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Abstract

Non-hierarchical statistical decision algorithms spend a significant portion of
their time entertaining incorrect hypotheses in multiple class, pattern recognition
problems. Maximum-likelihood multivariate-Gaussian (MLMVG) hypothesis test-
ing is a common example of such a statistical pattern recognition technique. It is
shown that the use of ‘“‘out-of-class” covariance matrices can significantly reduce
the run-time computations required to make MLMVG decisions. The analysis
directly leads to an objective dimensionality reduction (ODR) technique that
indicates the preferred, intrinsic dimensionality of multiple class decision spaces
given the training data. Run-time computations are reduced even further using
these reduced dimension class decision spaces with no measurable loss in decision
accuracy. This method is then compared to a popular subjective dimensionality
reduction technique to stress the essential concepts of out-of-class covariance.
The theory has been applied to a nine (9) class, twenty-seven (27) feature,
automatic visual solder joint inspection problem with excellent results; run-time
computations are reduced by more than a factor of three while maintaining excel-

lent decision performance.

Index Terms: Maximum-likelihood hypothesis testing, multivariate Gaussian
assumption, dimensionality reduction, out-of-class covariance matrix, simultane-
ous diagonalization, automatic visual inspection.
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1. INTRODUCTION

There are numerous industrial processes that benefit from automation tech-
nology. In many applications, automated decision-making capability is required
as an integral task in a particular operation. For example, a machine vision sys-
tem may be required to inspect the integrity of automatically manufactured
parts, route bad parts off the assembly line, and correct process parameters
responsible for the defects in those parts. A vast variety of statistical pattern
recognition techniques may be applicable when the decision problem can be
posed as a multiple class, multiple feature hypothesis testing problem. The
designer of an automated decision-making system must evaluate the available
alternatives offered by pattern recognition techniques: parametric vs. non-
parametric, hierarchical vs. non-hierarchical, normal vs. non-normal, linear vs.
non-linear, supervised vs. unsupervised, optimal (Bayesian) vs. sub-optimal.
Among many other factors, these choices depend on the type of input data
being used, the amount of training data available, the type of the training pro-
cess allowed, and the amount of @ priori knowledge one has about the input

data.

Statistical pattern recognition techniques make assumptions about the
nature of the input data, and these assumptions influence the decision-making
process. For example, zero-mean assumptions for features can easily be handled
at run time with a negligible decrease in efficiency. Other assumptions, how-

ever, such as those regarding the amount of correlation between features or the
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relative contribution of each feature to the decision-making process are generally
more difficult to handle, and are thus ignored in some schemes for the sake of

simplicity at the cost of reduced decision accuracy.

Methods such as the k-nearest neighbor algorithm and the minimum dis-
tance (to class means) classifier use a straightforward feature-space distance
metric for classification purposes. Although the performance of these algorithms
may be quite good with feature data that is uncorrelated and highly relevant to
the decision process, they do not incorporate ways of automatically compensat-
ing for highly correlated features or identifying features that may actually con-

tribute little or no information to the decision process.

For many pattern recognition problems (such as automatic solder joint
inspection using gray level images), the boundary between meaningful feature
data and useless feature data can be quite hazy. Feature selection is limited by
the abilities of the decision system designer or programmer. A small number of
potentially useful features may be present in a larger set of highly correlated
features requiring several higher dimensions with little gain in information
relevant. to the decision process. Unfortunately, as mentioned above, the
simpler statistical pattern recognition techniques prove to be severely limited
when confronted with this type of data. In order to perform well under these
circumstances, an algorithm must provide two capabilities: (1) it must compen-
sate for feature data that is correlated by computing new decorrelated features,
and (2) it must discriminate between uninformative and meaningful features by

automatically weighting them according to their importance in the decision
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making process. The first problem is easily solved by using the principal com-
ponents (or discrete Karhunen-Loeve) transformation (eigenvalue-eigenvector
decomposition) of the appropriate covariance matrix to provide uncorrelated
feature data. The second problem has long been recognized as a crucial one in
statistical pattern recognition research. Many subjecfive techniques for dimen-
sionality reduction have been developed that allow one to obtain the best
features from a given set with respect to some criterion. However, objective
feature evaluation methods that state which features in a given list are informa-
tive and which features are misleading or irrelevant are rarely realized in prac-

tice.

The Objective Dimensionality Reduction algorithm is a non-hierarchical
(sipgle-stage), parametric, maximum-likelihood, multiclass decision algorithm
based on the multivariate-Gaussian assumption for feature data. It is computa-
tionally efficient, and it handles the two problems mentioned above quite effec-
tively in our automatic visual solder joint inspection application. But despite
'these strengths and other benefits described subsequently, it is also subject to
the limitations of this type of approach. For example, all input data features
must be computed in most cases, and it is not possible to trade off decision
accuracy for computation costs. These factors may be a hindrance for certain
applications in which case one may want to consider hierarchical (multi-stage),
non-parametric, decision tree classifiers [Kulkarni and Kanal 1978], which can
directly trade classification accuracy for costs and compute only the input data

features as needed for particular decisions in the decision tree. Nevertheless, we
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believe that the out-of-class covariance concept and its dimensionality reduction
implications provide important insights for statistical pattern recognition

research.

2. QUALITATIVE COMMENTS

The Objective Dimensionality Reduction (ODR) technique provides a
unique, new ‘“twist” (in the form of a new rotation matrix) to the common
maximum-likelihood, multivariate-Gaussian (MLMVG]) pattern recognition tech-
nique by considering what we call “‘out-of-class” covariance matrices. Decisions
are based on the minimization of a quadratic distance metric as in the MLMVG
case. However, instead of the usual inverse in-class covariance matrix, the ODR
method uses a variable-size, row-shuffled transformation matrix for each class.
This matrix is computed using both the in-class and out-of-class covariance
matrices. Although not employed by standard pattern recognition techniques,
the out-of-class covariance matrix concept is intuitively appealing because every
M class decision can be considered as M binary class decisions where only in-
class and not-in-class hypotheses are entertained. This idea is found in Dye

[1974] and Friedman [1977].

The ODR method allows a significant reduction in run-time computation
over standard MLMVG techniques, and allows an objec-tive evaluation of the
decision-making relevance of individual transform features in the transformed
feature vector space for each class. Each transformed vector space is simply a

rotated and scaled version of the original feature vector space where the
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transform features are uncorrelated with respect to both in-class and out-of-class
conditions.

As with the MLMVG approach, if a priors probabilities of the different
classes are also known, this maximum likelihood technique can be easily general-
ized to provide minimum-error decisions. If the costs of false alarms and misses

are also known, Bayes risk can be minimized.

The maximum-likelihood decision rule states that the hypothesis that an
observed signal is of the class C; is correct if the probability of that signal
belonging to class C; is greater than the probability of the signal belonging to
any particular one of the other possible classes within the context of the decision
problem. That is, given an unclassified signal, the conditional probability den-
sity function is evaluated for each class and the class with the largest condi-
tional probability density is chosen as correct. A vector 7 composed of feature
data extracted from the unclassified signal can often be assumed to be a Gaus-
'sian random vector with each feature vector component being normally distri-
buted and all features being jointly Gaussian in nature. This assumption is usu-
ally justified under the authority of the central limit theorem, which states that
if enough random variables from any given distribution are averaged, a random
variable will be obtained that tends to be normally distributed (i.e., Gaussian).
Given this approximate Gaussian nature of the input data, one can infer that,
since the statistics of Gaussian ran“dom vectors are completely determined by
their mean vectors and covariance matrices, the feature vector statistics

obtained are also mostly determined by their mean vectors and covariance
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matrices. Following this (tenuous) line of logic, one can implement a
maximum-likelihood decision algorithm if reasonable estimates can be obtained
for the mean vector and covariance matrix for each class. It is then assumed
that the sample mean and sample covariance matrices computed from selec-
tively chosen, representative training samples of each class will provide the rea-
sonable estimates necessary for the maximum likelihood decision rule under the

Gaussian random vector assumption.

If the full dimensionality N of the original feature vector space is main-
tained, N + 1 vector inner products (of length N) must be evaluated to estimate
the conditional probability density for each class in the standard multivariate-
Gaussian maximum-likelihood technique. The uniqueness of the ODR algorithm
lies in the computational efficiency of its decision making process by using infor-
mation provided by out-of-class covariance matrices. By following the approach
originated by Dye [1974], soft (or adaptive) dimensionality reduction or hard (or
fized) dimenssonality reduction can be achieved. The order of the transform
features considered in .the decision process depend on the given class hypothesis
and the training data. The number of transform features evaluated depends on
these factors and the unknown being classified. Class hypotheses can often be
dismissed after evaluating only one or two vector inner products. Consider a 10
class, 25 feature solder joint inspection problem. Straightforward MLMVG
evaluation requires 260 vector inner products (of length 25) to reach a maximum
likelihood decision. A typical ODR algorithm decision with soft dimensionality

reduction might only require 60 inner pfoducts and can actually require as few
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as 35 inner products with no change in maximum-likelihood decision accuracy.
Hard dimensionality reduction decisions generally need even fewer inner pro-
ducts. Computational short-cuts like this can be extremely important for real-
time inspection applications using many features and many classes. The ODR
method also provides other very interesting feature ranking capabilities, which

are discussed in more detail later.

Covariance matrices conditioned by the in-class hypothesis are used in most
techniques where uncorrelated feature data is analyzed. Dye [1974] has noted
that in multiple class problems, decision algorithms spend most of their time
entertaining incorrect hypotheses. This extremely important observation has
dramatic consequences when properly analyzed. As shall be shown, it is advan-
tageous to examine covariance matrices conditioned by the out-of-class
hypothesis and to also uncorrelate feature data using out-of-class covariance
matrices. The generalized eigenvector problem for two positive definite real
symmetric matrices is solved using simultaneous diagonalization. This solution
process can be applied to the out-of-class and in-class covariance matrices pro-

viding simultaneously uncorrelated features.

The motivation for decorrelating the feature data can be phrased as fol-
lows. Multivariable problems are much easier to work with when uncorrelated
features are used because each uncorrelated feature can be treated as a separate,
one-dimensional entity instead of just another element of some interrelated vec-
tor quantity. When features are uncorrelated with respect to both the in-class

and out-of-class hypotheses, each uncorrelated feature represents a separate
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one-dimensional decision space. It is almost always easier to analyze N separate,
easy 1-D problems than to analyze one complicated, interrelated N-dimensional
problem. Mathematical diagonalization processes provide this decoupling. In
addition, the multivariate Gaussian assumption implies that uncorrelated

features are actually (class-conditionally) statistically independent.

The so-called “whitening” transformation [Fukunaga 1972] is commonly
used to rotate and scale unknown vectors so that, when entertaining the correct
hypothesis for a given class, the components of the resultant vector are uncorre-
lated, zero mean, unit variance. By applying the same whitening transformation
to the out-of-class covariance matrices, new matrices are produced that
correspond to the out-of-class covariance matrices in the new whitened vector

space. Special eigenvalues can then be obtained from these new matrices

through the use of standard diagonalization procedures.

Soft and hard dimensionality reduction is based on these special eigenvalues
produced by the diagonalization of the whitened out-of-class covariance
matrices. As will be proven in the next sectioh, the expected squared value of a
new uncorrelated feature (denoted here as a z feature) is exactly one (1.00)
when the correct class is hypothesized and is equal to the corresponding special
eigenvalue (denoted here as a g eigenvalue) when any sncorrect class is
hypothesized. And of course, the maximum-likelihood decision rule is equivalent
to a minimum (Mahalanobis) distance rule. Eigenvalues greater than one indi-
cate a dimension in the z feature space in which that particular class is easily

distinguishable from other classes. Eigenvalues less than one indicate
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dimensions in the z feature space where it is very difficult to distinguish the
given class from others. Given that the original features are sufficiently Gaus-
sian in nature, the contribution of feature data in the direction of the feature
space corresponding to a small eigenvalue is actually detrimental to the classifi-
cation procedure based on the minimum distance metric. We refer to the pro-

cess of ignoring these misleading z values as hard dimensionality reduction.

We are not aware of any other pattern recognition method that can give
such an explicit, objective, class-specific ranking of features as the ODR method
provides. Recent reviews, such as [Swain 1985], indicate others are not aware of
any such techniques either. ODR analysis indicates the preferred dimensionality
of the decision space for each class as dictated by the training data. Because of
this capability, it is reported [Dye 1974] that performance of the ODR technique
does not decline as the number of features increases (the so-called ‘‘peaking
phenomenon’’) as other similar methods do owing to finite training sample size
[Jain and Waller 1978]. We restrict our analysis to the dimensionality reduction

properties of the ODR approach.

The soft dimensionality reduction is obtained as follows. The evaluation
order in the computational loop corresponding to the calculation of the classifi-
cation metric for the decision process can be ‘‘shuffled” according to these ¢
eigenvalues so that the features corresponding to largest eigenvalues are con-
sidered first. The decision process then may conditionally jump out of the com-
putational loop when the accumulating metric exceeds the previous minimum

value. Thus, after considering but a few of the feature values for a given class,
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a decision can be made that the correct hypothesis is not being entertained,
allowing the next hypothesis to be considered. In the solder joint inspection
application discussed in the last section, it has been found that on average only
about eight (7.82) z features need to be computed using hard dimensionality
reduction and about ten (10.16) z features using soft dimensionality reduction

even though 27 image features are being calculated for each image.

Figure 1 displays an example image of plated-through-hole solder joints on
a printed circuit board and a class-labeled version of that same image. Each
solder joint in a set of these images has been classified by a human operator and
by the ODR classification technique using an interesting set of gray-level image
features. The class labels are discussed in Section 5. The distribution of the
number of z features computed by the ODR algorithm (i.e., the number inner
product computations) while making classification decisions is shown in Figure
2. The standard MLMVG approach requires a full inner product computation
for each hypothesis (27 inner products). The emulated MLMVG algorithm
(based on the matrix square root) using the test against the smallest metric com-
puted so far yields the top plot, which involved an average of about thirteen
(12.50) inner products. Note that just the insertion of such a test reduced com-
putations by 53.7 percent for our solder joint inspection data. The MLMVG
algorithm with shuffling (soft dimensionality reduction) was used to obtain the
next plot. Notice the shift towards fewer z computations. In fact, 41 percent
of all hypotheses @ere dismissed after the evaluation of a single transformed :

feature (one inner product). Total computations were reduced by another 18.7
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percent from the emulated MLMVG case. The ODR algorithm with hard
dimensionality reduction is shown in the third plot. Note the break up of the
peak at the full number of features in this case. Total computations were
reduced by another 23.0 percent from the soft dimensionality reduction. Despite
this reduction in the average number of inner products computed per hypothesis
from 27 to 7.82 (71 percent reduction), there is no real loss in decision perfor-
mance as shown in Figures 3 and 4. The last plot demonstrates the equivalent
behavior of the minimum distance classifier. Its results are shown in Figure 5.
These results tables are explained in detail in the last section. We emphasize
that the performance of the straightforward maximum likelihood approach can
still be obtained even though the necessary computations have been reduced by
a significant factor from the straightforward implementation. These concepts

are discussed in detail in the next section.

3. QUANTITATIVE ANALYSIS

Now that the basic ideas of the ODR method have been qualitatively intro-
duced, the entire method can be discussed in complete detail. The first step in
the ODR technique involves the computation of estimates of an in-class correla-
tion matrix (denoted A;) and an in-class mean vector (denoted ;) for each of
N; classes using Np features from NTltraining samples. The correlation
matrix is calculated by summing the outer products of all feature vectors of
class C; from the training set and dividing by the total number L; of training

samples for that class. The in-class mean vector is simply formed by summing

Objective Dimensionality Reduction 12
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all feature vectors of each class together and dividing by the number of training
samples. The total number of training samples Nr is just the sum of the L;'s.

We do not assume that the same number of samples are available from each

class.

- 1 . -
k=T Yz (5 €6) (2)

where 7 is a feature vector from the training set containing a list of numbers

computed from the observed signal. Brackets are added at times to emphasize
matrix quantities.

It should be noted that the notation ?j € C; is not completely rigorous, as

—

z; is merely a random feature vector extracted from a random signal caused by
a random event e;. Therefore, ?j does not really belong to a class in the sense
of a partition of the probability space. We should say that the random event
e; belongs to class C; and E'J- is a function of the random event. However
since there is a direct correspondence because ZJ- is formed by extracting

features from the signal caused by e;, there is no danger of ambiguity. The

previous notation has been adopted for convenience and will be used

throughout.
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The next step in the algorithm is the calculation of an in-class covariance
matrix for each class. This is done by subtracting the outer product of the in-

class mean vector (p,; ) from the correlation matrix.

B, =E{G-RIE-E) | 7eG)=A- [BET] @

In the case that the data is zero mean, the covariance and correlation matrices
are equivalent. The diagonal elements of each B matrix are the variances
corresponding to each feature for that particular class. The off-diagonal ele-
ments represent the covariances of the various features. High absolute values of
off-diagonal elements indicate highly correlated features; low absolute values
indicate less correlated features. Features are uncorrelated when their covari-

ance is zero.

Given the B matrices, and making the assumption that the data is roughly
Gaussian in nature, the probability that a given sample vector z will occur
given that the observed signal belongs to the class C; is given by the multivari-

ate Gaussian (MVG) density function:

-—

)

-\ _ 1—’ - T I
pi(7) = — pexp| -5 (2 - i) Bz -

(271')-§ (detB; ) 2

The maximum likelihood decision rule can then be expressed as follows:

Decide 7 € C; if p;(z) > pp(z) for all m #

Objective Dimensionality Reduction 14
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N
Since (27) 2 is a constant and exp(z ) is monotonic, computational effort can be
reduced by basing the decision process on the minimization of the statistic S;

given in equation (5), as opposed to the maximization of p; in equation (4):
S(Z)=K +(F-5)"B (T -4) (5)
where

K; = In(detB,) (5a)

A different, but equivalent decision rule is thus formulated:

Decide 7 € C; if S;(z) < S,(Z) for all m (6)

One can implement this approach as stated thus far to obtain a maximum-
likelihood classifier for multivariate Gaussian feature data. This is the straight-
forward approach requiring Np + 1 vector inner products of length N for each
of the N class hypotheses. This requires approximately Ny (N# + Np) multi-

plications and additions to classify each unknown feature vector.

Dye [1974] has noted that it is of significant interest to calculate an “out-
of-class covariance matrix” F for each class. That is, compute the expected
value of the outer product matrix given that the observation vector z is not in
the given class. This is motivated by the fact the multiple class decision algo-

rithms spend far more time entertaining false hypotheses than correct ones.

F =E|F-5)F-5)7 |7¢C | 7)
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—E[777 1 7¢c)|-RE{F 17¢G)-B{7 | Feq B R

where N is the total number of feature vectors from the training set. The F
matrices can be calculated from information previously obtained plus the calcu-

lation of an “out-of-class mean vector v;. The out-of-class mean vector is

given by

—~ - = I LR
e A e AR I

m ki

The out-of-class correlation matrix is determined from

N¢ Ne La N¢
) [“T]=2 )Y [z IT]=Z )Y [z,-f;T]=ELmAm-(g)
g£C m=1z € C, m=ly =1 m =1

m i m pki m ki

This yields the final expression for the out-of-class covariance matrix:

F o~ _L‘)mZ'Z_leAm - Vil - WiV + BB (10)
m ki

There are other methods for computing the out-of-class covariance matrices. A
different method is described later. A method similar to this one is presented in

[Dye 1974].
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The definitions above directly imply that the B. matrices are positive
definite when no pair of features is completely correlated and that both the B
and F matrices are symmetric. To find a vector space where features are
uncorrelated with respect to both in-class and out-of-class hypotheses, it is
necessary to perform a simultaneous diagonalization operation on the B’s and

F’s. This is equivalent to solving the generalized eigenvalue problem:
[F]z =x[8]=

The resulting generalized eigenvectors specify directions in the feature vector
space that are, in a sense, “‘equally natural” for both in-class and out-of-class
hypotheses. One is free in the general problem to whiten with respect to either
F or B if both are positive definite, but it is customary to whiten with respect

to the in-class covariance matrix in this type of problem.

The process of simultaneous diagonalization begins with the solution of the

simple eigenvalue problem for the B matrices:

B=UbUT (11)

where the U matrices are the orthogonal eigenvector matrices and the b
matrices are diagonal with the diagonal elements corresponding to the eigen-
values of the B matrices. No reordering of the eigenvalues in the b matrices is
assumed. These m.atrices are then used to transform a feature vector z into a
“whitened”” zero mean and unit variance vector y whose components are

uncorrelated with respect to the in-class hypothesis. We explicitly state the

17 Objective Dimensionality Reduction
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transformation, the mean vector, and the covariance matrix:

_1
v =b?UTF-1) (12)

E{zf. 1zec.}=bf2'U.T{E{; | Eec:-} ;:]:o (13)
ef537 | 7 eq) =nlb UM mE U] 0o

_1 _1
=b zUTB:U.'b,'z

1 _1
=b,*b,b. Z =1= Identity Matriz .

3 $ $
This process is standard practice and often is referred to as whitening of the
feature data [Fukunaga 1972].
The same transformation is now applied to the F matrices to produce a set
of G matrices, which correspond to the out-of-class covariance matrices in the

whitened y vector space: -

G, = b2 UTF, U, b? . (15)

These G matrices are symmetric, but not generally diagonal. Therefore, the
components of the ¥ vectors are generally correlated with respect to the out-of-

class hypothesis. The G matrices can however be diagonalized to produce eigen-

Objective Dimensionality Reduction 18
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vector matrices (V's) and eigenvalue matrices (g's):

G =VgVT (16)

Starting with B and F, we have solved for b, U, g, V. Computation of these

quantities is the key part of the simultaneous diagonalization process.

Once the simultaneous diagonalization is completed, a transform matrix is
obtained for each class to rotate and scale a feature vector observation so that it
is zero mean and of unit variance conditioned by the in-class hypothesis, and its
components are uncorrelated with respect to both the in-class and out-of-class
hypotheses. Below are listed the expressions for the new z feature vector, the

new transform matrices W and the conditional mean vectors and covariance

matrices.

7=VTb IUTZ-5)=WT(z-u)=VT (17)
1

W=Ub IV (18)

E{'z‘|zec,}=o (19)

19 Objective Dimensionality Reduction
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=WTB W =1= Identity Matriz (20)

One would naturally expect that a pure rotation applied to a whitened vector
space would yield another whitened vector space. Similarly, applying the out-

of-class condition yields

E{'z’? |;¢q}=g,.=wTF w (21)
E{Z | 7 ¢ C’,-} =WiT('u',- —ﬁ,);éa (tn general).

Since g; and I are both diagonal, we see that W provides simultaneous diago-

nalization of B and F

Let us examine this Z vector space more closely. Let z; be the k-th com-
ponent of the Z vector when the i —th class hypothesis is being considered. Let
g be the k-th eigenvalue of the matrix g corresponding to the transform
feature z; . It can be expected that, on average, if 7 represents an observed sig-

nal from the class C;, then z;Z = 1; that is,
E{z,—,?l?EC,-}=l for all k
which means that

E{Z,'TZ" | E'GC,} =NF =tT(I),

Objective Dimensionality Reduction 20
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where ¢r( ) is the matrix trace operator. It can be expected that, on average, if

7 represents an observed signal from a class other than C' and the C class

hypothesis is being entertained, then z2 = g, ; that is,
E{Z:f | 7 ¢ C;} = ga
which means that

Ny
E{zrz' | ?950} =tr(g)= Y
k=1
We note immediately that if each g; were much greater than one, then it

would be very easy to detect that a false hypothesis was being entertained.

The elements of the diagonal g matrices are of particular interest since each
value corresponds to the variance of that corresponding feature in the whitened
vector space. Since the expected value of the variance of given feature in the
new, uncorrelated vector space is unity, a large element of a g matrix (i.e.,
greater than one) indicates a direction in the rotated and scaled vector space in
which it should be possible to easily distinguish between a correct and incorrect
hy'poth%is. A small eigenvalue (i.e., less than one) indicates a direction in the
feature space in which it is difficult to distinguish between a correct and
incorrect hypothesis. In fact, using such a transform feature value will be detri-
mental or misleading to the decision process (finding the minimum § ). An
eigenvalue of exacﬂy one (1.00) means that the information found in the

corresponding direction in the vector space is expected to contribute nothing to
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the decision-making process. It is not helpful or misleading, but irrelevant.

It should be noted that the statistics S,’'s in the decision rule can be
expressed in terms of the Z-'s or the y 's. Everything that has been discussed so

far is exactly equivalent to the standard maximum-likelihood decision rule.

SE)=K +777 =K +37%% (22)
=K +(Z-%)"B7F-})

=K +(F-5)TWWTz -5

Ny
=K + Y zf
Eom=l
Ny ( Ny ]l - - 2
—k+ 2 { % W], G -7a)] (22a)
F=1'm =1

This last equation really summarizes the results of this analysis. If
{K W pu}is precomputed, then S (Z) can be evaluated for any unknown
vector and any class C'. These precomputations can be done using the same
type of training data required for minimum distance or K-Nearest Neighbor
classifiers. And the precomputed information is equivalent to knowing
{K ,B-\, i }, which are required by the straightforward computation. This is

because W is a matrix square root of B L.

But let us examine the form of the distance metric expectation under the

in-class and out-of-class hypotheses:
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E{S(&‘)|?ec}=x + Ny

Bls @) 17¢c)=K +k§lg;k
Note that the {th hypothesis can be rejected as soon as the accumulating sum
S.(z) is greater than the lowest sum S already calculated. Also, note that it is
advantageous, in terms of run-time computations, to shuffle the rows of the
W T matrices according to the order of the g; eigenvalues calculated previ-
ously. By placing the k-th rows of the W T matrix corresponding to larger 9k
elements higher up (row-wise) in the matrices, the decision process may be
allowed to jump out of the computational inner product loop very quickly when
entertaining false hypotheses. It is in these manipulations that the real effi-
ciency of the classification process is realized. We call this soft (or adaptive)
dimensionality reduction because the number of z features evaluated changes
for every decision, but is ordinarily much less than the maximum number possi-
ble (i.e., the full dimension of the feature space). Notice that no feature data
has been disregarded, but the training data has been used more effectively to
quickly dismiss false hypotheses. The decision surfaces in the Np-dimensional

feature space are still the same.

Hard (or fixed) dimensionality reduction can be used in conjunction with
the soft dimensionality reduction mentioned above. At this point, a break is

made from conventional multivariate-Gaussian maximum-likelihood decision
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making. The decision surfaces in the Np-dimensional feature space are changed
slightly due to hard dimensionality reduction. Let N, be the number of g;
eigenvalues greater than one for the class C;. We call this N; the intrinsic
dimensionality of the decision space for the class C;. Hard dimensionality
reduction can be achieved after the WT matrices have been shuffled row-wise
by only considering the first N,; features in the whitened z feature space when
entertaining the hypothesis that z is a member of class C; and simply adding
one (1.0) to the sum S;(z) whenever the g;; eigenvalue corresponding to the z;
feature is less than or equal to one. Hence, certain z; terms need never be com-
puted, saving execution time, and the corresponding row of the W7 matrix can
be discarded, saving storage space. It is possible to achieve this hafd dimen-
sionality reduction without decreasing the effective decision accuracy obtained
from straightforward maximum-likelihood approach. This is reasonable because
the features corresponding to the g eigenvalues less than one are actually detri-
mental to the classification process when entertaining the given hypothesis. If
the sum S;(7) is to be minimized in order to make the correct decision, and if it
is expected that the value one (1.0) will be added to the sum when the correct
hypothesis is being entertained, then it is easy to see that if it is expected that a
value of less than one is to be added when the hypothesis is known to be wrong,
the chances of making the correct decision are being diminished. In fact, it does
not seem unreasonable that better performance can be achieved by ignoring the
misleading information. This is the key to the objectivity of the ODR tech-

nique. No subjective thresholds of any sort are required to determine which
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features should be used. The threshold is always one as computed analytically.

The average and standard deviation of the value of S;(z)- K; for the
correct decisions made on a particular image were computed to get an idea of
the variance of the expected value Np as in the equatibn above. For soft
dimensionality reduction, we obtained the value of 25 + 12.7; for hard dimen-
sionality reduction, 26 + 10.1. These results are compatible with the expected

value of 27.

In our limited experiments, we have not seen markedly different perfor-
mance when using the hard dimensionality reduction capability of the ODR
method, but we know that the computational load is further reduced. Some-
times we have seen slightly better performance and other times, slightly worse
performance; none of these changes appear to be statistically significant. Our
experimental results in Figures 3 and 4 show an example of this phenomenon.
Dye [1974] reports that definite improvements in classification performance have
been obtained owing to the hard dimensionality reduction, but that these

improvements are relatively small.

In summary, Dye's theory involving out-of-class covariance is sound, and
we feel it is a major contribution to computational methods for multivariate-
Gaussian maximum-likelihood decision-making. It is interesting to note that
some artificial intelligence research has focussed on the similar problem of
measuring disbelief in a given hypothesis as well as computing belief measures

[Khan and Jain 1985).
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It is extremely important to note that this procedure precisely indicates the
preferred dimensionality of the feature space for each class. As Dye states,
“dimensionality reduction can differ from class to class in accordance with the
differing statistical properties of each class relative to the others, rather than

remaining fixed at a number imposed by compromise.”

Dimensionality reduction in the original feature vector space has not yet
been addressed. The features in the original z space can only be useful or use-
less; they cannot be directly detrimental to decision making. Useful features
will be weighted with non-zero coefficients in the W;T matrices whereas useless
feature receive zero (or very small) weights. To test for useless original feature
data, a feature must not be used by any class for any z feature. The usefulness
of the kth feature in 7 may be tested by summing the squares of the com-
ponents of the kth column vector in the W, matrix for each class C;. If the
components of Z are zero-mean, unit-variance (not conditioned on any class
hypotheses), and if this sum is below a selected small thr&héld (close to zero)
for every class, then the kth feature is not being used and can be discarded.
Otherwise, it is contributing something to at least one class decision and should

be kept and labeled as useful. Moreover, that sum can be used for ranking pur-

poses.

We can express these ideas more formally as follows. If we let —’ik be the
kth column vector of the W7 matrix, we can compute an overall usefulness
parameter a; that can be used to rank the importance of the features in the

original z space:
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Ne -— 2
a =) | Wl
-1
where the bars denote the vector norm. Hence, we can say that the feature vec-
tor component z; is more useful than zZ, if a; > a;s . The feature Z, is use-

less if a, < € where ¢ is a small positive number chosen to account for numeri-

cal imprecision.

4. COMPARISONS AND OBSERVATIONS

When analyzing a statistical pattern recognition technique (or any new
algorithm), it is desirable to draw parallels between the new method in question
and standard, well-tested algorithms. This is helpful in understanding the per-
formance potential of the algorithm as well as allowing an easier grasp of its
underlying concepts. For this reason, we compare the ODR method to a stan-
dard hard dimensionality reduction technique commonly known as Parametric
Discriminant Analysis. The ideas of simultaneous diagonalization and in-class
covariance are common to both, but parametric discriminant analysis uses a sin-
gle between-class covariance matrix instead of the multiple out-of-class covari-
ance matrices used by the ODR technique.

Parametric Discriminant Analysis (PDA) is the multiple-class generalization
of Fisher's linear discriminant analysis [Fisher 1936] [Duda and Hart 1973| and
involves the calculation of an overall within-class covariance matriz and an
overall between-class covariance matriz. The representation for the within-class

scatter matrix is straightforward. It simply involves the summation of the
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individual within-class covariance matrices calculated previously.

S, = % B, —&{B, (23)
¢ =]
where as before
B, = E{F -7)F -7)" | 7€ (29

and p; is the “probability” of occurrence of the rth class in the training data

and is defined as:

P == (25)

The computation of the overall between-class covariance matrix can also be

expressed as an expectation. This matrix is defined as follows:

Sy = 3% 5 (G - AF: -7 = B(Gi -0E -T)

i=1
where p is the overall feature mean vector defined as:

= Fl gél z; fél?;ﬁ.‘ =E{Ei} (27)

Note that S, averages all “information” about the scatter of feature data
under the in-class hypothesis whereas Sp averages all the information about the

scatter of the class mean vectors relative to the central point (mean vector) of
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the unclassified mixture of feature data. PDA then defines a criterion function
J that attempts to measure in a single scalar quantity the ratio of the spread
between all of the classes to the internal spread within the classes. J will be
large when all feature vectors for the given classes are tightly grouped about
their respective class means and the class means are far apart compared to the
tight grouping of the classes. Thus, one can expect excellent decision-making
performance when J is large, and the larger the better. The two most com-

monly used criterion functions for J are

J, = tr(SySp)

det(Sp)
27 Qet(Sy)

By introducing a new transformation matrix W that maps original features into
new, better features, one finds that both J; and J, can be maximized by per-
forming a simultaneous diagonalization on Sp and Sy (see [Duda and Hart
1973] or [Fukunaga 1972]). The optimizing matrix W is the transformation
matrix resulting from the simultaneous diagonalization as in the ODR technique.
Since the rank of Sp can be no larger than Ny - 1, the matrix W provides a
mapping from the original set of Ny features to a reduced dimension set of the
Ny - 1 best features that are linear combinations of the original features and
apply to all class decisions. It is interesting to note that the optimal Bayes clas-
sifier only needs N, -1 features to produce minimum error decisions and

ignores all additional features. Unfortunately, in the PDA method, there are no

29 Objective Dimensionality Reduction



RSD-TR-17-85

guarantees that the reduced dimensionality feature vectors will provide adequate
decision performance. One can seldom even hope for nearly equivalent perfor-
mance because there are usually many more features than classes and not
enough feature information is retained. Efforts have been made to artificially
introduce new classes and to reuse the same procedure on the orthogonal sub-
space of feature data that remains when the best N, - 1 feature subspace has
been extracted. However effective those methods might be, they do not offer
the simplicity, elegance, and objectivity of the ODR approach. A critical differ-
ence here is that there is only one W matrix; no attempt is made to handle each
class separately as in the ODR method. The set of features actually extracted

must be used for all class decisions and is therefore a compromise of the best

features for each class.

We have introduced an existing method related to the ODR technique and
have seen how the Sj; matrix and the B; matrices are related. It is interesting
to examine how the Sp and F; matrices are related to each other. To express
this Sp matrix in terms of our known ODR quantities, it is convenient to define
the total (or mixture) covariance matrix as follows:

Ny
¥ @ -8)E -HT =Sy +Sp (28)

J=1

1
Sr =+

It is possible (after lengthy algebraic manipulations) to express the F matrices
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calculated in equation (7) in terms of this total covariance matrix and the pro-

bability of occurrence of each particular class in the training set:

Fi = 12 [Sr+ G-R)G-5)T - o8, ] (29)

Summing the resulting expression over the total number of classes, and multi-
plying by the probability of occurrence of that particular class produces the
expectation of the F matrix:
Ne

B{F, | = ST #S; (30
Taking a naive view, one might expect this to yield the overall between-class
covariance matrix just as summing the B matrices produces the within-class
covariance matrix. However, since one F matrix already averages over all
classes that are not the assumed class, summing F matrices over each class pro-
duces quite a bit of duplicate averaging that must be compensated for as we

show in the next equation.

Given equation (29), one can express the overall between-class scatter

matrix in terms of the B and F matrices from before:

1 ¥
rPt P )(p)(F; -B;)=8p (31)

v =]

The overall between-class covariance matrix is one half the sum over all the

classes of the product of the probability of occurrence of each class times the
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probability of not being in that class times the difference of the out-of-class
covariance matrix and the in-class covariance matrix. The resultant summed
matrix must be of rank Ny - 1 or less [Duda and Hart 1973] [Fukunaga and

Mantock 1983] whereas the F; matrices are typically all of full rank.

4.1. Two Class, Equal-Covariance Case

It is illuminating to point out that the ODR and PDA methods yield the
same transformation matrix W in the simplest case of a two-class, equal-
covariance matrix, multivariate Gaussian decision problem. Since they both
simplify to the same algorithm in the simplest case, the ODR method can be
viewed as a more effective alternative to the multiple-class generalization pro-

vided by the PDA technique.

Consider the case where B = B, = B,, and we have an equal number of
training samples from each class. Then we have F=F, =F, and

W = W, = W,. This allows us to express all the basic quantities mentioned

above in a much simpler form.
F=B+ [(F -7l -F)T | =Sw + 15

SW = B
(By - o)y - Bo)T

— 1—. -—
#=§(P1+I‘2)
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Of course, by definition of simultaneous diagonalization, we still have

I=WIBW g=WTFW

This implies that
g=1+ [i7]
where

= WT(u - po)

Without loss of generality, there exists a transformation matrix W satisfying

all above conditions such that
F=[n00 - 0]

which implies that

[7;77.1'] = diag('lzy 0,0 --- ’0)

where diag (-) denotes a diagonal matrix with vector argument on the diagonal.
Therefore, we also have the desired equivalent simultaneous diagonalization
action in terms of the within-class and between-class matrices:

2
Wis, W=1I WTSBW=diag(—%,O,O, .o 0).

Both ODR and PDA methods result in the optimal Bayes classifier in this spe-

cial case under the assumption of equal a priori probabilities. Both the ODR
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hard dimensionality reduction method and the PDA method reduce the original
Ny X Nr W matrix to a Np X 1 matrix. The ODR hard dimensionality
reduction method ignores the rest of the W matrix because the associated
eigenvalues in the g matrix are less than or equal to one (1.0); in this case, all
g; eigenvalues are exacﬁly equal to one except for g; = 1+9* > 1. The PDA
method ignores the rest of the W matrix because the original outer product
matrix of the class mean difference vector was of rank one. To be more

specific, let lr—{’l be the first column vector of the W matrix. Bayes test then

becomes the linear discriminant test:

w,T(;_m;o.

which is exactly equivalent to the more familiar formula:

- 1/ - l—o B _ -
7T B (3, - Hy) § 3 (B + BBl - o)

The resulting probability of error, given by [Duda and Hart 1973), is

where

Although an inner product and a comparison against a pre-computed threshold

is all that is required in the standard approach, the PDA approach, and the
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ODR approach for this very simple special case, the benefits of the ODR
approach for many class, many feature problem should be clear. Moreover, the
ODR method provides greater computational benefits as the dimensionality of

the feature space increases and as the number of classes increases.

4.2. Summary

We have attempted to note the similarities and differences between the
ODR method and one existing related method, the PDA method. The within-
class and between-class covariance matrices are simultaneously diagonalized in
the PDA approach just as the in-class and out-of-class covariance matrices are
simultaneously diagonalized in ODR analysis. PDA results in one transform
matrix while the ODR method creates a transform matrix for each class
hypothesis. Thus, the ODR method is able to treat each class ‘‘personally”
whereas PDA must be ‘‘democratic” and can only deal with individual classes
within the group context. Although the primary use of multiple-class
parametric discriminant analysis is for the purpose of hard dimensionality
reduction, this comparison hopefully can provide some insight into the nature
of the ODR technique, which directly provides soft and hard dimensionality
reduction and classification.

Another advanced, related, noteworthy technique that should be men-
tioned is the nonparametric discriminant analysis method proposed by Fuku-
naga and Mantock [1983]. This approach also determines a linear transforma-

tion and provides a scalar measure for each feature that indicates its quality,
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but allows dimensionality reduction to be controlled by the user and does not
determine the intrinsic dimensionality for each class directly from the data as

in the ODR technique.

5. VISUAL SOLDER JOINT INSPECTION APPLICATION

The problem of automating solder-side post-solder-wave solder joint inspec-
tion on plated-through-hole printed circuit boards is considered by many to be
quite a formidable task. Jones [1985] describes this problem as “the (printed
circuit board manufacturing) industry’s toughest technical problem.” Given a
gray-scale image of solder joints, a decision must be made for each joint regard-
ing its acceptability and defective nature if it is not acceptable. We have
addressed the inspection problem by treating it as a standard pattern recogni-
tion problem where a set of usual and unusual gray-scale image features are util-
ized [Besl et al. 1985]. There are currently twenty-seven features calculated for
each solder joint subimage, which has been automatically isolated from a larger
.image containing several solder joints. Figure 1 displays an example image of
plated-through-hole solder joints on a printed circuit board and a class-labeled
version of that same image. Each solder joint in a set of these images has been
classified by a human operator to use for training and testing the ODR algo-
rithm. The following set of nine classes has been chosen to categorize solder

joint subimages according to their defects:

A = Acceptable Joint (dark to medium brightness)

B = Acceptable Joint (medium bright to bright)
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C = Cup-shaped Filled Hole (no lead)

D = Disturbed/Deformed solder (lead?)

E = Excessive solder (lead?)

F = Filled Hole (flat solder surface, no lead)
H = Hole (no lead, no solder)

I = Insufficient solder (poor fillet on lead)

N = No solder (lead present but no solder fillet)

A and B type subimages represent acceptable solder joints. C and F type
subimages represent plated-through-holes that the solder has completely filled
even though no component lead is present. C and F type subimages do not
really represent solder joint defects, but they do need to be recognized. Some
applications require F type filled holes to meet certain quality specifications, and
in these cases, C subimages may represent undesirable defects. D and E type
subimages represent globs of solder. E type subimages represent smooth sur-
faced (almost hemispherical) blobs of solder where the D label is used for any
blobs with unsmooth surfaces. There is usually too much solder in D and E
types to tell if a component lead is present or not. H and N type subimages
represent large holes that are not filled with solder: the N label implies a com-
ponent lead is present whereas H implies otherwise. I type subimages represent

component leads with solder where the solder fillet is not acceptable due to one

of many reasons.
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Because of the complexity of this multiple class problem and the difficulty
in obtaining uncorrelated gray-scale image features, Automatic Visual Solder
Joint Inspection is an excellent problem to address with the ODR (Objective
Dimensionality Reduction) Statistical Pattern Analysis technique. The selection
of informative scalar features for gray-level solder joint subimages is a difficult
task, especially when a classification algorithm is used that cannot objectively
rank features according to their usefulness for decision-making. Since the ODR
Technique creates different weighting values for each feature depending on class
hypotheses and it permits hard dimensionality reduction, features are only used
when the information contained therein is helpful for making a decision about a
particular class. Because of this, the addition of uninformative features does not
turn out to be detrimental to the classification process. That is, we can afford

to be somewhat speculative in feature selection because we know that our selec-

tion mistakes will be automatically ignored.

5.1. Summary of Solder Joint Subimage Inspection Features

Twenty-seven (27) features are currently calculated for each solder joint
image. These can be divided up into five categories: (1) Basic Gray-Level
Statistics Features, (2) 3-D Gray-Level Inertia Features, (3) Gray-Level Surface
Area Features, (4) Differential Geometric Gray-Level Surface Curvature
Features, and (5) Binary Image Connected-Region Features. The known corre-
lated features have been removed from this list. Out of twenty-seven features,

sixteen are general purpose gray-level subimage features, and the other eleven
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involve application specific assumptions. Of these eleven, five are gray-level

subimage features and six are binary subimage features.

The numbers (labels) associated with each feature have no meaning. They
resulted from the order in which different features were included in the feature

extraction subroutine.

5.1.1. Basic Gray Level Statistics Features

Feature 0 is the normalized standard deviation of the gray-level surface.
Feature 1 is the normalized mean gray level, or gray volume. Feature 2 is the
normalized central subwindow gray volume. Feature 3 is the normalized
outer frame region gray volume. Feature 7 is the minimum normalized gray
level in the subimage. Feature 19 is the percentage of dark pixels in the
subimage (within 5% of the 0 (dark) gray level). Feature 20 is the percentage
of bright pixels in the subimage (within 5% of the maximum gray level).

Features 2 and 3 are application specific features whereas the others are gen-

eral purpose.

5.1.2. 3-D Gray-Level Inertia Features

Feature 4 is the first principal (spatial) moment of inertia. Feature 5 is
the ratio of the brightness moment to the average of the two spatial moments

of inertia. Feature 6 is the sum of all three moments of inertia.
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5.1.3. Faceted Gray-Level Surface Area Features

Feature 10 is the approximate surface area obtained by summing the
gray-level surface metric determinant over all pixels. Feature 11 is the

faceted gray level surface area.

5.1.4. Differential Geometric Gray-Level Surface Curvature
Features

Feature 8 is percentage of positive Gaussian curvature pixels. Feature 9
is percentage of negative Gaussian curvature pixels. The number of zero
Gaussian curvature pixels is typically non-zero preventing these two features
from being correlated. Feature 13 is the average value of positive Gaussian
curvature. Feature 14 is the average value of negative Gaussian curvature.
Feature 17 is percentage of positive mean curvature pixels. Feature 18 is per-
centage of negative mean curvature pixels. The number of zero mean curva-
ture pixels is typically non-zero preventing these two features from being
correlated. Feature 15 is the average value of positive mean curvature.
Feature 16 is the average value of negative mean curvature. Feature 12 is the

quadratic variation of the gray level surface.

5.1.5. Binary Image Connected-Region Features

Gray-level images of several solder joint types have very distinctive
characteristics when thresholded to create binary images. For example, the
tip of a component lead often appears as a bright region in the subimage, and

therefore it will show up as a region in the thresholded image. All subimages
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were thresholded at gray level based on the overall brightness of the image
(85 on a scale of 256 for our implementation), to provide the greatest amount
of information. This threshold can be computed automatically via histogram
’analysis, but must make some domain-specific assumptions. The lead tip

connected-component regions are clearly seen in the top two binary images.

The first region related feature is Feature 21, which is the number of
four-connected regions in the thresholded solder joint subimage. Since those
subimages containing solder leads are guaranteed to contain at least one

region, this feature is effective in separating those subimages containing solder

leads from those without solder leads.

Feature 22 is the number of pixels in the largest four-connected region in
the thresholded image. This feature provides excellent separation of classes,
and is therefore a great contributor to the classification process. Often the
largest region in an accéptable type joint is the lead tip, while, for an F or C
type joint, the largest region is usually several times that size. Holes usually
produce small four-connected bright regions.

Feature 23 is the number of pixels in the thresholded image that are not

in the largest region. This feature serves to separate those joint types with

little or no solder present, for example N or H type joints, from those with
solder present.

Feature 24 is the ratio of the area of the min/max box around the largest

region to the number of pixels in the largest region. This feature also helps
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distinguish N and H type solder joints. Since the largest region present is
often the border of the solder pad, the min/max box will therefore almost

occupy the entire subimage, making the ratio quite large.

Feature 25 is the aspect ratio (width to height) of the min/max box sur-
rounding the largest region.

Feature 26 is the ratio of the perimeter squared to the area for the larg-
est region within that subimage. This feature works well in separating E type
and some F type joints from the others.  Since the four-connected regions in
the E type joints often appear as C-shapes or rings (owing to the use of a
toroidal fluorescent tube for lighting), the ratio of the perimeter to the area is
large in comparison to that for other joint types, which usually contain

roughly rectangular or circular regions.

5.1.6. Complete Ranking of Feature Usage

Although all features were found to be useful, some features are more
useful than others. In order to make this quantitative, we computed a
Euclidean metric of the weighting factors for each feature across all classes.
The metric was computed with and without hard dimensionality reduction.
Figure 8 shows the ranking of all the features according to their average use-
fulness across every class decision for both cases. The top ten and worst five
subimage features are the same in both cases and are briefly discussed. Due
to the symmetry properties of solder joint subimages from an overhead view,

the three 3-D inertia properties are rated the highest, followed by the average
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normalized gray level and standard deviation. The number of pixels in the
thresholded binary image was ranked sixth with the approximate surface area
measure coming in seventh. The average positive Gaussian curvature feature
was ranked next, which means that it actually characterizes bright spots in
subimages. The quadratic variation was ranked ninth followed by the central
subwindow volume feature. The worst five features are the min/max box
occupancy ratio and the peround measure of the largest binary-image region,
the two Gaussian curvature percentages, and the negative Gaussian curvature

average.

5.2. Measurement of Performance

To measure the performance of the ODR technique using the 27 features
and the 9 classes, five quantities are calculated. The first is called Correct
Classifications (CC) and is defined as the number of joints where the classifica-
tion assigned by the algorithm agrees with that assigned by the human classif-
ier.

The second performance measure is the number of unacceptable joints

classified as acceptable by the algorithm (Misses).

The third quantity is the number of acceptable joints classified as unac-

ceptable by the algorithm (False_Alarms).

The fourth quantity calculated is the percent correctness of good / bad
decisions made by the algorithm (%GB). This is calculated by summing the

number of acceptable joints correctly classified as acceptable and the number
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of unacceptable joints correctly classified as unacceptable and dividing by the
total number of joints being considered. We consider this to be the most

important index of performance.

The final quantity calculated is the percent correctness of class decisions
(%CC). This is calculated by taking the number of correct classifications (CC)

and dividing by the number of solder joints being considered.

5.3. Computation Reduction

Figure 2 displays the reduction in computation due to the use of the out-
of-class covariance matrices. Each plot is a histogram that shows the relative
number of times that a particular number of z features (inner product compu-
tations) were needed. We can denote that number of z features as n, and the
number of times it is used as n;(n,). We refer to such a histogram as a
dimensionality histogram because it can be viewed a plot of the number of

decisions made in each dimension from 0 to Np = 27.

The top plot displays the MLMVG algorithm results when the S;(7)
statistic is computed using the square root W matrices instead of the B!
matrices and the conditional termination criteria is used. To our knowledge,
most MLMVG implementations do not even use this trick and therefore, every

decision would require the full Np inner products.

The second plot displays the results when the W matrices have been
sorted in decreasing order according the g; eigenvalues. Notice the peak that

occurs at n, = 1. This means that it is quite common that a decision can be
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made after evaluating only one z feature. The peak at n, = 27 still occurs
because every solder joint decision must have the full computation for at least
one hypothesis.

The third plot shows the effects of hard dimensionality reduction on the
dimensionality histogram. The major effect is that the peak at n, =27 is
broken down into several smaller peaks corresponding to the different intrinsic
dimensionalities of the decision spaces for the different classes. In our experi-
ments, the N values were the same for several class hypotheses. The low
dimension portion of this third plot looks very similar to the second plot as it
should.

The fourth plot shows the ODR algorithm in the minimum distance clas-
sifier emulation mode where all W matrices are the identity matrix and all K;
values are zero. The number of z values then does not indicate the number of
inner products in this case because the z feature vector can be used directly.
However, it is interesting to note that the dimensionality of the average deci-

sion is very high.

5.4. Performance of the ODR Algorithm

A database of seven images was used for testing of the ODR Technique.
Each of theses images were digitized with the camera directly over the printed
circuit board, keeping exposure and lighting constant for each. Each individual
image contained over 190 solder joint subimages, although only 65 were actu-

ally recorded in the database for the last image (A8).
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It can be shown [Kalayeh and Landgrebe 1983] that (1) Ng+1 training
samples per class are absolutely necessary, (2) SN +1 training samples per
class are preferred, and (3) 10Ny +1 samples would yield excellent estimates of
the required covariance matrices needed for multivariate normal processing.
Obtaining low variance results from the mean and covariance calculations is
necessary to make the classification process reliable and consistent. Therefore,
all 1286 of the solder joint subimages in the A image database were used in the
training stage. Unfortunately, this left no remaining joints from the same
database with the same image resolution and the same lighting for testing pur-
poses outside the training set. However, we are very satisfied with our results
at this stage in our research in that no other method of the several that we
have tried was able to demonstrate such good performance even when trained

on every subimage. Most methods performed worse when trained on all the
image data.

Classification results for the A-type images without and with hard dimen-
sioné.lity reduction is shown in Figures 3 and 4 respectively. It is seen that the
hard dimensionality reduction does little to affect performance even though
computation was reduced (on average, by two inner products of length 27).
These results snclude errors made on solder joints that were humanly classified
with a class label that was not used in the nine classes. For comparison pur-
poses, we altered the input to the ODR algorithm so that it would behave as
an unweighted, normalized minimum-distance classifier. Figure 5 shows the

marked decrease in performance even though these results are better than

Objective Dimensionality Reduction 46



RSD-TR-17-85

previous results, which indicates that the normalization process and the new
features are of some help. The best overall results from the minimum-distance
classifier previously used [Besl et al. 1985] are displayed in Figure 6. As can be

seen, the ODR Technique results are far superior to those previously obtained.

Our latest results are from classifications of images which are subsets of
the training set. However, we have no evidence to suggest that performance
will diminish significantly when dealing with new data because there is a sub-
stantial amount of image variation just in the A set. For testing purposes, two
new images were digitized, each having one hundred classifiable joints. An
attempt was made to duplicate the resolution and lighting conditions from the
A-type images. One image, K1, was taken from the same printed circuit board
as the A-type images, and the other, K2, was taken from a new PC board. As
can be seen in Figure 7, these results are not on the same level as those
obtained from the A-images. Unfortunately, the classification of objects with
reflective surfaces, such as solder joints, is extremely sensitive to the changes in
lighting. Therefore, these results should not be considered indicative of the
actual performance of this algorithm with unknown data, as a solder joint

inspection station would maintain much more consistent lighting.

5.6. Distance Table for the Solder Joint Class Road Map

Many of the concepts presented here are not easy to grasp owing to their
multidimensional nature. However, almost everyone is familiar with a distance

table that lists the distances between cities on a map, and the distance table
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concept is not limited to two dimensions. Figure 9 shows two distance tables
for the metric distances between the mean vectors of the nine solder joint
classes, which are analogous to different cities. The units of distance are
expressed as percentages of the average between-class distance. Table (a)
shows the distances in a normalized 27 dimensional space, and summarizes the
distribution of mean vectors that the minimum distance classification algo-
rithm would have to work with. The two classes closest together and probably
hardest to distinguish are class B and class I. This agrees with our qualitative
visual impressions of these types. This table is naturally symmetric since the
distance from point A to point B is the same as the distance from point B to
point A. Also, the table does not account for the effects of internal class vari-
ance on the decision-making separability of classes because the Euclidean dis-
fance was used instead of the Bhattacharya or divergence distance measures.
On the other hand, Table (b) shows a distance table that is not symmetric. It
represents the distances between classes as seen by the ODR algorithm. For
example, under the class B.hypothesis, the class C mean is 21 units from the
class B mean whereas they are separated by only 17 units under the class C
hypothesis. This is due to the customized class decision structuré of the ODR

technique. That is, the two distances
I wt'T(-ﬁi - ﬁ;) ‘
and

I ijGII' - ;‘.J) |
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are in general not equal. These tables are presented to help the reader picture
general concepts in the context of a specific application with specific data. The
second table points out the asymmetric nature of MLMVG class mean dis-

tances as considered by the ODR method.

6. SUMMARY

We have presented a method called the Objective Dimensionality Reduc-
tion (ODR) algorithm. This method uses the standard maximum-likelihood
multivariate Gaussian (MLMVG) approach modified by the incorporation of
out-of-class covariance matrix information. This modification reduces the
amount of computation required to make approximate MLMVG decisions by
more than a factor of three (3) and provides an objective indication of the
intrinsic dimensionality of the decision space for each class hypothesis. The
hard dimensionality reduction capability of the ODR approach makes it rela-
tively insensitive to increases in input feature dimensionality because it ignores
bad feature data. This method was compared to the commonly used parametric
discriminant analysis technique for dimensionality reduction. Excellent experi-
mental results for a 9 class, 27 feature solder joint inspection application were

obtained with significantly reduced computations compared to the standard

MLMVG method.
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Figure 1. PCB Image and Labeled Image
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63

Classification Performance for The ODR Algorithm

Soft Dimensionality Reduction Used

Image | Total_Joints | CC | Misses | False_Alarm | %GB | %CC
Al 196 168 10 0 94.9 86.7
A3 197 189 1 0 99.5 95.9
A4 196 179 1 4 97 .4 81.3
Ab 211 180 3 3 97.2 80.0
A6 210 193 4 2 97.1 91.9
A7 211 194 b 1 97.2 91.9
A8 85 62 0 0 100 95.4

Total 1286 11756 24 10 97.4 91.4

Figure 3.
Classification Performance for The ODR Algorithm
Hard Dimensionality Reduction Used

Image | Total_Joints CC | Misses | False_Alarm | %GB | %CC
Al 198 1687 9 0 95.7 85.2
A3 197 189 1 0 99.6 85.9
A4 196 178 1 4 97 .4 90.8
Ab 211 192 3 2 97.68 81.0
A8 210 194 4 2 97.1 92.4
A7 211 191 b 1 97.2 90.5
A8 656 63 0 0 100 96.9

Total 1286 1174 23 9 97.5 81.3

Figure 4.
Classification Performance for The ODR Algorithm
Minimum Distance Classifier Emulation

Image | Total_Joints | CC | Misses | False_Alarm | %GB | %CC
Al 196 135 9 2 94.4 68.8
A3 197 151 2 1 98.5 76.6
A4 196 138 13 9 88.8 69.4
Ab 211 148 16 6 90.5 70.1
AB8 210 148 9 15 88.8 89.5
A7 211 139 9 14 89.1 685.8
A8 85 62 2 1 96.4 80.0

Total 12886 807 59 47 91.8 70.5
Figure 6.
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Classification Performance for Old Minimum Distance Classifier
Twelve Member Class List
Weight File 3
Image | MFC | Good/Bad_% | Miss_% | False_Alarm_% | Correct_Class_%
Al Al 96.4 2.8 1.0 74.56
A2 A2 83.2 9.8 7.1 87.0
A3 A3 95.9 2.0 2.0 76.8
A4 A4 91.8 2.8 5.8 68.8
Ab Ab 81.0 12.3 8.6 65.9
ASB AS8 89.0 5.7 5.2 61.9
A7 A7 88.2 0.9 10.9 57.8
B1 B1 91.1 7.1 1.8 714
B2 B2 92.2 0.0 7.8 79.7
B3 B3 77.3 10.6 12.1 66.7
B4 B4 98.4 0.0 1.6 80.9
B5 B5 84.4 12.6 3.1 71.9
B6 B8 82.8 3.1 14.1 73.4
AVG —- 88.6 5.3 6.1 68.8
Figure 6.
Classification Performance for The ODR Algorithm
Sofi Dimensionality Reduction Used
Image | Total_Joints | CC | Misses | False_Alarm | %GB %CC
K1 100 75 15 1 84.0 75.0
K2 100 89 10 3 87.0 89.0
Total 200 164 26 4 85.56 82.0
Figure 7.
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Subimage Features Ranked by Usefulness
HDR = Hard Dimensionality Reduction
Feature_# Metric Feature_# Metric
Rank | With HDR | With HDR | Without HDR | Without HDR
0 6 803.3 [ 827.9
1 4 716.5 4 734.3
2 5 562.0 b 584.5
3 1 485.3 1 493.0
4 0 349.3 0 352.2
5 22 336.1 32 339.2
) 10 278.12 10 280.3
7 13 1987.5 13 197.9
8 12 165.4 12 166.4
9 2 162.2 2 163.9
10 17 149.7 17 160.0
11 18 149.5 18 159.8
12 20 128.0 20 129.7
13 3 118.3 3 120.1
14 11 89.9 11 80.7
15 23 77.6 23 79.3
18 19 66.9 19 68.2
17 7 60.0 16 61.6
18 16 59.8 7 61.4
19 16 53.0 15 54.9
20 25 52.8 21 ~ 54.7
21 21 52.2 25 54.0
22 24 47.2 24 48.4
23 28 41.2 28 42.5
24 8 39.6 8 40.7
25 9 34.8 9 36.7
26 14 31.9 14 32.8
Figure 8.
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Distance in Unmodified 27 Dimentional Space
( units = percent of average distance )
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Distance in Rotated and Scaled Domain
( units = percent of average distance )
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TABLE A.

TABLE B.

Figure 8. (A) Minimum Distance and (B) ODR Algorithm Distance Tables.
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