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ABSTRACT

This paper describes a procedure for determining whether or not a
customer order for rolls of material will fit into a boxcar of known
dimensions. The procedure is designed to run at order entry time so that
the order can be adjusted before production scheduling to obtain maximum

boxcar utilization and, therefore, minimum transportation costs.



INTRODUCTION

Many products that are shipped in railroad cars or truck trailers have
weight/volume relationships such that volume is the critical factor in deter-
mining the amount of product that can be shipped in a single unit. Assuming
that the dimensions of the product being shipped are fixed, a relatively
complex packing problem may have to be solved to determine the maximum amount
of the product that can be shipped as a single unit. The essence of the packing
problem is to minimize the amount of space that cannot be utilized because it
is too little to accomodate the smallest product being shipped. These packing
or space utilization problems are identical with the material cutting problems
studied extensively by Gilmore and Gomory [2,3,4]. In both cases the essential
constraint needed to define what can be done simply states that oniy integer
numbers of pieces can be cut from a stock size or packed in a space and the
quantity of material or space used must be less than or equal to what is available.

Although a number of one and two-dimensional cutting stock problems are being
routinely solved by producers of materials such as paper, steel, and glass [5,6,7,8],
the general space utilization problems are largely unsolved. The only exceptions
are those problems which can be reduced to a single dimension such as stacking racks
of varying heights. A primary difficulty in solving space utilization problems is
the lack of the guillotine cut requirement that occurs in most material cutting
situations. (The guillotine restriction is that once a cut is begun it must proceed
in a straight line to the other side of the material.) This type of constraint
simplifies the generation of feasible cutting patterns by eliminating more complex
types that the cutting hardware is unable to deal with anyway. Because there
generally are no such restrictions in space utilization or packing problems, the

pattern generation process is far more complex.



Even with the guillotine cut restriction, there are some formidablé problems
in solving cutting stock or space utilization problems in higher dimensions. For
example, the multi-stage pattern generation approach developed by Gilmore and
Gomory [3] for the two-dimensional problem does not permit any limit to be placed
on the number of times a size can appear in a pattern. This can cause serious
problems in obtaining the required integer values for the number of times a pattern
is to be used. Recent research by Christophides and Whitlock [1] has led to a
procedure for generating two-dimensional cutting patterns for rectangular shapes
with upper bounds on the number of times a size can appear in a pattern. Their
algorithm is extremely complex and of questionable practicality for use as a pattern
generation routine to solve two-dimensional cutting stock problems because of the
computer time required.

Even though the outlook for general purpose algorithms.to solve higher-dimen-
sional cutting stock and space utilization problems is gloomy, it is still important
and worthwhile to work on these problems; The primary consideration is that these
are real problems that are being solved daily on some ad hoc basis. As such, the
real issue is not to find optimizing algorithms to solve the problems in a mathe-
matical sense, but to find systematic procedures that will obtain better results
on the average than the methods currently being used. This can be done by focusing
on a specific problem situation énd exploiting the restrictions and structure of
that situation to develop efficient and effective solution procedures.

The objective of this paper is to describe one such space utilization problem
that occurs in the paper industry. The next two sections describe the problem
environment and present a mathematical formulation of the problem. These are
followed by a discussion of the procedure developed to solve fhe problem and an

example problem with the output obtained.



THE CARLOADING PROBLEM

Large rolls of linerboard of varying width, but constant diameter, are to
be shipped from the producing mill to the box plants that convert them into
corrugated shipping containers. Carload freight is paid by the paper mills.
Because it is virtually all repeat business, the mills are concerned that the
orders they receive are for full carload quantities in the sense of maximum
utilization of the rail car.- The‘orders are filled from production runs on a
make-to-order basis. Therefore any adjustments to the orderAto obtain better
carload utilization must be made at order entry time before the production run’
is scheduled. If an order is less than a full carload, then the freight cost ‘
per ton will be higher than necessary. The economic incentive is provided by
a decreasing incremental cost once some critical weight limit is surpassed.

If more than a full carload is ordered, then some portion of the order will have
to be stored until some future time when it can be shipped with another order
for the same customer.

The mill's requirement is for an automated carloading procedure to screen
the large volume of incoming orders to identify those orders whose roll quantities
should be adjusted to increase the weight in the car or to avoid producing rolls
that will not fit in the car. The basic information needed is:

1. Dimensions of the boxcar
2. Ordered sizes and quantities
3. Rules governing the ways rolls can be loaded.

Because many of the rolls weigh more than two tons, material handling

limitations severely restrict the way in which rolls can be placed in the car.

These ground  rules are listed below:



1. Rolls on the floor must be upright

2. One roll can be stacked on top of another provided there
is 1" of clearance with the top of the car .everywhereubut
the four floor positions in the doorway,where there must
be a 12" clearance.

3. Two rolls can be laid across the top of four rolls in ‘either:
end of the car, provided there is a 4" width clearance at
the top of the car. The four rolls forming the platform
for the rollbacks must all be of the same height. A maximum
of seven rollbacks can be placed in a fifty-foot car and
nine in a sixty-foot car. A single roll eannot be.laid”
across a base of two rolls because of stability problems.

A bottom view of a boxcar is given in Figure 1. The capacity question
in this plane is simply how many circles of the same diameter yill fit
into a rectangle of known dimensions. The diameters are such in this type
of problem that the boxcar width is less than three times the roll diameter.
The second level loading options can be seen in the side view given in Figure 2.
The roll marked A is a wide roll and has nothing above it. Roll B is narrow
and has room for Roll C to be stacked on top of it. Rolls D, including two
not shown, form a platform for rolls E and F. These two rolls are strapped
together to prevent them from rolling around.

In almost all cases, maximizing the number of rélls in the car is equivalent
to maximizing the weight assuming that when there is a choice the heaviest
possible roll is used. It follows, therefore, that stacking such as B and C
is the most desirable configuration because each floor space holds two rolls.
The rollback configuration with rolls D, E, and F is next with 6 rolls in
in four floor spaces. Single rolls such as A represent the lowest utilization

of the floor space.in terms of number of rolls.
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MATHEMATICAL MODEL

A mathematical formulation to maximize the number of rolls in a single

boxcar is given below. Assume that the original order calls for Ri rolls of

width Wi for i - 1, ---m, where all the rolls are for diameter, D. Let BCH,

BCW, BCL be the inner boxcar height, width and length dimensions, respectively.

XS

XD

XR

AS

Max:

subject to

2L XS, + 2L .XD, + 3%L.XR. + 1Y .X.
J 3 J 3 ] 3]

L,AS.XS, +XL.AD. XD, + L.AR.XR, + L.A.X. > R
J 3 3 i J 3 3] 3313

L.XS. + 2L .XR,  FC - 4
J ] J 3

L.XD, < 4
R
L.XR., € RC
J 3]
L.XS, + L. XD, + 2TXR + I = F
S Ht B R g ¢ Xy = EC

XSj, XDj' XRj, Xj' > 0, Integer

number of stacks of rolls in locations other than the doorway

using stacking pattern j.

patfern J.

pattern j.

number of stacks of rolls in the doorway using doorway stacking

number of rolls laid across the top of two rolls using rollback

number of rolls with nothing on top of them

is a vector of elements ASij defining a stacking pattern such

that L ,AS, W, € BCH - 1
i Tiji

AS,. » 0, integer.
1]



ADj - 1is a vector of elements ADij defining a stacking pattern for
the doorway such that

Y.AD, \W, £ BCH-12
iiji

AD,, 2 0, integer
lJ/l g

ARj - 1is a vector of elements ARij defining a rollback -pattern_such_that:

L.6(nR,,) = 2
i 1j

AR, . W./ZSBCH- (4 +D) for all i
ij i

AR, . 20, integer
1]

O fora=20
where § (a) = 1 fora>o0
for all i
Aj - 1is a vector of elements Aij such that
A = 1l for i=7j
1J 0 otherwise
R - 1is a vector of order requirements, Ri

FC is the number of rolls that can be placed on end on the floor of the car.

RC is the maximum number of rollbacks that can be put in the car.

The only additional complication is that XR.j eannot take on the value 1.
The model can be extended to handle orders for more than one carload by simply
increasing the values of FC and RC,assuming that the cars are all of the same
size. In addition, care must be taken to be sure that the rollbacks can be

allocated over the cars. For example if two 50' cars are used, there can be a



maximum of 14 rollbacks. Seven rollback patterns each having a usage value of
2 would not be feasible. There would be no way to meet the restriction that
the three rollbacks in one end of each car must have base rolls of the same

height.

SOLUTION PROCEDURE

The structure of the problem to be solved is such that a relatively simple

enumerative scheme can be used to solve the problem without having to resort to a
_ general purpose - integer programming algorithm. The procedure is based upon aﬁ
investigation of what can happen on the second level. All the possibilities for
stacking and rollbacks are identified and then pieced together to obtain a maximum
loading of the car. The procedure is outlined below.
1. Determine the floor capacity of the car, FC. In most cases
this could be simply input because there are a limited number of boxcar
sizes and roll diameters used. The calculation is inciuded here because

it is fairly simple due to the fact that for all cases of interest here

BCW < 3 * roll diameter and in many cases BCW € 2 * roll diameter.

In the latter case there will be either an even or an odd number of
rolls with centers lying on 2 lines parallel to the sides of the boxcar.
In the former case, the centers will lie on either 2 or 3 or 4 lines  :»
parallel to the sides of the car. Each possibility can be checked‘and

the floor plan containing the largest number used.

2. Identify the possibilities for rolls on the second level. The
ordered sizes are analyzed and placed into one of four categories. This

classification represents increasing levels of flexibility. Assume for
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this discussion that the roll diameter, D, is less that 1/2 of the boxcar

height, BCH.
a. Wide rolls

Wi > BCH - (4 + D)

These rolls are too wide to permit anything on top of them.

They can be used as rollbacks if Wi < BCW.

b. Rollback base rolls.

wi § BCH - (4 + D)

Wi > (BCH - 1)/2

These rolls are too wide to be stacked alone but can be used

as a base for rollbacks. They can be stacked ‘only with narrower rolls

if they are available.

c. Regular stacking rolls

LA (BCH - 1)/2
wi > (BCH - 12)/2

These rolls are too wide to gtack in. the doorway but can

be stacked elsewhere.

d. Doorway stacking rolls.

Wi § (BCH - 12)/2

These rolls can be stacked in the doorway.
If all the rolls are wide rolls, then FC is the maximum number in the
car and there is nothing else to do.

If all the rolls are in classifications a and b,go to 5.
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3. Generate stacking possibilities without regard to the doorway
restriction. Stacks are initiélly formed by taking the narrowest roll
available and stacking it with the widest possible roll that can be
stacked with it. This will maximize the number of stacks generated. A
check is then made to determine if any of the stacks will fit in the
doorway. If none of the rolls are in category d or if 4 stacks fit in

the doorway, go to 5.

4. Enumerate the possible number of stacks that car be placed

in the doorway. For example, if the initial solution had two stacks
that would fit in the doorway, check to see if solutions can be found
that have 3 and 4 stacks in the doorway. This can be done by first
generating stacks for the doorway, and then when the desired number is
found, go on to consider general stacks. Save each unique solution found

here with varying numbers of total stacks.

5. Check each stacking solution found to see if rollbacks can
also be used. To do this there must be floor space and category b

rolls not yet used in stacks.

6. Check to see if stacks can be adjusted to increase the number
of roll backs. In general a stack is preferred to a rollback because
of space utilization and material handling considerations; however,
it may be possible to increase the rollbacks by 2 by taking apart one
stack. This possibility must be checked.

7. Determine the maximum number of rolls that can be put ;n the
car based on the total rolls on the second level and floor capacity.
Note if there are any restrictions on the rolls to be added or deleted.
For example, it may be possible to add another roll so long as its width

does not exceed some critical value. Adjust the order quantities in

such a way as to maximize the weight in the car. If a roll must be
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added, increase the heaviest roll that will fit. If a roll must be

deleted take out the lightest roll that can be deleted.

EXAMPLE PROBLEM

The following actual example represents a fairly aggressive usage of a
computerized version of the procedure described in the previous section. The

usable boxcar dimensions are

width - 114"
length - 730 "
height - 137"

This is a hi-cube car that has a maximum weight capacity of 190,000 pounds.

The original customer order is for the following 58" diameter rolls.

10 . 82"
6 78"
8 74"
6 70"

The floor capacity of the car is for 24 rolls in two columns of 12 slightly
offset because the roll diameter is more than 1/2 the width of the boxcar.
There are no stacking possibiliites because the rolls are too wide, however -
rollbacks can be placed on top of both the 74 and 70 inch rolls, Based on the
original order quantities, 4 wide rolls can be laid on top of the 8 74" rolls
and 3 wide rolls can be laid an top of the 6 70" rolls. This would be a total
of 31 rolls (24 + 7), one more than ordered. However, there islroom for two
more rollbacks in the 60 foot car. If two 74" rolls are added, the capacity is
incréased to 32 and the necessary two rolls can be added. 1In addition, in this
case the lower bound on the order quantity was 90% of the original order. This
means that if one 82" roll is dropped from the order, two more 70" rolls can

be added increasing the number in the car to 33 by adding one more rollback. The
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net effect of all this juggling was to increase the weight of the shipment

from 138,000 pounds to 150,000. The output from the program is shown in

Figure 3. The same information can be transmitted to the mill to alert them

as to what has happened to the order and how it should be loaded.



FIGURE 3

BOXCAR LOADING ROUTINE

BOXCAR DATA
QTY WIDTH LENGTH HEIGHT MAX TONS CAR #
1 114.0 73040 137.0 95,0 1

ORDER DATA DIA= 58.

QTY SFZE ROLL wT
10 82.0000 4920.0
6 78,0000 468040
8 7440000 4440.0
6 70,0000 4200.,0

30 ROLLS WEIGHING  69.0 TONS
BOBBBBREBB DB BB RB BB BB BB RS

FLOOR PLAN
BXCR QTY PATTERN

1 24 2
3408 30 84 2 4040 0 31 40 3140 31 S 2R SR LRI B 44 B B 3007

LOADING INSTRUCTIONS FOR BOXCAR 1

REMAINING ANALYSIS ASSUMES 1 BOXCARS IN USE
FLOOR CAP= 24 TOTAL CAP= 33 ORDERED= 30
BOXCAR LIMIT IN TONS 95, ORDERED TONS 69,
TAKE OUT 1 B82.000 TO PERMIT MORE ROLLBACKS
INCREASE 74.,000 BY 2 TO ALLOW 1 MORE ROLLBACKS
INCREASE 70.000 BY 2 TO ALLOW 1 MORE ROLLBACKS

LOAD 5 ROLLS ON TOP OF 74,000

LOAD 4 ROLLS ON TOP OF 70.000

INCREASE ORDER BY 3 ROLLS OR 52000. POUNDS
THERE ARE 0 FLOOR POSITIONS OPEN ‘

THERE ARE 0 UNRESTRICTED ROLLS TO BE ADDED
T T T R T

PROGRAM ENDS NORMALLY
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CONCLUSION

Although carloading problems in general appear to be quite complex and
intractable, it is possible in certain cases to exploit the special structure
of a specific problem to develop systematic procédures for solving them.

This paper has described a procedure for determining how large cylinders can

be loaded into boxcars to maximize the weight shipped. The carloading pro-
cedure was designed for a paper producer to be run at order entry time to
determine if the incoming orders represented full carload quantities. Those
orders that are for full carload amounts are accepted as entered. Those

orders that are less than full carloads are increased to make better utiliza-
tion of the car and reduce the freight cost per ton shipped. Those ordérs

that are far more than a full carload are reduced to avoid having to store
finished goods in this make-to-order business. Research is curiently under way
to see if the scheduling system can be modified so that stacking rolls and rolls
to be used as a base for rollbacks can be produced early in the run to permit
the maximum boxcar utilization to be obtained in a efficient manner from a

material handling viewpoint.
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