THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Computer and Communication Sciences Department

COMPARISON OF GENETIC ALGORITHMS AND
GRADIENT-BASED OPTIMIZERS ON PARALLEL PROCESSORS:
EFFICIENCY OF USE OF PROCESSING CAPACITY

Albert D. Bethke

November 1976

Logic of Computers Group
Technical Report No. 197

with assistance from:

National Aeronautics and Space Administration
Grant No. NSG-1176
Langly Research Center
Hampton, Virginia

o ;.f‘ *‘—--—-%‘:\f

O34

ABSTRACT

Parallel computers such as the ILLIAC IV [3], CDC STAR, and C.mmp
[12] are in limited use today. The use of microprocessors promises to
make parallel processor computers very practical in the near future.
In this paper, we will explore the question of performing function opti-
mization on a parallel processor computer. In particular, we will compare
Holland's reproductive plans [6], [8] (suitably modified for parallel
execution) with more standard (gradient based) function optimizers
(again, modified for parallelism) [2], [9].

We will first consider an elementary reproductive plan and later
a more sophisticated reproductive plan. Since reproductive plans are
based on models from population genetics, we may reasonably expect
reproductive plans to be well suited to parallel implementation. Indeed,
recasting the elementary plan into a parallel form is rather straight-
forward. The more sophisticated plan poses some problems however.
Gradient based optimizers are easily put into parallel form, but less

efficiently utilize a multi-processor than the reproductive plans.

Table of Contents

Elementary Reproductive Plan .

Efficiency Analysis

Sophisticated Reproductive Plan

Efficiency Analysis

Standard (Gradient based) Function Optimizers
Summary

References .

Explanation of Figures .

ii

17
21
24
25

26

Elementary Reproductive Plan

The elementary reproductive plan has the following form:
generate initial (random) population
repeat until desired stopping criterion:
compute selection probabilities
generate new population (using crossover and mutation)

Each of the steps above may be done in a-parallel fashion, but each step
must be completed before the next step can be started. In the following
assume that there are N individuals in the population denoted by A(1),
A(2),...,A(N). The objective function will be denoted by f. Associated
with each individual are two numbers. First, VALUE(I) will be the function
value for the point represented by A(I). That is, VALUE(I) = f(A(I)).
(The "fitness'" of an individual is simply the function value for that
individual, but all fitnesses are shifted to ensure that they are positive:
fitness(I) = VALUE(I) - FMIN + 1.0, where FMIN is the smallest function
value encountered so far.) Second, the selection probabilities are kept
in an array PROB. PROB(I) is the probability of selecting individual A(I)
to participate in an application of the crossover operator while generating
a new population.

Lipton [11] suggests an ALGOL-like notation for describing parallel
algorithms. In the same spirit, we will use

PARFOR index := initial STEP increment UNTIL final DO <statement>
to indicate a repetition of <statement> for the specified values of the
index variable with parallel execution for different index values and

arbitrary interleaving of these executions.

So, to generate the initial population:
PARFOR I := 1 UNTIL N DO
A(I) := random point in domain of f;
To compute the selection probabilities we must do the following:
PARFOR I := 1 UNTIL N DO
TEMP1(I) := TEMP2(I) := VALUE(I) := f(A(1));
compute SUM = VALUE(1) + VALUE(2) + ... + VALUE(N)
and find new FMIN;
PARFOR I := 1 UNTIL N DO
PROB(I) := (VALUE(I) - FMIN + 1.0)/(SUM - N« (FMIN - 1.0))
We may compute the sum of the function values and find the minimum
function value in the same loop:
M := N;
WHILE M > 1 DO
BEGIN
PARFOR I := 1 UNTIL FLOOR(M/2) DO
BEGIN
TEMP1(I) := TEMP1(2%I-1) + TEMP1(2+I);

IF TEMP2(2%I-1) < TEMP2(2+I)

THEN TEMP2(I) := TEMP2(2xI-1)

ELSE TEMP2(I) :

TEMP2 (2+1) ;
END;

IF M is odd THEN

BEGIN
" TEMP1 (CEILING(M/2)) := TEMP1(M);
TEMP2 (CEILING (M/2)) := TEMP2 (M)

END;

M := CEILING(M/2)
END;
SUM := TEMP1(1);
FMIN := TEMP2(1);

The parallelism is rather limited here. The PARFOR loops will be
able to utilize only half as many processors each time through the WHILE
loop. And there is the special case when M is odd plus the need to halve
M each time. This can be improved somewhat if N is a perr of two. In
that case, we need not check for M beingbodd or find FLOOR(M/2) or
CEILING(M/2). Alternatively,

let K = flogz(N)], L= ZK, so N <L < 2N.
And, after generating the initial population, set

TEMP1(J) = 0 and TEMP2(J) = VALUE(1), for N < J < L.
These values will remain unchanged until the reproductive plan terminates.
This also eliminates the need to test for odd values of M, since we can
begin with M := L which is a power of two. 'In fact, if we have L/2
processors, each of them can execute the same program. Processor J's
program:

FOR COUNT := 1 UNTIL K DO

BEGIN sum and compare block
TEMP1(J) := TEMP1(2*J-1) + TEMP1(2%J);

IF TEMP2(2#J-1) < TEMP2(2+J)

1]

THEN TEMP2(J) := TEMP2(2xJ-1)

ELSE TEMP2(J) :

TEMP2 (2%J) ;
END sum and compare block;

This assumes that the processors work synchronously.

To generate the new population:

PARFOR I := 1 UNTIL N DO

BEGIN
PARENT1 := SELECT;
PARENT2 := SELECT;

NEW(I) := CROSS_OVER(PARENT1, PARENT2);
mutate NEW(I)
-END;
SELECT is a procedure which chooses an individual from the current popula-
tion at random based on the selection probabilities computed earlier.
CROSS_OVER is a procedure which performs a cross-over on 2 individuals
to produce a new individual. PARENT1 and PARENT2 must be local to the
PARFOR loop - or better yet, there should be one PARENT1 and one PARENT2
associated with each processor. These two values could be kept in
registers (rather than keeping them in storage) since they are only
needed for a very short time. In addition, each processor should have its
own random number seed. This seed might be kept in a registef also since
the random number generator is heavily used by this reproductive plan.
Finally, to replace the old population by the new population:
PARFOR I := 1 UNTIL N DO
A(I) := NEW(I);
Notice that if we have N processors, they can all execute exactly the same
program (synchronously). It is therefore very well suited for execution
on a single-instruction-stream-multiple-data-stream computer. This program
has only a very few conditional statements, so it would be efficient to

issue the instructions for both choices (the THEN part and the ELSE part),

one after the other, and disable the processors which should not execute
that part. Using fewer than N processors poses no problems except the
obvious scheduling problem of associating the proper index variable values
(in a PARFOR loop) with the proper processor. If we use an '"asynchronous
multiprocessor", then the processors will have to be artificially
synchronized and we may proceed only as rapidly as the slowest processor
allows us. However, since each processor executes the same code, using
the same arrays at the same time, we would not expect any significant

differences in execution times.

Efficiency Analysis

The bottleneck for this algorithm is computing the sum of the
function values and minimum function value in order to find the selection
probabilities. Even with N processors, the summation cannot be done in
one step. The best that can be done is to add the values in pairs
following a binary tree to obtain the final result in 1og2N steps. But
the computational sequence to find this sum (and the minimum value at the
same time) is very short and simple. Let the time required for one
processor to execute the block labeled "sum and compare block" above for
only one value of COUNT be CS. Let the time required to execute the
remainder of the program (excluding initialization) be CR. Notice, CR
includes the final step in computing selection probabilities (PROB(I) :=
VALUE(I)/SUM), the time required to generate a new individual, and the
time to place that individual into the population. So CR >> CS.
Using N processors, the computation time for one generation is

flogzN] = Cg + CR

Using only 1 processor, one generation requires

(N-l)CS + NCR units of time.
And with 1 < P < N processors we have [1]
([N‘;—l“ + log,P] - 1>Cs . [g]CR
as the computation time per generation. To carry this one siep ruriner,
if N/P = m where 0 <m < N and m is an integer, then the computation time
per generation is

N
(-F + [logZP] - 1) Cg+pC

R

o=

Experience with reproductive plans [4], [5], [6] suggests that larger
populations lead to better long term performance at the expense of the
short term performance. So the population size must be chosen accordingly.
For sequential machines, populations larger than a few hundred individuals
generally lead to unacceptably slow optimization. For N < 200, and with
CS << CR (say CS <:§bCR), the computation time per generation using P

processors is well approximated by

TP : [QJCR
For larger populations, this approximation is not as good unless the ratio
CR/CS is increased also. See figures 6-10.
Define the '"speed-up (coefficient)'" for P processors to be the ratio
of the execution times using only 1 processor and using P processors. Then

1. Ro_w
T

P [%I'CR“E’T

Now define the "processor utilization" or "efficiency'" for P processors to

SP =

be the fraction of time during which each processor is busy (average over
S

"the P processors). Notice this is just 7;—. So
N
S U
"R
p

N
*TgT- never exceeds 1 and is minimal for P = N - 1. For P =N - 1,
P

Ep = %-. Using P processors where P does not divide N is clearly wasteful

since some processors remain idle during part of each PARFOR loop. See
figures 1-5.

Therefore, the processors, are kept busy nearly all the time. The elemen-
tary reproductive plan lends itself well to parallel implementation.
Using more than N processors would reduce the computation time even
nore. The loop which does the summation and finds the minimum of the
function values for the current population could be sped up by having 2 or
3 or even more processors executing the program for processor J. The
addition of TEMP1(2%J-1) + TEMP1(2#J) and the comparison of the TEMP2
values can be done concurrently. Some of the sections of the rest of
the program can be similarly sped up by using more than N processors.
PARENT1 and PARENT2 can be chosen simultaneously for example. And the
code for SELECT and CROSSOVER and MUTATE undoubtably can be implemented
with reasonaﬁle éfficiency using a small number of processors. So using
2N or 3N or maybe mN, for small m, processors should reduce the computa-
tion time per generation by almost m over the time required with only
N processors. Synchronizing the processors would be more difficult and
there might be some not yet discovered bottlenecks which would reduce
the efficiency of using more than N processors. In any case, if N is

50, 100, or 200, 2N or 3N processors may not be available.

Sophisticated Reproductive Plan

The plan we will consider was developed by deJong [6] and performs
much better than the simple reproductive plan. The form of this sophisti-
cated plan is:

generate initial (random) population
repeat until desired stopping criterion:
compute selection probabilities
generate new individuals
incorporate new idividuals into population
Here we do not replace the entire population at once, but only G < N
individuals each generation. Other differences between the elementary
and sophisticated plans include forcing each individual to have very nearly
the expected number of offspring (based on selection probabilities), and
to apply crossover with a probability less than 1 (the elementary plan
always applied crossover in generating new individuals). These and other
differences will become more apparent as the sophisticated plan is put
into parallel form.

The initial population may be generated as before.

The selection probabilities are computed in the same way as for
the elementary plan with one exception - in the same loop that sums the
function values and finds the minimum value, we also find the index of
the best individual. (The best individual is saved from one generation

to the next to ensure that the optimizer does not '"regress".)

10

PARFOR I := 1 UNTIL N DO
BEGIN
TEMP1(I) := TEMP2(I) := VALUE(I) := f(A(I));

BEST(I) := I

WHILE M > 1 DO
BEGIN
PARFOR I := 1 UNTIL FLOOR(M/2) DO
BEGIN
TEMP1 (I) := TEMP1(2%I-1) + TEMPL(2+I);

IF TEMP2(2%I-1) < TEMP2 (2#I)

THEN TEMP2(I) := TEMP2(2*I-1)

ELSE TEMP2(I) :

il

TEMP2 (2+1) ;

TF VALUE (BEST (2%I-1)) > VALUE (BEST (2+1))

1

THEN BEST(I) := BEST(2*I-1)

ELSE BEST(I) := BEST(2+I)
END
IF M is odd THEN
BEGIN
TEMP1 (CEILING(M/2)) := TEMP1(M);
TEMP2 (CEILING(M/2)) := TEMP2(M);

BEST (CEILING(M/2)) := BEST(M)
END;
M := CEILING(M/2)

END;

11

SUM := TEMP1(1);
FMIN := TEMP2(1);
BEST_INDEX := BEST(1);
save best string if desired;
PARFOR I := 1 UNTIL N DO
PROB(I) := VALUE(I)/SUM;
Again, the parallelism can be improved greatly by using some dummy
variables. Let

K= [log N], L = 2K, so N <L <2N
g, <

After generating the initial population, set
TEMP1(J) = 0, TEMP2(J) = VALUE(1), BEST(J) = J, for N < J < L.
These values will not be changed by the reproductive plan. With L/2
processors the WHILE loop above can be effectively carried out if each
processor follows this program:
FOR COUNT := 1 TO K DO
BEGIN
TEMP1(J) := TEMP1(2%J-1) + TEMP1(2+J);
IF TEMP2(2%J-1) < TEMP2(2xJ)

THEN TEMP2(J) :

i

TEMP2 (2+J-1)

]

ELSE TEMP2(J) := TEMP2(2+J);
IF VALUE (BEST (2+J-1)) > VALUE (BEST (2+J))

THEN BEST(J) :

BEST (2+J-1)

1]

ELSE BEST(J) := BEST(2%J)
END;
Here J is the index of the processor. This requires that the processors

act synchronously.

12

To generate G new individuals to be incorporated into the population
later, requires the following sort of structure.
PARFOR NEW := 1 UNTIL G DO
IF random value < crossover probability
THEN
BEGIN
UNTIL successful selection
BEGIN
PARENT1 := SELECT;
test and decrement PARENT1's offspring counter
END
UNTIL successful selection
BEGIN
PARENT2 := SELECT;
IF PARENTL # PARENT2
THEN test and decrement PARENT2's offspring
counter
END
NEW(I) := CROSS_OVER(PARENT1, PARENT2);
END
ELSE no crossover
BEGIN
UNTIL successful selection
BEGIN
PARENT1 := SELECT:

test and decrement PARENT1's offspring counter

END

13

NEW(I) := A(PARENT1)
END;
mutate NEW(I);

The test and decrement operation must be a single indivisible opera-
tion such that if more than one processor attempts to modify the same
counter all but one will be '"locked out" until the first processor completes
the test and decrement. The test portion of the test and decrement
operation tells whether the counter is positive or not. If the counter is
positive, then that individual has not yet had its expected number of
offspring and may be selected successfully as a '"parent'". The indivisi-
bility of the test and decrement operation ensures that the same individual
cannot be simultaneously selected by several processors and have its
counter decremented to a very negative value (and have more than the
expected number of offspring). Of course, the same individual can be
selected in very rapid succession by several processors and éould be
involved in several crossover operations at the same time if thevnumbef
of expected offspring allowed that.

Incorporating the new individuals into the population is done in
one of two ways. If G < N/2, then G individuals from the current popula-
tion are replaced by the new individuals. If G > N/2, then N-G individuals
are chosen from the current population to be retained in the next genera-
tion. DeJong's work [6] suggests G should be about N/10, so the first
method is almost always the method to be used. DeJong also found that
the performance of this reproductive plan is improved if, for each new
individual, a small number of candidates is chosen and the candidate

most similar to the new individual is replaced by the new individual.

14

The number of such candidates was called the crowding factor (CF). So
the replacement process may be done in this way:
PARFOR I := 1 UNTIL G DO
BEGIN
PARFOR J := 1 UNTIL CF DO
BEGIN
choose one individual from the current population
at vandom {uniform distribution) call this
individual A{R{J));
find Hamming distance between A(R(J)) and
NEW(I) = HD({J);
END
find minimum of HD(1), HD(2),...,HD(CF), call it

HD (BEST.MATCH} ;

END;

The replacement operation A(BEST_MATCH) := NEW(I) presents us with
the difficulty that several processors may simultaneously replace thé
same individual with several new individuals causing some of the new
individuals to be lost. The solution is to mark each individual as té
whether or not it has been replaced yet and then "test and set" this flag
when replacing an individual. This can be accomplished with thé same
test and decrement instruction needed earlier. When an individual is
selected for replacement which is marked as already replaced, then

another individual must be chosen. Thus, the program becomes:

15

PARFOR I := 1 UNTIL G DO
BEGIN
UNTIL REPLACEMENT.FLAG(BEST.MATCH) = not replaced* DO
BEGIN
PARFOR J := 1 UNTIL CF DO
BEGIN
UNTIL REPLACEMENT_FLAG(R(J)) = not replaced DO
R(J) := RANDOM(1,N);
HD(J) := Hamming distance between A(R(J)) and
NEW(I);
END;
BEST_MATCH := index corresponding to minimum of
HD(1), HD(2),...,HD(CF);
END;
A(BEST_MATCH := NEW(I);
END;

At this point, the more sophisticated reproductive plan has been
adapted for parallel implementation. We should mention that the sophisti-
cated plan uses a generalized crossover operator so that the number of
crossover points may be greater than one. This should have very little

effect on the parallel implementation of the algorithm except that all

*Notice, the test that A(BEST_MATCH) has not already been replaced
must be done using the '"test and set" (or possibly a '"test and decrement')
operation for the reason stated above. On the other hand, the test to
see whether A(R(J)) has been replaced yet should not use the '"test and set"
operation because this step only finds candidates for replacement and
does not replace any individual.

16

of the crossover points can be chosen at once if enough processors are
available. (The number of crossover points should probably be a very

small number - 1 or 2 or 3. So this may not represent much of a savings.)

Efficiency Analysis

This sophisticated reproductive plan presents some real difficulties
to parallel implementation. In the simple plan, it was natural to associate
one processor with each of the new individuals to be generated during
one generation. We may do that for the sophisticated plan, but here we
face the problem of avoiding '"collisions" in choosing parents and again
when incorporating the new individuals into the population. If we were
using G processors - one for each new individual - and a collision
occured while sélecting which individuals will be replaced, then G-1
processors would be idle while another replacement choice was made by
one processor. This would be rather inefficient, unless it were infre-
quent. If there were only a few processors, such collisions would be
less costly (indeed, with only 1 processor efficiency is 100%). There
may be some effectivg way of avoiding these collisions, or some better
form of this algorithm for parallel implementation, but we have not found
one.*

As the algorithm stands, one can rather easily estimate the expected
number of collisions, which is independent of the number of processors.**

Assume that m individuals have already been chosen to be replaced. Then

*We considered the possibility of having one processor dedicated to
choosing parents and coordinating replacements, but such a processor could
not keep up with the other processors. Also, using a multiple of G
processors one could choose several candidates for replacement at once,
but then finding a distinct subset of G of these is the original problem
again.

**Consider rolling 3 dice. The probability of the same number appearing

on more than one die is independent of how many dice are rolled at one time.
(3 at once, or roll each by itself,...)

17

18

the probability of choosing an unchosen individual on the next attempt is

simply

=T

P =
m

So the expected number of trials before a successful selection is (since

this is a Bernoulli sequence)

Thus, the expected aumber of trials required to choose G distinct
individuals frow the population is:

G-1 G-1

~ -~ N
W_ = “\ W= § v
G Y~ i N
a0 m =h N-m
N
= N ‘t: !
k=N-G
L]
= Nf |) ere H = -—
N(H, - Hy), where H =), ¢
k=1
- . i N 1
BN G
~ N 19 -
Wg = N “"(ch) TIN-5)
\)
If N = 10 G, then
i) 1
WG * N ln(@a} T 0.10537 N = 1.05 G

So we would expect about 5% of the trials to result in collisions. We -
have not estimated the variance in the number of collisions, but it seems
reasonable tc believe that wmost generations will not involve collisions
in choosing which individuals are to be replaced. The same analysis
applies to selection of parents to generate the G new individuals. Here

we use a non-uniform distribution, but the probability of selecting an

19

acceptable parent (one with a positive offspring counter) after having
chosen m previously is still

N-m
] = ee—
Pm N

since the total number of allowed offspring is N and the remaining number
is N-m.

Therefore, the computation time per generation is roughly

T, * <[§%1J + [log,P] - 1)(:S N [g}(g? c, + CR>

where Ct and C, are the time required to choose one individual as a

R
parent (or for replacement) and the time required to do everything else
to generate new individuals and incorporate them into the population.

In particular:

T, ® (N-1)Cg + W

1 Ct + GC

G R

W
N-1 G
G <[_E_1 + [long] - 1>CS + Tf'ct + CR
So if C >> Cg, and N < 1000, then
W
~ {G}{ G
Tp * [§1(7§‘Ct * CR)

Now this makes

2

T

C
s o le GtOR 6,
P T W = TG
P lgq S P
pI\T %
| S 3
And Ep'—ﬁ-~—:§-‘"1
p

So, again, the reproductive plan utilizes the processors quite well. But

the approximations used in this derivation are not so good as those for

20

the simpler plan. Further investigation is needed to really discover
how efficient the sophisticated reprodﬁctive plan is.

There is some parallelism possible within the code which generates
a new individual and also in the code to place that individual into the
population. So using 2G or 3G processors might be relatively efficient,

but we have not investigated this possibility.

Standard (Gradient based) Function Optimizers

Standard function optimizers all have one thing in common. They
must estimate the gradient of the function at each sample point. In
order to do this, either a procedure must be provided to generate an
array of partial derivatives (based on algebraic derivatives of the
function), or else the optimizer must sample the function at nearby
points along each dimension of the domain. The first method is hard to
evaluate since it depends very strongly on the form of the objective
function. The second method is much easier to deal with, and also more
general, so we assume that D (the dimensionality of the domain of the
objective function), or possibly 2D, function evaluations are made at
points near the current sample point in order to get the gradient infor-
mation required for choosing the next sample point.

This suggests that using D processors would allow the partial de-
rivatives to all be éstimated in parallel in very short time. Indeed,
those optimizers which do a large amount of matrix manipulations (using
"the Hessian) can do the matrix operations in parallel as well if there
are D processors. Matrix operations are generally not 100% efficient in
using parallel processing [7], [10]. In many cases, the bottleneck is
a summation which must be computed. Matrix multiplication using D
processors and 2 DxD matrices requires about

b ([log,P] + 1)
computation steps (there are 03 multiplications and D2 summations of D
values). Using D3 (or more) processors the computation time is

flogzD] + 1

21

22

Notice, finding the magnitude of the gradient is limited by this same
summation bottleneck.

Function optimizers which use a one-dimensional search to generate
the next sample point can make use of parallel processing to speed up
that search. Instead of using a binary or golden section search, use a
P-ary search. Find function values at P evenly spaced points. Compare
these to determine which interval to continue searching. The comparison.
step is the bottleneck here. It vequires [logZP] steps to make this
P-way comparison. Alsc, speed-up due to using P-ary search rather than
binary or Fibonacci search is only a logarithmic improvement [2], [9].
Using D processors and neglecting the comparison bottleneck, the speed-up

is approximately

So
5, % [log,blloz ezi”/}
Thus ,
. Sp, [ToggPllog e(f%“o)
b= .

This is badly sub-optimal for large D. Moreover, the standard optimizer's
rate of convergence decreases rapidly as D becomes large. So parallel
implementation does not seem to be the solution to getting good perfor;
mance on functions of a large number of variables using gfadient—based
optimizers.

Another obvious approach to parallel implementation of the standard
type of optimizer is to use P processors each of which runs the function

optimizer independently of the other processors. For a unimodal function,

23

the speed-up is essentially zero. The only improvement is that the
starting point closest to the optimum is probably better than if only

one stérting point had been chosen. For multimodal functions, this allows
a crude global search to be made at the same time as the local search

is performed. Commonly, one would run his favorite gradient-based
optimizer several times, starting at points spread throughout the

domain. So the speed-up is almost perfect:

and

using P processors on a multi-modal function. This must be taken with
a grain of salt, however, since standard optimizers are not very well

suited to multi-modal functions.

Summarz

In short, the simple genetic plan seems very well suited to parallel
implementation. The sophisticated reproductive plan makes less efficient
use of parallel processors, but it is still reasonably efficient for
P < G (where G is likely to be on the order of 10). The standard,
gradient-based function optimizer is less suited to parallel implementa-
tion than either reproductive plan, but it may be advantageous to use

parallel processing on multi-modal functions.

24

10.

11.

12.

References

Arjomandi, E. "A Study of Parallelism in Graph Theory'". Doctoral
Thesis, Dept. of Computer Science, Univ. of Toronto. Also
Technical Report No. 86, Dept. of Computer Science, Univ. of
Toronto. Dec., 1975. '

Avriel, M. and D. J. Wilde. "Optimal Search for a Maximum with
Sequences of Simultaneous Function Evaluations'. Management
Science, 12, 1966, p. 722-731.

Barnes, G. H., R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnik,
R. A. Stoker. '"The Illiac IV Computer'. IEEE Trans. on Comp. 17,
1968, p. 746-757.

Bethke, A."D., B. P. Zeigler, D. M. Strauss. 'Convergence Properties
of Simple Genetic Algorithms'". Technical Report No. 159, Logic of
Computers Group, Univ. of Michigan. July, 1974.

Bosworth, J. L., N. Foo, B. P. Zeigler. 'Comparison of Genetic
Algorithms with Conjugate Gradient Methods". Technical Report
No. 00312-1-T, Logic of Computers Group, Univ. of Michigan.

DeJong, K. A. '"Analysis of the Behavior of a class of Genetic
Adaptive Systems". Doctoral Thesis, Dept. of Computer and
Communication Sciences, Univ. of Michigan, 1975. Also, Technical
Report No. 185, Logic of Computers Group, Univ. of Michigan.

Heller, D. "A Survey of Parallel Algorithms in Numerical Linear
Algebra". Technical Report, Dept. of Computer Science, Carnegie-
Mellon Univ. 1976.

Holland, J. H. Adaptation in Natural and Artificial Systems. Univ.
of Michigan Press, 1975.

Karp, R. M., W. L. Miranker. 'Parallel Minimax Search for a Maximum'.
Journal of Combinatorial Theory, 4, 1968, 19-35.

Kung, H. T. "Synchronized and Asynchronous Parallel Algorithms for
Multiprocessors'. Technical Report, Dept. of Computer Science,
Carnegie-Mellon Univ. 1976. Also to appear in New Directions and
Recent Results in Algorithms and Complex1ty, edited by J. F. Traub,
Academic Press, 1976.

Lipton, R. J. '"Reduction: A Method of Proving Properties of Parallel
Programs'. CACM, 18, 1975, p. 717-721.

Wulf, W. A. and C. G. Bell. "C.mmp - A Multi-Mini-Processor'". Proc.
AFIPS 1972 FJCC. Vol. 41 Part II, AFIPS Press, 1972, p. 765-777.

25

Explanation of Figures

Figures 1-5 show how good the approximation

is for various values of N. This approximation is compared to

.
p Tp
where T1 = (N-l)CS + NCR
and T, = { + [log,N1 - 1])C, + [E]C
P P 2 S PR
CR
using the ratio = = 10
CS

Figures 6-10 compare the approximation

. IN
Tp ~ !’P’;CR

; = (N 1 - N_]
with TP = ([P] + [logzN, l)CS + {P CR
C

for the same values of N and E& = 10 also.
S

26

EFFICIENCY OF SIMPLE REPRODUCTIVE PLAN

POPULATION SIZE = 10
(=]
(=]
o
St
o
(=]
al
©
~
NO
\.48:4_
S
QO
Z 1
L
S8
U_O -
LL.:"
[TW]
(]
<
81
(]
o' g N 2 I3 n 4 4 '8 e 1
.00 2.00 4,00 6. 8.00 10.00

00
NUMBER OF PROCESSORS

FIGURE 1

EFFICIENCY OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 100

60.00

EFFICIENCY (4
40,00

20.00

0 20.00 . u0.00 __ 60.00 _ 80.00 100.00
NUMBER OF PROCESSORS

$.00

FIGURE 2

EFFICIENCY OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 1000

100.00

80.00

60.00

EFFICIENCY (%)
40.00

20.00

.00 " 230.00: uBo.oo: S.E0.00: 8460.001. fooo.oo
NUMBER OF PROCESSORS

.00

FIGURE 3

EFFICIENCY OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 10000

100.00

80.00

—d
-t

(%)
60. 00

L

EFFICIENCY
40. 00

—d
—

20.00

.00

D00 200.00 400.00 600, oo : ? lé)oo.oo
NUMBER OF PROCESSORS (X10 1)

FIGURE U

EFFICIENCY OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 100000

100.00

~ 80.00

60.00

40.00

EFFICIENCY (4)

20.00

00 200.00 00,00 800,00 _ 800,00 1000.00
| NUMBER OF PROCESSORS (X10-2)

.00

FIGURE S

COMPUTATION TIME OF SIMPLE REPRODUCTIVE PLAN

COMPUTATION TIME

1x1o0t

A
R

moT

~t

POPULATION SIZE = 10

—d

0.00

2.

'y
v

0 400 6.00
NUMBER OF PROCESSORS

FIGURE 6

8.00

COMPUTATION TIME OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 100

1X10°

-

N 4
® P
r~9

v v

v

W 1

= 1

d

Nt

1x10!

 COMPUTATION TIME
4 se7es]

000 20.00 . W0.00 60.00 80.00 ibo.oo
NUMBER OF PROCESSORS

FIGURE 7

COMPUTATION TIME OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 1000

1x10°

COMPUTARTION TIME
xTﬂ
T

-y "y Y a8 & o8 8
3 NEEn mum Zan am an 2

S

- Vi

0.00 200.00 00,00 __ 600.00 _ 800.00 1000.00
NUMBER OF PROCESSORS

FIGURE 8

COMPUTATION TIME OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 10000

COMPUTRTION TIME

0.00 2.60.00 : 'l:)0.00 * 6;0.00 ' 8;0.00 : 1000.00
NUMBER OF PROCESSORS (X10-1)

FIGURE 8

IIIIIIIIIIIIIIIIIIII

LTI

523 02

COMPUTATION TIME OF SIMPLE REPRODUCTIVE PLAN
POPULATION SIZE = 100000

ix1dé

X108

1x10°

COMPUTATION TIME
1X102

ixiot

|

000 200.00 00.00 600.00 800.00 1000.00
NUMBER OF PROCESSORS (X10-2)

FIGURELO

