal and vertical surface assumptions. Planar region extraction is not a
common processing step in intensity image processing.

Milgram and Bjorklund [100] also discuss planar surface extraction in
range images created by a laser rangefinder. The spherical coordinate
transform is used to convert slant range, azimuth angle, and elevation angle
sensor data into standard Cartesian data before processing. For each Cartesian
coordinate range pixel, the two orientation angles, the position variable, and
the goodness of fit are computed for the best fit plane within a 5 x 5 window.
This data is used to form connected components which satisfy planarity con-
straints. After the region growing processing is complete, a “‘sensed plane list”
is built which constitutes the scene description. This list is compared with a
reference plane list to determine sensor position with respect to a stored scene
model. Experimental results are discussed for four real world range images and
two synthetic range images displaying different viewpoints of the same building
site. This appears to be a much better, more straightforward approach to
planar surface extraction than that of Duda et al. However, there was still no
effort to handle curved surfaces. Figure 16 contains a block diagram of the
system which was planned for vehicle navigation.

Henderson [62] [63] has developed a method for finding planar faces in one
or more range images. First, 3-D object points are computed using one or
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Figure 18. Block Diagram of Matching System (from [100])
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more depth maps. For multiple depth maps, points are transformed into one
object-centered coordinate system using transformation data recorded during
range image formation [64]. These points are stored randomly in a list with no
topological connectivity information and are then organized into a 3-D binary
tree which can be done in O(NlogN) time where N is the number of points.
Second, each point’s neighbors are determined with the aid of the 3-D tree and
the results are stored in a 3-D spatial proximity graph. Third, a spiraling
sequential planar region-growing algorithm known as the three-point seed
method [64] is used to create convex planar faces using the spatial proximity
graph as input. The union of these faces form the polyhedral object represen-
tation which is extracted from the range data. This efficient method can be
used for either range data segmentation or object reconstruction. It can work
on dense range data or a sparse collection of points. Curved surfaces are
approximated by many polygons. This type of processing has no good analo-
gies in image processing.

Wong and Hayrapetian [154] suggest the use of range image histograms to
segment registered intensity images. All pixels in the intensity image which
correspond to pixels in the range image with depth values not in a certain
range are set to zero segmenting all objects in that particular range. This
seems to be useful in only a few limited applications.

Hebert and Ponce [61] propose a method of segmenting depth maps into
plane, cylindrical, and conical primitives. First, surface normals are computed
at each depth pixel using the best-fit plane in 3x3 windows. These normals are
mapped to the Gaussian sphere where planar regions become very small clus-
ters, cylinders become unit radius semicircles, and cones become smaller radius
semicircles. (This type of orientation histogram is often referred to as the
extended Gaussian image, or EGL.) The Hough transform is used to detect
these circles and clusters. Regions are then refined into labeled, connected
components. Although still rather restricted, this technique handles at least
certain types of curved surfaces in addition to handling planes.

Inokuchi et al. [74] present an edge-region segmentation ring operator for
depth maps. This ring operator computes a complete one-dimensional periodic
function of depth values which surround a pixel. This function is transformed
to the frequency domain using an FFT algorithm for either 8 or 16 values. By
examining the Oth, 1st, 2nd, and 3rd frequency components of the ring sur-
rounding each pixel, planar region, jump-boundary-edge, convex-roof-edge, and
concave roof-edge pixels are distinguished. These pixel types are grouped
together and the resulting regions and edges are labeled. Experimental results
are shown for one synthetic block world scene range image. This technique
does appear to compute roof-edges fairly well at the boundaries of planar sur-
faces. However, it is not stated what happens when images contain curved sur-
faces. Two years earlier, Inokuchi and Nevatia [75] discussed another roof-edge
detector which applied a radial line operator at jump-boundary-edge corners
and followed roof-edges inward.
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Mitiche and Aggarwal [102] have developed a roof-edge detector which is
insensitive to noise due to use of probabilistic model which attempts to account
for range measurement errors. The computational procedure goes as follows: 1)
Jump-boundary-edges are extracted from a depth map. 2) For each direction
(usually four) in the image at each pixel, a roof-edge is hypothesized. For each
hypothetical roof-edge, two planes are fit to the immediate neighborhood of the
pixel and the dihedral angles between these planes are recorded. This is
referred to as the ‘‘computation of partitions.” 3) All pixels at which all angles
are less than a threshold are discarded. For each remaining pixel, a Bayesian
likelihood ratio is computed and the most likely partition (edge-direction) is
chosen. If the angle for that direction is less than a threshold, that pixel is also
discarded. This is referred to as the ‘‘dismissal of flat surfaces.” 4) All remain-
ing pixels are passed through a non-maxima suppression algorithm which
theoretically leaves only the desired edge pixels. Experimental results from the
paper are shown in Figure 17 for a 64x64 depth map of a cube with added
noise. The results look reasonable considering the large amount of noise added,
but the system is internally constrained by its model to look for only horizontal
and vertical edges (a domain specific constraint). It is suggested that the
repeated, time-consuming laser range sampling used to achieve good distance
accuracy may not be necessary to detect edges if the noise can be successfully
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igure 17. Edge Maps for Depth Map of Cube with Noise (from [102])
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removed at higher levels of processing.

Lynch [94] presented a range image enhancement technique for range data
acquired by systems with a shallow (nearly horizontal) line of sight. The system
of interest in this paper is a 94 GHz (3.2mm) radar which might hang from the
bottom of an aircraft. In this special case, a strong depth gradient always
exists in a range image. This gradient makes it very difficult for humans to
interpret such a range image using a typical 256-gray level display device.
Two one-dimensional high-pass filters (a normalized filter and a differenced
filter) are derived and discussed. They are applied to an example scene creat-
ing a “feature” image which is more easily interpreted by a human observer
than the original range image. - Then a Sobel edge operator is applied to the
original and the two filtered images which supposedly shows the ‘“‘quantitative”
improvement in the image quality due to the ‘‘enhancement’” processing.
Unless one has a similar application for human interpretation of range data,
these ideas are not likely to be useful since the depth map is severely distorted
by these operations.

Sugihara [140] proposes a range image feature extraction technique for
edge junctions similar to the junction features used by Waltz [151] and others
for intensity image understanding. A junction dictionary of possible 3-D edge
junctions is implemented as a directed graph data structure and can be useful
in aiding 3-D scene understanding. Unlike intensity image edges, range data
edges can be classified as convex, concave, obscuring, or obscured without addi-
tional information from surrounding image regions; junction knowledge is not
necessary for line categorization. This categorization can therefore be used to
help predict missing edges. Some junctions are only possible when two or more
bodies are in a scene; this enables junction information to be used to segment
the range image into different bodies. This paper notes that junction points
are local curvature mazima points in the depth map surface. A system is
described which uses depth-discontinuity contours (edges) and junctions for
complete scene segmentation. It is limited by the constraint that every vertex
can be connected to only three faces.

Although we will not deal with them, several papers have discussed range
image processing techniques for the detection of cylinders in range data [2] [26]
(106] [118].

We have seen that the literature of range image processing places a defin-
ite emphasis on planar region extraction, specified shape extraction, and edge
detection of both kinds, roof and jump-boundary. Planar region and specified
shape extraction and roof-edge detection are not emphasized very much in the
image processing literature.

4.86. 3-D Object Reconstruction Algorithms

In this section, some of the literature concerning three-dimensional object
reconstruction is reviewed. Although our direct concern is object recognition,
object recomstruction can involve many similar ideas. For example, one
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approach to the object recognition problem is to reconstruct as much of an
object’s surface as possible from a single view and perform matching of that
object surface with object models. We survey intensity image methods first,
followed by methods which use depth maps. We do not consider any object
reconstruction schemes based on the shape from (xxx) methods mentioned ear-
lier in this survey.

Baker [6] presents a scheme for building object models from many inten-
sity images taken from known different rotated views. One main premise is
that “effective vision requires flexible, domain-free, three-dimensional model-
ing.” The authors are in agreement with that fundamental premise. His
method tracks edge curvature irregularities using correlation techniques over a
series of rotated views and creates a wire-mesh exoskeleton (wireframe)
representation. An example of this process is shown in Figure 18. Experimen-
tal results are shown in the paper for two complex smooth surfaced objects.
The results are difficult to visualize due to the wireframe line drawings, but
they are definitely quite detailed. The author suggests a preliminary matching
process which uses the maximum breadth axis of the object and a list of the n-
th (e.g., n=6) most convex and concave points (points of high surface curva-
ture). His algorithm successfully matched two descriptions of the same object
which were analyzed in two different orientations. The main ideas of this
paper are much more general than those expressed in many of the earlier
papers.

Bocquet and Tichkiewitch [19] have an expert system approach to the
object reconstruction problem. Their system accepts input in the form of
mechanical drawings done from three orthogonal views. The drawings are digi-
tized, and line and arc segments are given internal representations. The list of
segments is then structured into a 2-D relational database which keeps track of
all closed contours. A set of production rules (the knowledge base) are used to
infer 3-D surfaces from the 2-D data. The hypothetical surfaces generated for
one view are projected into the next view so that the corresponding 2-D seg-
ments can be checked. The system can then make adjustments and continue,
or it can backtrack. When a surface representation for the object is obtained
which is compatible with the given views, the representation is drawn from
various viewpoints as the system output. Figure 19 contains several diagrams
which graphically describe the overall structure of the system. Input drawings
and very good results are shown for one machined part. When no production
rules apply, the system requests the operator for a new one. If rules have been
found for all segments of a contour, but no surface is generated, the system
explains the problem and allows rules to be changed or added by the human
operator. Presumably, a fairly robust system will result after many objects
have been successfully reconstructed. This system could posstbly be generalized
to work from high quality edge maps rather than drawings. Much more object
detail is potentially available from this approach than those which construct
volume descriptions from multiple silhouette boundaries (see, for example, Mar-
tin and Aggarwal [96]).
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The previous paper was preceded by the work of Lafue [85]. He also
wrote a program for interpreting orthographic view drawings as 3-D objects.
Heuristics are used to resolve ambiguities resulting during the aggregation of
points, edges, and faces into polyhedra. Instead of an expert systems approach,
Lafue used a mini theorem prover to choose the right geometry for each set of
local alternatives. This program was also written to interact with the user to
get help when it was needed.

Shapira and Freeman [134] describe a procedure for reconstructing objects
bounded by planar or quadric surfaces from a set of photographs of a scene
taken from different viewpoints. Line and junction labelings of the type used
by Waltz [151] and others are used to extract model surface descriptions of
objects. Vertices must be formed by exactly three edges. No object shape res-
trictions are used and the method is designed to handle a limited amount of
imperfections in the line-junction feature data. Experimental results are shown
for one high contrast scene with several simple objects; the results look reason-
able.

Abe, Itho, and Tsuji [1] proposed a system to build 3-D qualitative object
models of objects with cylinder-like bodies given several 2-D intensity image
views and verbal explanations of object structure. Their system mainly con-
sists of a language interpreter, an image-to-language communications subsys-
tem, and a model generator. It also includes an image processing subsystem
and question generator for interacting with the human operator. Figure 20
shows a block diagram of the system organization. The image inputs for each
view and the language input are processed and stored in separate internal
frame representations. These frame representations are matched for each view
to generate a consistent labeling. Different views of an object are constrained
by language input and combined using a graph matching process to create a 3-

InPUT QUESTION EXPLANATION
FICURE L sl
QUESTION ~ locc Parser
CENERATION LAHGUAGE
PICTURE PART INTERPRETER
PROCESSING 1T
P““izf" IMAGE-LAuchcE ,
COMMUNICATION N
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3-0 HODEL
o~
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Figure 20. System Organization (from [1])
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D model. This paper is preliminary and does not present any real results; the
authors state that they had many difficulties during their experiments. The
work is an attempt to generalize methods for learning 2-D object shape which
they had previously developed. The concepts are interesting, but the authors
present no justification that the method will necessarily even work.

Herman et al. [65] [66] have implemented the 3-D MOSAIC scene under-
standing system. This system can incrementally derive a 3-D description of a
complex urban scene from multiple intensity image stereo views and task-
specific knowledge. A partial 3-D wireframe description is derived from each
stereo view. Figure 21 shows an example of such a wireframe description. The
wireframe descriptions from different directions are aligned and then processed
sequentially. Close parallel edge segments are combined into single edges.
Each vertex is assumed to correspond to a corner of an object; therefore, adja-
cent corner edges correspond to a corner of a planar face. Compatible corners
of faces are merged into complete faces. Faces which are probably flat roofs
are converted into buildings by adding more faces between the roof and the
ground. A complete set of similar kinds of rules are applied to the sequence of
images as the processing continues. Some of these rules are shown in Figure
22. Finally, a complete scene description is generated which is rendered as a
gray scale image. This technique can work well for particular domains with
predominantly block shapes. In this case, all objects are assumed block-
shaped, all surfaces are assumed horizontal or vertical, all parallelograms are
considered as rectangles unless there is evidence to the contrary, and even the
ground plane is assumed known. Unfortunately, there seems to be little gen-
eral purpose theory available from such an approach.

We have overlooked all techniques which obtain object structure explicitly
from the motion associated with corresponding image sequences as these are

Figure 21. Perspective View of 3D Wire Frames ({from [66])
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Figure 22. Obtaining Surface-Based Description from Wire Frames (from [686])

shape for motion techniques. This completes the survey of intensity image
based object reconstruction papers. Next we discuss methods based on range
data.

Vemuri and Aggarwal [149] have implemented an algorithm for “‘recon-
structing”” 3-D “objects” using range data from a single view. The algorithm
proceeds as follows:

(1) The range image is partitioned into overlapping KxK window neighbor-
hoods. The overlap is two pixels.

(2) For each neighborhood, the standard deviation of the Euclidean distance
between the range points in the KxK window is computed. If this is less
than a preset threshold, a tension spline tensor product surface patch is
fitted to the window. If not, the window is discarded.

(3) The principal surface curvatures (minimum and maximum) are computed
at each point in the remaining patches. If the magnitude of either curva-
ture value exceeds another preset threshold, the point is labeled as an edge
pixel.

In this way, the depth map is approximated by a set of continuous surface

patches, and the edges within those patches are determined. This surface

patch model is then passed through a graphics algorithm with a light source
model to obtain a shaded image. Experimental results for one synthetic and
one real range image are displayed in the paper. Figure 23 shows the synthetic
range image results for a car shape. The algorithm’s results consist of a shaded
image and an edge map. The authors fail to point out that the shaded image
could have been generated directly from the depth map itself without any
intermediate surface-fitting. No 3-D object reconstruction appears to have
been done in this work; a set of surface patches has been fitted to data. They
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Figure 23. Surface Reconstruction; Jump Boundaries and Internal Edges (from [149])

do mention their intention to merge surface patches with similar properties
into regions and form a region adjacency graph for recognition purposes. It is
interesting to note the use of principal surface curvatures for edge detection.

Potmesil [117] [118] describes a method to generate models of solid objects
by matching 3-D surface segments which are obtained using a white-light grid-
projecting triangulation-based range finder. First, depth maps are obtained
from a sufficient number of views to determine object shape and to allow suffi-
cient size surface regions to be imaged in at least two views. The range data
for an object is fit with a sheet of parametric bicubic surface patches. The rec-
tangular patches are recursively merged (four at a time) into a quadtree
hierarchical structure so that each projected surface is represented by a tree of
surfaces where the root node is very coarse and other nodes become increas-
ingly more detailed as one moves down the tree. The bottom of the tree con-
tains the original patches. The surface information in this structure is queried
via ray casting techniques so that the particular surface representation details
can be modified at any time leaving the rest of the system intact. This is an
important idea for a flexible system. Surface matching is defined as ‘‘finding a
spatial registration of two surface descriptions that maximizes their shape simi-
larities.” Given a particular surface in one coordinate system and a set of sur-
faces, each in their own coordinate system, the algorithm computes the regis-
tration transformation to the appropriate other surface which provides the best
surface segment match. Evaluation points on surfaces are used to compute (1)
positional differences, (2) orientation differences, and (3) curvature differences.
The evaluation points are selected at each level in the quadtree representation
at surface control points or at points of mazimum curvature. A heuristic
search algorithm is used to control generation of registration transformations.
The initial guess corresponds to the alignment of surface normals at the top of
the quadtree. When sufficiently good segment matches are found, a merging
algorithm generates a new surface for each matched surface segment. A com-
plete object model is created by sequentially matching and merging segments.
Experimental results of this technique for a balsa car model are shown in
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Figures 24 and 25. 36 gray-scale images of grids from 6 views are generated
which results in 18 3-D surface segments. These are matched and merged into
6 depth map surfaces corresponding to 6 physically different viewpoints shown
in Figure 24. Then these 6 surfaces are matched and merged into one complete
object model, and four views from arbitrary directions are displayed in Figure
25; the reconstruction results look quite good. It would seem to be a trivial
step to generalize this approach for object recognition since surface matching is
already implemented, but this was only suggested by the paper as a potential
use of the surface matching approach. This paper is the summary of a Ph.D.
thesis [119]. - :

Dane and Bajcsy [37] present an object-centered 3-D model builder which
utilizes 3-D surface point information obtained from many views. In the first
stage of analysis, points for each view are grouped according to the following
directly observed properties of the data: (1) number of data points in a local
area, (2) average and deviation of depth values, (3) average and deviation of X
component of normal, and (4) average and deviation of Y component of
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Figure 24. 18 Surface Segments merged into 8 New Segments (from [117])
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Figure 25. Four Views of Surface Segments Matched into One Model (from [117])

normal; and the following derived properties of the data: (a) local curvature in
a X-Z plane, (b) local curvature in a Y-Z plane, (c) surface orientation con-
tinuity, and (d) surface depth discontinuity. It is not stated in this paper how
these derived properties are computed or how the properties directly affect the
grouping process. In any case, the points are grouped using these concepts and
either a planar or a quadric surface primitive is fitted using a least squares
technique. The second stage of analysis determines edges and corners which
are stored in an edge graph structure. The view analysis is followed by view
integration where surface primitives are transformed using known transforma-
tions into a common global coordinate system, identical surfaces are identified,
and surface parameters are modified for overall object compatibility. The
resulting object description is standardized by placing the origin at the center
of gravity of the object and aligning the x,y,z directions with the principal axes
of the object. The algorithm was tested with nine objects and only made one
error. 36 views were used to define the object although not all points in all
views were used in every case. Data acquisition is not described as the 3-D
data points are assumed available from another existing object model. This
paper is the summary of a Ph.D. thesis [38].

We note here that the work of Henderson [62][63] mentioned previously
describes a technique to automatically reconstruct a polyhedral model of an
object from points obtained from several views.
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Faugeras et al. [47], Boissonnat [20], and Boissonnat and Faugeras [21] all
describe an efficient (O(NlogN)) way of building a polyhedral approximation of
3-D points obtained from a triangulation laser range finder. The 3-D algorithm
is presented as a generalization of the triangularization algorithm for a 2-D
polygon. The basic approach is a graph-guided divide-and-conquer procedure.

(1) A planar graph G=(V,A) is constructed using the given 3-D points where
arcs connect nearest neighbors.

(2) Three non-neighboring points P, Q, R are selected for initialization.

(3) The shortest most planar cycle within these points is found and labeled
PQR. This divides graph G into two disconnected subgraphs and the sur-
face of the object into two surfaces.

(4) For each subgraph, the point most distant from the plane PQR is found.
The resulting hexahedron is now a first order approximation to the object
surface.

(5) Subgraphs for each triangular face are determined and the previous step is
applied recursively until all points are exhausted.

This processing is slightly modified to insure that bad edges do not remain in
the approximating polyhedron as the algorithm proceeds. Good results for
fairly complicated objects are shown in Figure 26. The input and output for
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Figure 26. Objects Reconstructed from Point Information (from [20])
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this approach are very similar to the approach in Henderson [62] although the
processing algorithms are different.

Little [93] has discovered a method to reconstruct comvex polyhedral
obje¢t models from their corresponding Extended Gaussian Images (EGI).
Given a uniformly spaced grid map of surface normals of a depth map, we can
divide up the spherical solid angle into bins and then form an orientation histo-
gram by computing the number of grid points which have normal vectors that
fall into each bin. This orientation histogram is referred to as a discrete EGL
It can be shown that the continuous analog of this discrete EGI uniquely deter-
mines a convex polyhedron via a non-constructive proof [101]. Little has posed
the object reconstruction problem as a iterative constrained minimization prob-
lem and solved it. His results answer what was previously an open question
concerning the inversion of EGI's which is certainly of mathematical interest.
Unfortunately, the class of convex polyhedral objects is so small compared to
the class of objects of general interest that these reconstruction results are not
directly useful for general purpose object reconstruction.

This concludes the review of object reconstruction using range data. We
have seen that the range data methods are somewhat more quantitative than
the intensity data methods. This is expected considering that reasoning and
inference are extremely important to intensity image 3-D understanding due to
the lack of explicit range information.

4.7. 3-D Surface Characterization

In this section, the existing literature concerning three-dimensional surface
characterization is reviewed. We use the term surface characteristic to denote
a descriptive quantitative feature which can be computed from a surface, but
which need not retain enough information for surface reconstruction from the
description. Surface characterization is an important topic which does not
seem to have attracted much attention. The quality of features used to iden-
tify surfaces will be critical to the performance of object recognition systems
using range data. v

Nackman [104] discusses surface description using two-dimensional critical
point configuration graphs (CPCG). Non-degenerate critical points of surfaces
are local maxima, local minima, or saddle points. Most surfaces have the pro-
perty that the critical points of the surface are isolated. Surfaces which do not
have this property can be very closely approximated by ones that do. By iden-
tifying all the critical points of a surface as the nodes of a graph and their con-
necting ridge and course lines as the arcs of a graph, a surface can be charac-
terized by this graph known as the critical point configuration graph. Slope
districts are bounded by graph cycles. Several theorems relating to these
graphs are proved:

(1) Only eight types of critical points are possible: peaks (local maxima), pits
(local minima), and six types of passes (saddle points).
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(2) Only four types of slope districts are possible.

Hence, surfaces have a well-defined characterization as the union of a very
small finite set of slope district types. Figure 27 shows equivalent and non-
equivalent critical point configuration graphs. Figure 28 shows the catalog of
the four distinct types of slope districts which are not equivalent and an exam-
ple of a slope district with one pass. This characterization is a generalization
of the techniques used to describe one-dimensional functions f(x). In that
domain, only two types of non-degenerate critical points exist: local maxima
and local minima. These points are distinguished based on the sign of the
second derivative at the point. Between these critical points are intervals of
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constant sign of the first derivative. Slope districts are generalizations of these
intervals for surfaces. The paper also mentions the use of curvature districts
determined by the sign of the mean and Gaussian curvature of a surface for
surface characterization. Surface curvature generalizes the notion of the 1-D
second derivative.

Lin and Perry [91] have investigated surface shape description using sur-
face triangularization. Differential geometry based shape measures can be very
useful if they can be computed from sensor data. When a surface is decom-
posed into a network of triangles, many features can be easily computed.
Discrete coordinate-free formulas for surface area, Gaussian curvature, aspect
ratio, volume, and the Euler-Poincare characteristic are given in this paper.
The formula for Gaussian curvature is significant in that estimates of second
partial derivatives are not needed and it is independent of coordinate system
reflecting the invariant properties of the Gaussian curvature. Integral Gaus-
sian curvature, integral mean curvature, surface area, volume, surface area to
volume ratio, integral curvature to the n-th power, and genus, or handle
number, are all mentioned as scalar values which characterize the shape of a
surface. No experimental results of any sort are given in the paper. Integral
curvature features for solder joint description in gray scale images have been
used with some success [14].

Sethi and Jayaramamurthy [133] have investigated surface classification
using characteristic contours. Surface input is a needle map of surface nor-
mals. A characteristic contour is defined as the set of points in the needle map
where surface normals are at a constant inclination to a reference vector. The
following observations are made concerning these contours:

(1) The characteristic contours of spherical/ellipsoidal surfaces are concentric
circles/ellipses.

(2) The characteristic contours of cylindrical surfaces are parallel lines.
(3) The characteristic contours of conical surfaces are intersecting lines.

These contours are computed for all normals within a 12x12 scanning window.
The identity of the underlying surface for each window is computed using the
Hough transform on the contours. A consistency criterion is used to fight noise
effects and multiple surface types within a given window. Experimental results
are discussed for synthetic 40x40 needle maps of adjacent cones and cylinders.
The algorithm correctly classifies these simple shapes on man-made data. This
approach does not appear to be useful for general purpose surface characteriza-
tion.

Laffey, Haralick, and Watson [84] [60] discuss topographic classification of
digital surfaces. They review seven previous papers on the subject by various
authors, and their ten topographic labels are a superset of all labels used in the
previous papers: peak, pit, ridge, ravine (valley), saddle, flat (planar), slope,
convex hill, concave hill, and saddle hill. At each pixel in an image, a local
facet-model two-dimensional cubic polynomial fit is done to estimate the first
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and second partial derivatives of the surface at that pixel. Once the derivatives
have been estimated, the magnitude of the gradient vector, the eigenvalues of
the 2x2 Hessian matrix, and the directional derivatives in the direction of the
Hessian matrix eigenvectors are computed. These five scalar values are used to
do a table lookup on the pixel classification. The table is shown in Figure 29.
The asterisk (*) means the appropriate value does not matter. This pixel by
pixel classification could be used to form groups of pixels of a particular type.
No experimental results are given in the paper; only their future research direc-
tions were outlined. This work is proposed for use with intensity image gray
level surfaces, not with depth maps.

There is one recent paper that we would like to discuss which deals with
curve characterization rather than surface characterization. Marimont [95]
presents a representation for image curves and an algorithm for its computa-
tion. His representation ‘‘is designed to facilitate matching of image curves
with model plane curves and the estimation of their orientation in space
despite the presence of noise, variable resolution, or partial occlusion.” This
multiple scale representation is curvature-based. First, a list of scales is deter-
mined. For each scale, the points, or knots, which are the zeros and the
extrema of curvature, are stored in a knot list with a tangent direction and a
curvature value for each knot. These knots have the following nice properties:

(1) The zeros of curvature of a 3-D plane curve always project to the zeros of
curvature of the corresponding 2-D image curve.
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(2) The sign of the curvature value at each point does not change within an
entire hemisphere of viewing solid angle. Therefore, the pattern of sign
changes along a curve is invariant under projection except in the degen-
erate case when the viewing point lies in the plane of the curve.

(3) Curvature is a local property which makes it much more suitable for han-
dling occlusion than global curve properties.

(4) Points of maximum curvature of 3-D plane curves project very close to
points of maximum curvature of 2-D image curves. The relationship
between these points is stable and predictable depending upon viewpoint.
Moreover, the relative invariance of these points increases as the curvature
increases such that ideal corners almost always project to ideal corners.

This provides sufficient motivation for the use of such a representation. The
stability of these curvature critical points under orthographic projection is
shown in Figure 30. The processing algorithm can be outlined as follows:

(1) The image curve data is smoothed at multiple scales by gaussian filters
and fitted at each scale with a continuous curve parameterization in the
form of composite monotone curvature splines.

(2) Curvature critical points are extracted at each scale and stored in a list.

Critical Points
J: max k
A: mink, k#0
+: k=0

The stability of critical points under orthographic projection. Left. the eritical points of a piane curve. On the right, the
curve is projected orthographically at various orientations aud the critical points of the resulting curves are marked. The stability
of their critical points aids in matching the curves to modeils and estimating their orientation.

Figure 30. Stability of Curvature Critical Points from Different Views (from [95])
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(3) Dynamic programming procedures are used to construct a list of critical
points which is consistent across the range of scales.

(4) The integrated critical point information is used to match the image curve
against the computed critical point information for the 3-D plane curve.

Several example curves are shown in the paper which aid understanding of the
approach. Some are shown in Figure 30. No experimental results for matching
were available at the time of publication; future research directions were out-
lined.

Langridge [86] discusses a preliminary investigation into the problem of
detecting and locating discontinuities in the first derivatives of surfaces deter-
mined by arbitrarily spaced data. Neighbor computations, smoothing, qua-
dratic variation, and the biharmonic equation are all dealt with in this paper.
The techniques are useful for detecting roof-edges in range data. Results are
shown for two simple synthetic surfaces.

Medioni and Nevatia [99] have written a paper on the description of 3-D
range data surfaces using curvature properties. The features used for shape
description are the following: (1) the zero-crossings of the Gaussian curvature,
(2) the zero-crossings of the maximum principal curvature, and (3) the maxima
of the maximum principal curvature. These features are computed by smooth-
ing the depth map with a large window and using one-dimensional windows to
compute directional derivatives. They seem to be limiting themselves to the
use of generalized cone object model surfaces judging from this paper. Their
work is in a beginning stage judging from the experimental results shown in
the paper, and it appears to be directed towards object reconstruction rather
than object recognition.

Besl and Jain [13] have implemented a surface characterization algorithm
which computes surface curvature, critical points, and depth-discontinuity
edges as output. Differential geometry tells us that local surface shape is
uniquely determined by the first and second fundamental forms [92]. Gaussian
and mean curvature combine these first and second fundamental forms (in two
different ways) to obtain scalar surface features which invariant to rotations,
translation, and changes in parameterization. Therefore, visible surfaces in
depth maps will have the same mean and Gaussian curvature from any
viewpoint. The two principal curvatures of a surface can be directly computed
from Gaussian and mean curvature and vice versa. It turns out that are six
fundamental surface types which can be characterized using only the sign of
the mean curvature (H) and Gaussian curvature (K):

(1) H zero + K zero = plane surface,

(2) H negative + K zero = ridge surface,

(3) H positive + K zero = valley surface,

(4) H negative + K positive = peaked surface,

(5) H positive + K positive = cupped surface, and
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(6) K negative = saddle surface.

Gaussian and mean curvature can be computed directly from a smoothed
depth map using window operators which give least squares estimates of first
and second partial derivatives [12] [23] [59]. Examples of the output of the sur-
face characterization algorithm are shown in Figures 31 and 32 for a torus and
an arbitrary surface respectively. These figures show the smoothed depth map,
the first derivatives, the square root of the first fundamental form matrix
determinant (edge map), the second derivatives, the quadratic variation, the
sign (positive=white, negative=black, zero=gray) and magnitude of the
Gaussian curvature and mean curvature, the zero-crossings of the first deriva-
tives, the set of all critical points binary image, the magnitude of the second
fundamental form matrix determinant, and the set of all non-degenerate criti-
cal points binary image. 5x5 window operators were used for derivative esti-
mation. The combination of these images provides a great deal of surface
information which can be used to identify surfaces.

4.8. 3-D Object Recognition using Intensity Images

In this section, the existing literature about three-dimensional object
recognition systems using intensity images as input will be reviewed. We
devote the first part of this section to the ACRONYM vision system; other
systems are discussed subsequently.

Brooks [30] [31] [32] explains how model-based three-dimensional interpre-
tations of two-dimensional images are possible using the ACRONYM system.
This system is one of the most frequently mentioned vision systems in the com-
puter vision literature. This is probably due to the flexibility and modularity
in its design, its use of view-independent volumetric object models, and its
domain-independent qualities. Figure 33 shows a block diagram of the ACRO-
NYM system and a diagram of the hierarchical geometric reasoning processing.
The system is based on the prediction-hypothesis-verification paradigm. The
three main data structures of the system are the following:

(1) Object Graph: The nodes of the object graph are generalized cone volume
models. The arcs of the object graph correspond to the spatial relation-
ships between the nodes (translation and rotation) and the subpart rela-
tions.

(2) Restriction Graph: The nodes of the restriction graph are constraints on
the volume models for a given object class. The directed arcs of the res-
triction graph represent subclass inclusions.

(3) Prediction Graph: The nodes of the prediction graph are “invariant’’ and
quasi-invariant observable image features of the objects. The arcs of the
prediction graph specify the image relationships between the invariant
features. These arcs are of the following types: must-be, should-be, and
exclusive.

Also, each data object of the system is referred to as a unst. Units have slots
associated with them. For example, a cylinder has a length slot and a radius
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e

Figure 32. Surface Characterisation of Depth Map of Surface (from [13])
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Figure 33. The ACRONYM System (from [32])

slot. Slots accept numeric fillers or quantifier expressions.

The ACRONYM system operates approximately as follows:

(1) An a priori world model is given to the system as a set of objects and
object classes. An object class is represented as an object with constraints
on the dimensions and configurations of the subparts. Each object or
object class is a hierarchy of generalized cones, each with its own local
coordinate system. An object graph, a restriction graph, and a prediction
graph are formed based on knowledge of the world model and a set of pro-
duction rules.
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(2) The system is given an N x N intensity image, a camera model, and the
three graph data structures created above.

(3) The image is processed in two steps. First, an edge operator is applied to
the image. Second, an edge linker is applied to the output of the edge
operator and is directed to look for ribbons and ellipses. Ribbons and
ellipses are the 2-D image projections of the elongated bodies and the ends
of the generalized cylinder models respectively. All of the higher level 3-D
geometric reasoning in ACRONYM is then done based entirely on the 2-D
ribbon and ellipse input.

(4) ACRONYM then searches for instances of object models in terms of the
ribbons and ellipses. The heart of the system is a non-linear constraint
manipulation system (CMS) that generalizes the linear SUP-INF methods
of Presburger arithmetic [17] [136]. Constraint implications are pro-
pagated “downward” during prediction and ‘“upward’”’ during interpreta-
tion. The interpretation matching process is described by Brooks as fol-
lows:

“Matching does not proceed by comparing image feature measure-
ments with predictions for those measurements. Rather the measure-
ments are used to put constraints on parameters of the three-
dimensional models, of which the objects in the world are
hypothesized to be instances. Only if constraints are consistent with
what is already known of the model in three dimensions, then these
local matches are retained for later interpretation.” [31]

Interpretation proceeds by the combination of local matches of ribbons
into clusters. Two consistency checks are performed on the ribbon clus-
ters: (a) each match must satisfy constraints of the prediction graph, (b)
the accumulated matching constraints must be consistent with the
hypothesized object model.

(5) The final output of the system is the labeled ribbons of the consistent
image interpretation. Since orientation and translation constraints have
also been propagated during matching, this information should also be
available for the labeled ribbons. In this way, objects and- instances of
object classes are recognized in a single view intensity image.

Some miscellaneous details of the system are mentioned in [30]. The system is
implemented in MACLISP. The predictor subsystem of ACRONYM consists
of about 280 production rules. During a typical prediction phase, on the order
of 6000 rule firings occur. Rotations and translations operations are treated as
strings of matrix operators where the string length is typically ten or more.

Despite the detailed 3-D concerns in the ACRONYM design, no correct 3-
D interpretation results have ever been published to our knowledge. Aerial
images of jets on runways and jets near airport terminals have been success-
fully interpreted using ACRONYM. It seems that there are other much less
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complicated schemes that could yield the same results on aerial images of this
type. Binford once wrote that

“there is no profound reason why ACRONYM could not recognize aircraft
in images taken at ground level, although it will probably break when
tested on such images because of bugs or missing capabilities that were not
exercised previously.” (18]

The curious reader is left wondering if this complicated system is as robust as
it might seem. The ribbon finding mechanism is usually blamed for the
system’s difficulties. There are no processing connections between the final
decision making mechanism and the original data.

The paragraph above provides a reminder that any open-loop system is
only as robust as its most limited component. Even the best possible geometric
reasoning system cannot be successful if its input is consistently unreliable and
no feedback paths exist. This could possibly be provided by rendering algo-
rithms that relate object models to sensor data.

Of course, there have been many other 3-D object recognition schemes
based on intensity images. Mulgaonkar, Shapiro, and Haralick {103] have dev-
ised a 3-D scene analysis system that recognizes 3-D objects from a single per-
spective view using geometric and relational reasoning. Generalized blobs
(sticks, plate, and blobs) are used to represent the 3-D geometry of objects.
Object recognition algorithms work with intensity images that have already
been smoothed, thresholded, and segmented to produce a 2-D convex polygon
decomposition of image regions. The system can only handle one object in a
given view currently. The system performs 2-D image to 3-D object matching
directly using constraint propagation and backtracking. All objects are
assumed to be in an upright position. The ‘‘connect/support’” and “triples”
relations between 3-D and 2-D primitives plays a fundamental role in the
recognition process. Thresholds are employed for measures of circularity and
relational error. Seventeen out of twenty-two cases (77%) exhibited successful
recognition in the experimental results that used eleven different objects.
Camera parameters were estimated from the match to within ten degrees on
tilt and twenty degrees on pan. The use of structural relationships is an
important feature of this work. One main problem with this method is the
object representation method. Detailed geometry is not easily represented and
would therefore not be very useful for many applications.

Fisher [49] discusses his data-driven object recognition program called
IMAGINE. Surfaces are used as geometric primitives. There are three major
stages in the operation of this program:

(1) Image surface regions determined by their region boundary are matched to
model object surfaces with the goal to estimate surface orientation param-
eters. Specific object surfaces are hypothesized.
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(2) Hypothesized object surfaces are related to object models constrained by
the structural relationships implied by the objects. Specific objects are
hypothesized.

(3) Hypothesized objects are verified using consistency checks against con-
straints due to adjacency and ordering.

The program has four specific goals:
(1) Locate instances of 3-D objects in 2-D images.

(2) Locate image features corresponding to all features of the model OR
explain why the image features are not present.

(3) Verify that all features are consistent with the geometrical and topological
predictions of the model.

(4) Extract translation and rotation parameters associated with all objects in
the scene.

The input to this program is pre-segmented surface regions which have the
property that all boundaries between regions correspond to surface or shape
discontinuities. The only information used by IMAGINE is the 2-D boundary
shape of the segmented surface regions. The object models of the program are
surface boundary models where all surfaces are planar or have only a single
axis of curvature. Sub-component hierarchies for objects are allowed which
determine the joint connections of sub-parts. Model surface to image region
matching is performed using a set of heuristics that generate rotation, slant
and tilt, distance, and x-y translation in a plane hypotheses. These heuristics
gave reasonable results in 94 of 100 test cases. Given the hypothesized surfaces
and their position and orientation in space, a set of ten rules is applied to gen-
erate object model hypotheses. Another set of rules is applied for object verifi-
cation that allows for occlusion. Fisher provides his own list of program criti-
cisms which include the following:

(1) The heuristic parameter estimation techniques require mostly planar sur-
faces.

(2) The program'’s surface modeling does not account for surface shape inter-
nal to the region boundary.

(3) Surface segmentation is currently done by hand with the assumption that
adequate techniques will soon be available.

(4) Its object models are non-generic.

The program did however achieve its goals of recognizing and locating a
PUMA robot and ‘“understanding’’ its 3-D structure in a test image. Some
valuable ideas concerning occlusion were also presented in the paper.

General convex polyhedra are a special object class. Underwood and
Coates [148] developed a technique that reconstructs object shape from multi-
ple view intensity images. Edges and planar surface regions extracted from the
images are input to the reconstruction algorithm which constructs internal
models. No information about viewing parameters for the different views is
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given. The internal object model used by the algorithm is topological and con-
siders only relationships between surfaces. Different view models are matched
and a complete topological object model is constructed using a graphical learn-
ing tree. These object models can then be used for object recognition. Experi-
mental results for 20 test views matched against an object library of 19 objects
yielded an 18 of 20 success rate. Extensions to more general objects are sug-
gested in the paper. The limitations of the implementation are mainly due to
incomplete use of spatial information.

Lee and Fu [87] [88] propose a design for a general computer vision system
that would be capable of object recognition in a single image. The system
design and system flow chart are shown in Figure 34. They are interested in
creating a system that allows for the proper interaction of top-down (model-
guided) analysis and bottom-up (data-driven) analysis. The proposed system
consists of the following six components:

(1) General Purpose Primitive and Relation Extractor which uses no higher
level knowledge: Input = Input Image + Requests for More Evidence from
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Figure 34. Design of Vision System and Flow Chart (from [87])
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Grouping Processor (2), Output = Extracted Primitive and Relation
Information for (2);

(2) Primitive and Relation Organizer for Grouping Process: Input = Output
from (1) + Requests for Reorganization from the Cognitive Interpreter (4),
Output = Organized Set of Primitives and Relations;

(3) Associative Memory Network with Knowledge of World Model Objects:
Input = Output from (2), Output = Candidate Object Models Compati-
ble with Input Primitives and Relations;

(4) Cognitive Interpreter: Input = Output from (1) + Replies from (2) +
Object Models from (3) + Object Evaluations from Cognitive Description
Generator (5), Output = Object Models to be Verified for (5) + Requests
for Reorganization for (2) + Final Output Image Description for System
User when decision-making processing terminates;

(5) Cognitive Description Generator: Input = Object Models to be Verified
from (4) + Results of Verification Search from Special Purpose Image Pro-
cessor (6); Output = Request for Finding a Particular Primitive or Rela-
tion for (6) + Evaluation of an Object Model for (4);

(6) Special Purpose Primitive and Relation Finder: Input = Input Image +
Requests from (5) Output = Results from Verification Searches.

Note the verification feedback from the original image and the multi-level
control-logic interactivity of the different components in this design. The pro-
cessing can be considered as three basic processes: object description genera-
tion, model retrieval, model verification. The two papers by Lee and Fu con-
centrate on object description generation which is now briefly described. First,
images are converted to the Gray Level Geographic Structure (GLGS)
representation. Target regions are selected corresponding to the maximum of
the “conspicuousness’” function. Extracted edges in target regions are classified
as one of the following: 1) parallelogram, 2) ellipse, 3) skewed-symmetric arc, or
4) corner. Regularity constraints are then applied.

(1) Parallelograms are always projections of rectangles.
(2) Ellipses are always projections of circles.

(3) Skewed-symmetric arcs are always projections of a symmetric planar
curve.

(4) Corners are always intersections of orthogonal line segments.

These regularity constraints and the so-called ‘‘least-slant-angle” preference
rule are used to compute 3-D surface orientations of the selected target regions.
Local interpretations of regions are propagated to neighboring regions stored in
the edge-region adjacency graph. Constraints and consistency checks interact
to yield an rough object description in terms of visible surface orientations.
Experimental results are shown for a car and a machine shop tool. The final
output is a line drawing where each surface is drawn with a slant and tilt vec-
tor for its normal. These results looks fairly good for these two objects. This
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system is extremely limited due to its use of only four geometric primitive
extracted edges and its use of the right angle assumption throughout. It also
cannot handle curved surfaces in consistent manner. The general preliminary
thought has been followed by a non-general implementation.

Chakravarty and Freeman [35] have developed a technique that uses
characteristic views as a basis for three-dimensional object recognition using
intensity image data. The set of all possible perspective projection views of an
object is partitioned into a much smaller set of characteristic views which form
topological equivalence classes. Different views within an equivalence class can
be obtained from one another using linear transformations. The number of
characteristic views is reduced still further by allowing objects to have only
stable orientations as positioned on a planar surface. Matching is performed
using line-junction labeling constraints on detected edges. The method requires
silhouette determination to guide the matching process (this is a disadvantage
for occlusion handling), and it produces position and orientation information as
output in addition to identifying objects. A system structure diagram is shown
in Figure 35.

Some 3-D object recognition techniques are based purely on object
silhouettes. These methods cannot distinguish between objects that have the
same set of silhouettes, of course. McKee and Aggarwal [97] have worked on
recognizing three-dimensional curved objects from a partial silhouette descrip-
tion. Three-dimensional object models are not used, however. The system
learns the global silhouette boundary description during the training process
for each view of an object and stores the description in an object-view library.
The recognition algorithm accepts a partial boundary description and produces
a list of all the objects in the library that could have produced the view. This
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Figure 35. Recognition Scheme using Characteristic Views (from [35])

57 Three-Dimensional Object Recognition



RSD-TR-19-84

work did not include view-independent processing of any sort and had prob-
lems with noisy edges.

Wallace and Wintz [150] have used global 2-D shape descriptors to recog-
nize three-dimensional aircraft shapes by matching against a stored library of
shape descriptors. One shape descriptor set is computed and compressed for
each viewing angle in a finite set that covers the entire spherical solid angle
giving the system view-independence. Given an arbitrary view of some known
aircraft, 2-D shape descriptors are computed for the silhouette and matched
against each precomputed view description in the library of shape descriptors
for each possible aircraft. Since the entire outline of an aircraft is available at
sufficient resolution in this application, global Fourier Boundary Shape descrip-
tors can be used which provide excellent results. Research still continues for a
similar technique for partial shape description and recognition.

Global silhouette shape moment-based description techniques have also
been used [42] and continue to be used [121] for aircraft shape description.
Libraries can be used for 3-D recognition in much the same way as mentioned
above.

Wang, Maggee, and Aggarwal [152] also match three-dimensional objects
using silhouettes, but their method is somewhat different. For each prototype
object, the principal axes, the principal moments, and the Fourier Boundary
Shape descriptors of the three primary silhouettes (silhouettes as viewed from
each of the three principal axes) are computed and stored in a library. (They
use 3-D models constructed using the approach developed by Martin and
Aggarwal [96], but any 3-D model reconstruction approach could be used in
practice. We note that the approach of Martin and Aggarwal can be dupli-
cated readily using commercial solid modelers (such as GEOMOD [52]); object
models are constructed by the intersection of extended silhouette profiles.) For
each unknown object, at least three silhouettes from different views are
required. These silhouette boundaries are combined to produce an object from
which the principal moments and Fourier shape descriptors are computed.
These quantities are then matched against the stored library quantities. The
convergence of the descriptors as indexed by the number of silhouettes is
dependent on the object and the viewing locations. Note that more input data
and more computation is required, but less searching is needed to identify
objects.

Bolle et al. [22] [23] [34] describe an approach to intensity-image-based
object recognition where objects are modeled as consisting of Lambertian sur-
face patches of planes, cylinders, and spheres. The assumption is that 85% of
manufactured parts are well-represented by combinations of such models [58].
This work is innovative in its use of quadric picture functions. These functions
are analytically computed quadric intensity functions that combine the primi-
tive Lambertian surface shapes with primitive point-source-at-infinity illumina-
tion model parameters. Given an intensity image, the image is partitioned into
small square windows which are fitted to quadric surfaces. Each window is
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classified as a piece of a sphere, cylinder, plane, or none of the above using an -
asymptotically Bayesian recognizer (yields minimum-probability-of-error as the
window size gets large), and the 3-D surface parameters are estimated. When
one of the surfaces is present in the image, the surface parameters for that sur-
face cluster together in the parameter space. These clusters can be detected
which infer the existence of a surface of the given type at the appropriate loca-
tion and orientation in space. Some work has been done for handling windows
with two different surface types present. Experimental results using 65x65
windows are shown for synthetic and real spheres and cylinders. Although this
approach contains many good concepts, the implementation of only a few sur-
face types is very limited and will not be very useful if 65x65 windows are
needed. Once again we have seen the use of image window quadric surface fit-
ting so that surfaces can be matched to quadric object surfaces.

Fang et al. [44] and Stockman and Esteva [139] address a constrained 3-D
object recognition problem. Although they refer to their work as 3-D, they are
technically addressing a 2-D estimation problem using 3-D techniques. They
address the problem of determining the (x,y) location and the single rotation
angle of a 3-D polyhedral object sitting stably on a flat plane using a single
view intensity image and polyhedral object models. They extract important
edges and points as primitive features from the input image. Geometric con-
straints and model matching of grouped primitives are used to determine possi-
ble translation and rotation parameters which are then accumulated in a 3-D
histogram. Histogram clusters are detected which identify a particular object
at a particular (x,y) location rotated by some particular angle. Perfect experi-
mental recognition results for five toy objects were obtained in [44]. This sort
of transformation clustering technique could possibly be useful for general 3-D
object recognition, but this is not shown in this paper. Smooth objects are cer-
tainly not handled well by this method.

Tropf and Walter [145] discuss a augmented transition network (ATN)
model for the recognition of randomly oriented 3-D solid objects with known
geometry using single images. ATN models were developed in the field of
natural language understanding and are used in this work to control an
analysis-by-synthesis search procedure that is based on hypothesis generation
and verification. The method is explained in the paper with the following
example:

(1) Assume that only point primitives (such as edge-less corners) are used, and
assume that an object is described using a set of points that are rigidly
connected to each other.

(2) A parallel projection of the points is created from an arbitrary view. You

pick a point from your projected data and hypothesize that it is a point
P1 on some particular known object from your object library.

(3) That object has a second point P2 which is a distance R from P1. In 3-D,
P2 must lie on the surface of a sphere of radius R; in the 2-D projected
image, P2 must lie within a circle of radius R. Next, you choose a second
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point within that circle if one exists. (Otherwise, try another second point
of the object. If none of those work, go on to the next object.)

(4) Now it is assumed that one knows the axis P1-P2 in 3-D space (to within
a small near-far ambiguity that can be checked). Next, we consider a
third point P3 on the object not lying on P1-P2. It must lie on some 3-D
circle surrounding the P1-P2 axis and must therefore lie on a known
ellipse in the projected image.

(5) You now pick a point in the image closest to the ellipse that will fix the
object in space. Object verification is the next step which completes the
example case.

In some respects, this is similar to the RANSAC approach [26] because it uses a
few randomly selected data points to estimate model parameters and relies on
verification for a better fit. 3-D polyhedral object models and hidden-line algo-
rithms are used by the system. The ATN itself consists of states, arcs, a dic-
tionary, named registers, actions, and conditions. It is claimed that the ATN
approach differs from block world approaches in that it can cope with heavily
distorted data. No experimental results are given as the system was being
implemented at the time the paper was written.

Douglass [39] [40] developed a system, written in SIMULA, for interpreting
outdoor 3-D scenes using a 3-D model-building approach. Heuristic visual
inference routines interpret perspective, shadows, highlights, occlusions, shad-
ing, texture gradients, and monocular motion parallax from multiple images.
The placement routine at the heart of the system forms intensity image seg-
ments into 3-D surfaces that are iteratively refined by the various parts of the
system. Image segmentation is performed using a ‘“‘recognition cone’’ and a
region growing algorithm.

Work by Goad [54], Silberberg et al.[137], and Schneier [135] is reviewed
in [43]. Goad [54] uses a multiple-view object feature model that incorporates
218 different 3-D views of each object. The features are line segments which
are stored as a pair of endpoints and a 218-bit bit-string that describes the visi-
bility of that feature in each of the discrete views. Edges for objects are
ordered by their expected utility for matching purposes. Silberberg et al. [137]
use a generalized Hough transform to match observed line segments with model
line segments for each viewpoint. Schneier [135] uses a ‘“‘graph of models”
where each node represents a 3-D surface primitive and contains a set of pro-
perties which describe that surface shape and a set of pointers to the model
names in which the surface is used. The arcs between the nodes describe rela-
tionships between surfaces and contain pointers to the model names where
those relationships occur. The integration of multiple objects into a single
shared data structure provides a compact representation that can be easily
indexed.

We conclude this section on an historical note. The pioneering work of
Roberts [125] was a 3-D intensity image based object recognition system. The
objects were constrained to be blocks, wedges, prisms, or combinations thereof.
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The Roberts’ cross operator was used to detect edges, and collinear segments
were merged into lines to produce a line drawing of the scene. Regions were
then classified to be triangles, quadrilaterals, and hexagons. These regions
were matched to faces of the prototypes objects. Possible object part model
matches were rendered using a hidden-line algorithm to verify the correct
object match! Recognized object parts were cut away from the image, and the
same process was repeated until all detected edges and vertices were explained.
After identifying an object, the system could draw the object from any view to
demonstrate its understanding of the object shape. This work was followed by
the more advanced work of Guzman [57], Waltz [151], and others which con-
centrated on line-edge and edge-junction labeling for detecting polygonal
regions. This early work addressed many of the fundamental problems encoun-
tered in computer vision but was essentially limited to high quality images of
block world scenes. The algorithms were not robust enough to handle scenes
from the real world with noise, curved objects, etc.

4.9. 3-D Object Recognition using Depth Maps

In this final section of the literature review, the existing literature concern-
ing three-dimensional object recognition using depth maps is reviewed. It is
our opinion that this research area has a great deal of potential for many appli-
cations.

Nevatia and Binford [105] is probably the first paper published concerning
object recognition in range data. The emphasis in this paper is on the analysis
of scenes containing curved objects, which are represented as sub-part hierar-
chies of generalized cones (cylinders). The data-driven recognition processing
of this approach can be summarized as follows:

(1) Range image edge and region features are extracted and organized to
create image object descriptions which are structured and symbolic.

(2) Important features of these object descriptions are used to index into a
library of object models to retrieve a set of models which are similar to
the objects in the image.

(3) The image object description is compared to each of the retrieved models
and the best match is chosen.

(4) Verification is performed to see if the differences in the best retrieved
object model and the image object description are reasonable. (This step
was not implemented.)

Experimental results are discussed for a doll, a horse model, a glove, a ring,
and a snake-like object. Objects with different structure were easily dis-
tinguished and even moderate amounts of occlusion were handled successfully.
This work does not seem to have directly evolved into any more recent range
data systems.

Kuan and Drazovich [83] have developed a system which attempts to
extend the principles of the ACRONYM approach to range imagery. They use
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generalized cylinder object models with model priorities and subpart attach-
ment relations to yield multi-level coarse-to-fine object descriptions. They use
a model-driven prediction module which predicts the following features at dif-
ferent levels to enable coarse-to-fine multi-level interpretation:

(1) Object Level: These features include spatial relationships among object
components, overall dimensions, extreme points, side view characteristics,
and occlusion relationships among object components.

(2) Cylinder Level: This level is the most important level because cylinders
are the basic symbolic entity of the object description. These features
include cylinder contour, cylinder position and orientation, parallel edge
relationships, edge types, cylinder length, extent of overlap with other
cylinders, and overall cylinder visibility and obscuration.

(3) Surface Level: These features include information as to whether the sur-
face is planar or curved, surface edge boundary information, and spatial
surface relationships.

(4) Edge Level: These features include information as to whether the edge is
occluding, convex, or concave.

These predictions give guidance to the low-level feature extraction processes
and they also provide mechanisms for feature-to-model matching and interpre-
tation. In contrast to the ACRONYM system, actual measured features are
used for matching based on maximizing likelihood rather than creating con-
straints for later constraint propagation processing. The major components of
their system are diagrammed in Figure 36. Experimental results are discussed
for one synthetic 64x64 range image of a missile launcher decoy and the two
object models shown in Figure 36. The system identified the decoy correctly in
this single test. The overall approach seems quite reasonable; it is unfortunate
that more experimental results were not discussed. The system does however
inherit the limitations of ACRONYM’s object models.

Smith and Kanade [138] discuss a program designed to produce object-
centered three-dimensional object descriptions from depth maps. Conical and
cylindrical surfaces are used as primitives. The object descriptions derived
from their bottom up approach could be used for matching and object recogni-
tion. Coherent relationships between sub-cylinders of parts are used to aid the
extraction of object surfaces. An example of this coherency is the relationship
between the handle of a pan and the main body of a pan. Experimental object
description results are shown in the paper for cups, pans, and toy shovels
which exhibit this coherency. Results for one scene are shown in Figure 37.

Gennery’s [51] main concern for object recognition was obstacle avoidance
for autonomous vehicle navigation. His algorithm can be summarized as fol-
lows: First, find the ground surface which is usually flat. Second, segment
objects above the ground by clustering all range data points more than a cer-
tain threshold distance above the ground. Next, ellipsoids are fit to these clus-
ters and then clusters are adjusted according to the ellipsoid fits. He argues
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Figure 37. Light Stripes, Contours, and Object Descriptions (from [138])

that although ellipsoids are very crude object representations, a large scene
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containing many objects is fairly well described by sets of ellipsoids for the
purposes of navigation. Experimental results are shown for a pair of stereo pic-
tures from the Viking Lander which landed on Mars.

Bhanu [15] [16] presents a complete 3-D scene analysis system for recogniz-
ing 3-D objects in depth maps. The system uses the object representation and
surface extraction method discussed by Henderson [62]. It constructs object
models from physical prototypes using multiple view depth maps. The results
for a complex curved-surface automobile part are shown. 8314 3-D object sur-
face points are obtained by transforming points from 14 individual views into a
common object centered coordinate system. These surface points are used to
fit a convex-faced polyhedron using a two step algorithm: 1) the three-point
seed algorithm is used to group all points into face regions using convexity and
narrowness tests (four threshold values needed for this), 2) the face regions are
then approximated by 3-D planar convex polygons. For the auto part, 85 flat
faces are computed to describe the curved surface part. Object recognition is
accomplished after model determination as follows. A depth map from an arbi-
trary view (same scale) is acquired using a range-finder. The object points are
segmented from the background and a polygonal face approximation of the
object surface is computed using the same technique mentioned above for
model determination. This generates approximately 10-25 faces for unknown
views of the auto part. These faces are used to perform object matching using
a relaxation-based scheme called stochastic face labeling. The face features of
area, perimeter, peround, length of maximum, minimum, and mean radius vec-
tors from the face centroid, number of vertices, and angle between maximum
and minimum radius vectors are used to compute the initial stochastic labeling
probabilities. (A feature weighting vector is also used.) In addition, a face
neighbor table is computed where neighbors are ranked according to area. An
example of a face neighbor table is shown in Figure 38. A first stage iteration
is performed which involves maximizing the first stage compatibility measure
which is defined in terms of a one-largest-area-neighbor compatibility function.
Using the labels at the end of the first iteration, a second stage iteration is
then performed which involves maximizing the second stage compatibility
measure which is defined in terms of a two-largest-area-neighbor compatibility
function. The iterations are indicated in the diagram in Figure 38. Both com-
patibility functions use the following quantities: the distance between neighbor-
ing face centroids, the ratio of the areas of neighboring faces, the difference in
face orientations, and the rotation angle for the maximum intersection area of
coplanar faces. (These quantities are also weighted.) At the end of the second
stage, translation and rotation information concerning the object can be com-
puted. It is implied, but not shown, that object recognition is possible by
choosing the object among several different prototype object models which
maximizes the compatibility measures. The method appears to be general in
that it handles arbitrary viewpoints. However, it does seem to rely very
heavily on the consistency of the output from the face-finding algorithm. It
also seems that some face adjacency information is being ignored in the two
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stage matching algorithm. No recognition test results are given in the paper.

Ballard and Sabbah [8] have investigated viewer independent shape recog-
nition by factoring an image object description into an object-centered view-
independent description and a view-dependent view transformation. They
emphasize a decoupling of the three subgroups of scale, orientation, and trans-
lation parameters. It is assumed that a planar surface patch (polyhedral)
description of an object is available to them both as a known prototype model
and as sensor data from either processed range data or other sources. They
also assume that scale is already known and that the orthographic projection
approximation is valid. Their 3-D algorithm consists of two main sequential
processing steps: 1) Use the Generalized Hough Transform (GHT) to compute
the three 3-D rotational parameters corresponding to a given view and a given
object, and 2) Determine the two 2-D translational parameters via another
GHT. If the correct object is not being matched, only inconsistent
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interpretations will result. When an unknown view of an object is matched
against the correct object, a consistent interpretation is output. They give no
experimental results for real scenes, but they do show results for four synthetic
experiments. It is assumed there will only be one object per view (image).
Their approach is interesting because they determine how an object is oriented
(rotation parameters) before they determine where it is (translation parame-
ters).

Bolles et al. [24] present a system for recognizing and locating three-
dimensional parts in range data which extends previous ‘‘local-feature-focus”
ideas [25]. Some of their object recognition ideas are quite different from most
other researchers:

(1) They prefer to use moderately complex parts instead of polyhedra or qua-
dric surface models because they have found that the abundance of
features are helpful for object recognition. They point out that most
industrial parts are moderately complex; very few ideal spheres, cylinders,
and polyhedra are used untouched as industrial pieces.

(2) They also express that only very few features should be used for matching,
hopefully only 2 or 3 if possible. For example, if a dihedral edge is found
in range data, all six degrees of freedom (3 position and 3 orientation) of
that edge are determined except for one (the position along the edge). A
preliminary planning system should do as much processing as is required
up front to select the best features since this computation only needs to be
done once.

The recognition process is partitioned into five steps:

(1) Primitive Feature Detection: Range edges are detected and linked using
two separate techniques: one based on discontinuities and the other based
on significant second derivative zero-crossings.

(2) Feature Cluster Formation: For example, coplanar edges can be grouped
together. Circular arcs can be isolated among the coplanar edges.

(3) Hypothesis Generation about Possible Objects and Locations: For exam-
ple, the system can hypothesis objects which contain the circular arc as an
edge which are appropriately positioned in space.

(4) Hypothesis Verification of Best Object Hypotheses: Objects are checked to
see if additional features of each object can be found in the image data or
the primitive features already extracted.

(5) Parameter Refinement to Obtain More Precise Information: If additional
features are predicted and found, this information can be averaged with
the existing information to yield more precise locations.

3DPO uses an extended CAD model to represent objects. A volume-surface-
edge-vertex model is extended via the addition of redundant pointers and other
data structures to support matching. Figure 39 represents these ideas. The
ideas expressed in this paper seem reasonable. Unfortunately, the system was
still in development at the time and no real experimental recognition results
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were available. However, several figures are shown with hypothesized
wireframe objects overlaid on the range sensor’s light stripe image which look
very reasonable.

Oshima and Shirai [113] [114] have also discussed object recognition using
three dimensional information. Their object recognition system is based on
depth maps obtained from a light stripe range finder. The range data is pro-
cessed as follows: 1) Points (range pixels) are grouped into planar surface ele-
ments, 2) Surface elements are merged into elementary regions which are classi-
fied as planar or curved, 3) Curved elementary regions are merged into con-
sistent global regions which are fitted with quadric surfaces, and 4) A scene
description is generated using global region properties and their relationships
with each other. This process in shown on the left in Figure 40. The region
properties are based on the best-fit planar region and its boundary and include
the following quantities: perimeter, area, peround, minimum, maximum, and
mean region radii about the region centroid, and the standard deviation of the
radii of the boundary. The region relationships are characterized by distance
between region centroids, the dihedral angle between best-fit planes, and the
type of intersection curve between the regions. There is a learning process
which must be executed for each view of each object which is to be recognized.
The recognition process compares unknown scene data against learned scene
data. Matching is restricted using a algorithmically selected kernel region
which has a principal part and a subordinate part. The kernel is matched
against each learned scene, and each good match is processed further until a
consistent scene description is generated. The matching process is indicated on
the right in Figure 40. Two experiments were performed, one using simple
objects bounded by only planar or quadric surfaces and the other using
machined parts. No bad scene interpretations resulted using an empirically
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Matching process.

determined set of thresholds for the matching algorithm. The technique is
worthwhile because it can handle many objects at once. However, matching
will be significantly slowed down when many possible views are allowed
because of the view-dependent nature of the stored scene models. Thus, it
appears to be inadequate for single arbitrary view object recognition.

Sato and Honda [130] have investigated pseudodistance measures for
recognition of objects which can placed on a turntable in a stable vertical
orientation. A fixed set of horizontal cross-section boundaries is determined for
each object to be recognized using a laser projection system and image proces-
sor as described in {131]. Boundary-based Fourier shape descriptors are com-
puted for each horizontal cross-section. The object representation then consists
of N sets of M complex Fourier coefficients. Pseudodistance measures between
two objects representations are defined for elongatedness, horizontal strain, sec-
tion shape, torsion, and displacement. Experimental distance results are shown
in the paper for four wood animal models and a doll in three different posi-
tions. Two positions of the doll are shown in Figure 41. The boundaries
described by Fourier descriptors are shown below each image. Using a
weighted sum of pseudodistance measures and, for example, a minimum dis-
tance classifier, unknown curved shapes can be classified. One problem with
this method as currently implemented is that disjoint parts of the doll’s cross-
sections had to be linked manually to create a simple closed curve usable by
the Fourier Descriptor algorithm. This system is totally inadequate for single
arbitrary view object recognition because of its need for 360 degree view.
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Faugeras [45](46] have devised a 3-D object recognition algorithm using
geometrical matching between primitive surfaces. The primitive surfaces
currently implemented in the INRIA computer vision system are planes, but
quadric surface algorithms are presented in these papers. Each geometric prim-
itive has an associated parameter vector which determines its degrees of free-
dom. For a plane, there are three independent degrees of freedom: two
independent direction parameters and one distance-from-the-origin parameter.
Range data is processed to obtain lists of planar regions which correspond to
some object. Object models are created and stored as polyhedra which have
planar region lists also. Matches between the extracted primitives list and
model primitives lists are hypothesized and verified using an approach which
minimizes the mean square error criterion over all plane-to-plane transforma-
tion matches. Techniques are used to incrementally drop and add primitives in
the lists. The rotation and translation matching are decoupled into two
separate independent least squares problems. Quaternions are used to convert
the non-linear 3-D rotation problem into a four-dimensional eigenvalue problem
which can be solved directly. The translation problem permits a standard
linear least squares solution. The rotation and translation matching errors are
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combined to provide a quantitative measure of the goodness of the match
between the data and a hypothetical model; the best match represents the
recognized object. Local consistency tests are used to avoid a full computation
on strongly inconsistent plane lists. These ideas result in a computationally
efficient method of identifying objects and determining their translation and
rotation parameters. Experimental results are shown in [45] for the same auto-
mobile part used by Bhanu [15] and Henderson [62]. The precision of rotation
angle and translation vector results are stated to be 0.04 radians (2.3 degrees)
and 3mm respectively where the accuracy of the range data itself is 1mm.
These results are very good. For polyhedral objects, this approach is similar to
the EGI approach which is described next in that surface normals are used for
matching. This technique has the property that the computation of rotation
angles is direct whereas the EGI approach involves a matching process for each
possible discrete rotation angle. It also differs from the EGI approach in that
it uses the distance from the origin rather the area of polyhedral faces.

Horn and Ikeuchi [67] [68] [72] [73] discuss the use of extended Gaussian
images (EGI) for object recognition and object attitude determination. 3-D
object models can be used to compute the prototype surface normal vector
orientation histograms for various shapes. Extended Gaussian Images are
shown for four shapes in Figure 42. (The Gaussian spheres are tessellated into
240 triangles in this figure.) Depth maps or needle maps computed for real
world scene data are processed to create an orientation histogram for the visi-
ble half of the Gaussian sphere for pre-segmented objects. The scene object
histogram and the prototype object histograms are compared in all possible
ways to compute the best match. (For a sphere tessellated with 240 triangles,
720 comparison computations must be done in general.) The best match deter-
mines which object is represented by the segmented data and how that object
is oriented in space. The extended Gaussian image technique appears to be
ideal for convez object recognition without occlusion because it uniquely deter-
mines convex polyhedra [101]. However, it will almost certainly be limited for
arbitrary complicated objects which have concave regions and holes. Simple
cases exist where certain concave objects cannot be distinguished from certain
rectangular blocks using EGI's. See Figure 43 for two simple objects with
identical EGI's. Nonetheless, this method can be very useful in many con-
strained situations such as bin-picking.

Besl and Jain (13| propose an approach to depth map object recognition
which combines surface information, critical point information, and depth-
discontinuity edges. No pre-decided surface shapes are used. Their approach
is motivated by a theorem from differential geometry which states that the
coefficients of the first and second fundamental (differential) forms of a smooth
surface uniquely characterize the shape of that surface. Gaussian curvature
and mean curvature are isolated as important features because they combine
the information of the two fundamental forms and they are invariant to rota-
tions and translations and to changes in surface parametrization. These surface
curvature characteristics generalize the notion of curvature for plane curves
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Figure 43. Two Objects with the Same EGI Representation

[111]. Their method consists of the following steps:

(1) Depth maps are first smoothed to remove noise present in the input data.
This smoothed data is then interpreted as samples of an underlying sur-
face.

(2) The smoothed image is convolved with window operators which provide
least-squares estimates of the first and second partial derivatives of the
underlying surface.

(3) These derivative estimates are used to determine Gaussian curvature,
mean curvature, critical points, and depth-discontinuity edges. Roof-edges
are detected by high mean curvature regions. A critical points image is
generated using the intersection of the zero-crossing images of the two
first partial derivatives.

(4) The sign of the surface curvature values can be used to place every pixel
in one of six classes: pit region, peak region, saddle region, valley region,
ridge region, and flat (planar) region. Critical points are similarly classi-
fied as peaks, pits, saddles, ridges, valleys, or flats.

(5) Critical points with positive Gaussian curvature are used as starting
points for a region growing algorithm which produces a view-independent
shape descriptor which can be used to match against a library of pre-
computed matching representations of various objects. The depth map is
segmented via the matching process. Depth-discontinuity edges are used
to verify surface region segmentation.
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(6) Possible matches of individual matched are projected back into the depth
map format for verification. Best-match depth map surface regions are
extracted when found and matching continues on the remaining depth
map regions until all objects are explained.

(7) The entire scene model description is then processed by a depth buffer
algorithm to create a synthetic scene depth map. Occlusion relationships
are checked for correct interpretation. The system outputs the final
description listing each distinguishable object, the number of occurrences
of each object, and the location and orientation of each object instance.
Regions of the depth map which could not be interpreted as an object are
characterized and stored for future reference.

This proposed approach plans to capitalize on the structural scene information
available in the 6-level image created by the sign bits of the surface curvature
values. Experimental surface curvature results are shown in [13] which indicate
the robustness of the computed features, but no matching or recognition results
have been obtained yet.

5. Review Summary

We have given one precise definition of the 3-D object recognition problem,
examined the qualitative requirements of systems which address this problem,
reviewed a variety of related topics, and surveyed 3-D object recognition sys-
tems discussed in the literature.

We first reviewed representations for objects and surfaces. No single object
or surface representation seems to be preferred by all researchers for computer
vision purposes. We have seen that generalized cones have received a great deal
of attention perhaps due to their compact representation of a wide variety of
objects. Nonetheless, generalized cones lack the generality of surface boundary
representations, which have also been used by computer vision researchers. For
the problem we have posed, a surface boundary representation of some sort is
probably the right choice for general purpose object models. Future research
shall eventually decide this issue. The choice of a particular surface representa-
tion for computer vision purposes is not easily decided. No matter which object
or surface representation is used by a system, it will be important to have a
good graphics module for fast renderings.

The topics of image formation and image processing were discussed. It was
assumed that the reader was already somewhat familiar with intensity image
formation and conventional image processing techniques. Therefore, we looked
at various ways to form range images, or depth maps, of real world scenes and
process them. The fact that shape information is directly available in deptb
maps has influenced the type of processing which is done. Many papers have
concentrated on looking for particular shapes such as planes, cylinders, cones,
and spheres. Unfortunately, this approach has not led to any general purpose
approaches to the problem.
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At this point, we digressed slightly to cover the topic of 3-D object recon-
struction. This may have seemed slightly contradictory because object recon-
struction algorithms must utilize data from multiple views. However, these
papers discussed many issues of interest for recognizing objects such as surface
matching and polyhedral depth map approximations.

Surface characterization ideas were presented next. These papers
emphasized the use of surface curvature, critical points, slope districts, curva-
ture districts, and pixel-by-pixel classification. The ideas were based on con-
tinuous surface properties and adapted to discrete surfaces.

Finally, we discussed object recognition techniques. Let us consider what
can be learned from the research papers we have reviewed. We have seen the
importance of symbolic scene descriptions for matching which are snvariant to
object rotations and translations as in the case of the Extended Gaussian Image.
We have seen the limitations of relying on too much sensor data as in the case
of Sato and Honda. The importance of incorporating view-independent object
models in the design of a system is apparent in Oshima and Shirai’s work. We
have talked about the constraining power of knowing one single dihedral edge
between planar faces in the case of Bolles et al. We have seen 3-D feature clus-
tering techniques used by several researchers. The use of the prediction-
hypothesis-verification paradigm is widespread. Constraint propagation and
consistency checking are also common ideas. Some investigators have stressed
the importance of multi-level logic and modular communicating structures in
their systems. Lee and Fu, for example, have pointed out the necessity of an
interactive combination of top-down (model-driven) and bottom-up (data-
driven) approaches. We have also seen that open-loop systems are only as
robust as their weakest component and that rendering algorithms can be used to
provide prediction of image features, verification of object features, and feed-
back on final decisions. Hierarchical geometric models have been used by many
researchers. The importance of efficient indexing into an object model library
has been brought out. The concepts of visual potential (aspect graph) and
characteristic views have been introduced which allow object shape from all
views to be described by a finite list. Global and local shape description
methods have been explored by many. Edge-based and region-based segmenta-
tion operators have been used, but few operators rely on both edges and regions
simultaneously. We have seen that it may not be advisable to decide ahead of
time what a surface is going to look like and then go and fit that surface to
every window in the image to find it because of the complications which result
in windows of multiple surface types not to mention the lack of generality
involved. Many systems use graph structures internally for data storage where
nodes and arcs are associated with geometric entities and relationships respec-
tively.

It is interesting to note that only a few researchers have attempted to jus-
tify their approaches in logical, mathematical terms. The approach often used
seems to be the following: think up something that might work and try it out.
It is likely that this phenomena will gradually change as research continues.
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To the best of our knowledge, there currently are no complete solutions to
the object recognition problem we have stated. Much work remains for future
research. Some very sophisticated systems have been developed using either
intensity images or range images, but very few have even attempted to use
both. How can data from images of two different types be integrated and used
effectively? What are the best features to symbolically describe intensity and/or
range images for matching purposes? Many modeling issues are not resolved.
One of the problems with surface representations is that they usually require a

. larger amount of stored data than other representations. Can surfaces be
represented in such a way that arbitrary view object recognition algorithms can
execute in a second or two? Occlusion has always been a problem. What view-
independent methods can be used to handle occlusion? Most object recognition
schemes use linear time matching techniques (the unknown object features are
matched against each object one-by-one). How can large object libraries be
searched fast enough for practical purposes? Any recognition system of this
type is bound to make mistakes occasionally. Can a system be made to learn
from its mistakes? The above questions are just a few of those which need to be
addressed by future research.
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