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Karhunen-l.oeve Transform

ABSTRACT

In this report we discuss some of the computational aspects of the discrete
Karhunen-Loeve transform. We examine the implementation of the algorithm in
an image data compression scheme. We further discuss extension of the algo-

rithm using a high speed floating point computer system.
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1. Introduction

The Discrete Karhunen-Loeve (K-L) transform has various applications in
source coding [9], image processing [10], speech processing [2], and pattern
recognition [11]. The K-L transform was first used by Huang and Schultheiss [9]
as a block coder to produce uncorrelated transform coefficients. They showed
that the performance of this optimal transform coding technique was similar to
the optimal block code when a mean square error distortion was used and a
Gaussian assumption made on the input. Habibi and Wintz [1] later extended
this result and there has been a great deal of interest in transform coding.
Recently the Cosine transform has been shown to approximate the K-L
transform for a wide class of random processes [2, 12, 13]. The issues to be
investigated in this report are methods for implementing the transform, and the
speed of these methods. While transforms such as the Fourier transform and
Cosine transform have fast algorithms, the K-L transform has no such fast algo-
rithm. The goal of this study is to determine the computational needs of the K-L

transform and investigate the attainable speed.
The contents of this report is the following:

1) Algorithms for the K-L transform

2) Estimating the autocorrelation function of a picture

3) Determining the eigenvalues and eigenvectors of the correlation matrix
4) Performing the K-L transform

5) Results obtained with implementation

6) Computational aspects

7) Future goals and conclusion

Throughout this report, reference is made to an implementation of the K-L
transform using the facilities of the Computer and Image Processing Research

Network (CIPRNET) at The University of Michigan.
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2. Algorithms for the K-L Transform

While the K-L transform has been shown to be the optimal transform for
data compression, the amount of computation needed to perform this transform
has discouraged the use of the K-L transform. The types of transforms in popu-
lar use for data compression have the feature that fast algorithms exist. In gen-
eral, the K-L transform has no such fast algorithm. This section presents two
algorithms for the K-L transform. The first is a method described by Jain [2],
and involves making assumptions about the auto-correlation function of the pic-
ture. This algorithrn has been shown to have a fast implementation similar to
the FFT. The second algorithm presented is the algorithm used in an implemen-
tation performed for this report. The methods described are general in nature,

and can be used on any picture.

2.1. AFast K-L. Transform

Jain [2] describes a fast algorithm for implementing the K-L transform. The
aséumption made is that the correlation function can be represented by a first-
order stationary Markov process. The correlation matrix then is a tridiagonal
Toeplitz matrix. The eigenvalues and eigenvectors of this matrix are shown to
be analytic, and hence the K-L transform can be performed using a fast sine

‘transform algorithm.

2.2. AGeneral K-L Transform Algorithm

To determine the computational aspects of the K-L transform a particular

implementation was performed using the following steps:

1) Estimation of the autocorrelation function
2) Determination of the basis pictures
3) Performing the transform

These steps are discussed in separate sections, but the assumptions made in the

implementation are discussed in this section.
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The actual implementation was designed to operate on BxB sub-pictures of a
256x256 picture. These values were chosen because of time factors in executing
the programs and available pictures. Extensions to sub-pictures and pictures of
higher dimensions are easily done. The reasoning behind the chosen dimensions

are discussed in the section on computational aspects.

Estimation of the corrélation function can be a very complex task, but for
this implementation a simple approach was taken. For an BxB image the corre-
lation matrix is 64x64 and can be defined by the function K(i,j) from the auto-
correlation function R(m n,p.q), where i = mN +n and j = pN + q. The nota-
tion is due to Rosenfeld and Kak [10]. The method used takes the Bx8 sub-
pictures in the picture and calculates the ensemble average Elf (m,n) f (p.q)
for each sub-picture to determine an estimate of R(m,n,p,q) (See next sec-

tion.)

The basis pictures are determined by finding the eigenvectors of the corre-
lation matrix K. The method used in this implementation is the Jacobi method
for diagonalizing a matrix. The diagonal elements are the eigenvalues and the
columns of the transformation matrix are the eigen vectors. The transformation
matrix is determined using an iterative procedure to zero-out all the non-
. diagonal elements. For the 64x64 auto-correlation matrix used, this process
took only 100 seconds on a VAX 11/780. For larger matrices the time would
increase as the cube of the dimension of the matrix, but since the basis pictures
are only determined once for a class of pictures, the time needed is not that

critical.

The time critical factor in the K-L transform is performing the actual
transform. The general expression for any matrix transform is [F]=[P](f ][@]
and requires two matrix multiplications [10]. The method used consists of tak-

ing the matrix dot product of the picture and each basis picture, which requires
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N* operations. The reason for using the latter method is due to its simplicity.

An implementation to be used in an actual system would determine [P] and [Q].

This implementation proved to be a useful tool in investigating the compu-
tational aspects of the K-L transform, and we were able to obtain an estimate of
processing time. The approximate execution times for the three éteps dis-

cussed above are as follows:

Determining the auto-correlation function 160 seconds
Determining the basis pictures 100 seconds
Performing the K-L transform 300 seconds
Performing the inverse K-L transform 300 seconds

3. Estimating the Auto-Correlation Function of a Image

The first step in investigating the K-L transform is to determine an estimate
of the auto-correlation function. The types of methods typically used range
from making assumptions about the functional form of the autocorrelation to

obtaining a true statistical estimate of the correlation function.

In previous studies of the use of the K-L transform the correlation function
was assumed to be that of a Markov process. The image was used to determine
the parameters of the process and analytic solutions to the problem of finding
the basis pictures are possible. Inherent in these assumptions is the use of sub-
pictures for performing the transform. The justification for this model is the
fact that a picture is more likely to be only locally Markov and in general is not
homogeneous. The reasons for using sub-pictures to perform the K-L transform
are: 1) real world ‘images are not homogeneous; 2) the optimal blocklength of
the coder discussed by Huang and Schultheiss [9] is small; 3) the computational
complexity of finding the eigenvalues and eigenvectors of large matrices. If the
image is NxN then the correlation matrix is N®xN®. Since our original image
was 2D6%2686, if sub-pictures were not used, the eigenvalues and eigenvectors of

a 85536x65536 correlation matrix would have to be determined. These methods,
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and variations on them, have been shown to give good results, but it is our feel-
ing that a better estimate of the auto-correlation function is possible, and can

only give better results.

As mentioned above, for the implementation of the K-L transform per-
formed for this study the auto-correlation function was e‘stimated using an
ensemble average through all the sub-pictures. What we mean here is that each
of the 1024 8x8B sub-pictures of the original 256x256 image are considered to be
sample pictures of a discrete parameter random field. We are assuming a finite
number (1024 in this case) of sample piclures describe the ensemble for this
random field. The correlation malrix is estimated by estimating the ensemble
average through the sample pictures [10]. This method of estimating the corre-
lation matrix is another common approach. The results of this estimate do not
assume a horﬁogeneous random field, and thus are more general, and hopefully

more accurate.

4. Calculating the Basis Pictures

The problem of determining the basis pictures for the K-L transform is
reduced to the problem of determining the eigenvectors of the correlation
matrix of the picture. Assuming this matrix has been determined, the eigenvec-

tor broblem must be investigated.

To determine the eigenvectors of a matrix analytically is very complex and
time consuming. Since it is very difficult to find the solution in closed form,
iterative numerical methods are employed. Examples of such methods are the
Power method, Jacobi's method, Given's method, and Householder's method (see
[3] and [4] for descriptions). A correlation matrix is a real non-negative definite
symmetric matrix, hence are there are more techniques available (see [5]). The
approach often used is to diagonalize the matrix by a series of transformations,

which produce the eigenvalues on the diagonal and the eigenvectors as the
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columns of the transformation. The method used in this study was the Jacobi
method (see [6] for program), which diagonalizes the matrix through several
iterations. The convergence of this method is tested by summing the squares of
the diagonals and determining the change after each iteration. When it has con-
verged, the diagonal elements should not change, and the sum of the squares of
the diégonal elements should equal the sum of the squares for all elements of
the original matrix. The examples run converged in 5 to 6 iterations. If the con-

vergence test value was reduced the number of iterations could be reduced.

While determining the basis pictures for the K-L transform is a complicated
task, it need be done only once for a set of pictures with similar second order
statistics. The frequency of the operation would depend on the application, but

by using sub-pictures the problem is reduced significantly.

Another consideratiovn in determining the basis pictures is whether the pic-
ture can be assumed to be homogeneous. If this assumption can be made the
correlation matrix is of block Toeplitz form and there is the possibility of a
quicker solution to the eigenvector problem. This possibility has been studied

but no solution obtained at this time.

5. Performing the Karhunen-l.oeve Transrorm

The problem of performing the K-L transform once the basis pictures have
been determined is relatively straight forward. The same can be said for the

inverse transform.

The approach using the basis pictures for performing the transform con-
sists of calculating the coefficients needed using a matrix dot product. Each
coefficient is equal to the matrix dot product of the original picture and a basis
picture. The pixels of the inverse transform are each determined by taking the
matrix sum of the basis picture multiplied by their corresponding transform

coefficients.
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The other approach to performing the forward and inverse transform is to
determine the [P] and [@] matrices defined in Section 2 and by Rosenfeld and
Kak [10]. This method involves pre and post multiplying the picture by these
matrices to determine the transformed picture. The inverse operation is
defined similarly using the inverse matrices. The reason for using this approach

is that the computation required is an order of the matrix dimension less.

The use of the K-L transform for data compression requires that some of
the coefficients be requantized and possibly discarded. The reason the K-L
transform is optimal is that the picture can be represented as few coefficients
as possible for a given mean square error. To take advantage of this, which coef-
ficients to use and not discard must be determined. A common approach is to
order the basis pictures based on their corresponding eigenvalues. This is done
since the eigenvalues are a measure of energy of a basis picture as related to
this class of picture. The ordering is done with largest eigenvalue first, decreas-
iﬁg from there. This method was used for this study and proved adequate. The

ordéring determined put the low frequency basis pictures first.

6. Results of Karhunen-l.oeve Implementation

The study presented in this report includes an actual implementation of the
K-L transform. All the algorithms needed were programmed and used to
ransform and inverse transform pictures. The results of these tests verified

the algorithms, and allowed the analysis of the data compression capabilities.

Data compression using the K-L transform involves two considerations: the
number of coefficients to use and the quantization of the coefficients. Tests
were run using both these methods and only the number of coefficients. The
latter tests did not quantize the coefficients. The number of coefficients needed
to reconstruct each sub-picture is 84 and any compression must use only some

of these.
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Tests run withoul quantizing Lhe coefficients showed acceptable results with
the number of coefficients used ranging from 8 to 64. When all the coefficients
were used the difference between the reconstructed picture and the original
picture was minimal. The use of 32, 24, 16, and 8 coefficients yielded succes-
sively poorer results, but the results were still easily recognizable. One of the
problems experienced was the blocking artifact resulting from the use of sub-

pictures. This was only noticeable for tests with a small number of coefficients.

Tests run with the quantization of the coefficients showed little difference
from the above tests when B bits were used, but when fewer bits ﬁere used for
cach coefficient the degradalion from the quantization was obvious. The
number of coefficients used had the same effect as in the previous set of tests.
The results of these tests showed that data compression down to 1-2 bits per

pixel are possible, depending on the fidelity required.

The results are shown in Figure 1.

7. Computational Aspects of the Karhunen-Loeve Transform

One of the goals of this study was to determine the computational complex-
ity of the K-L transform. This was accomplished by implementing the transform
and then analyzing the programs used. In some cases the complexity of a step
in the algorithm was determined on paper and a different method used in the
implementation. This was done for the actual transform and inverse transform,

but the complexity of the method using [P] and [ Q] is also presented.

The major steps in the K-L transform are estimating the auto-correlation
matrix, determining the basis pictures, performing the transform, and recon-
structing the picture with a subset of the coefficients. The only étep_requiring a
fixed number of operations is the estimation of the auto-correlation matrix.
Determining the basis pictures réquires itérations, and the forward and inverse

transforms are dependent on the number of coefficients used. The complexity
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of these steps is presented below, using the order of the algorithm as a measure
(the order is defined as in [7]). The variables used are N and s: N =picture size

and § =subset size.
Estimating auto-correlation N®xs?

Determining basis pictures s® x iteration

coef. used

K-L transform w/o [P].[Q] N®xs®x "

K-L transform with [P],[Q] N®xsx == ,;zused

coef. used

Inverse K-L transform w/o [P],[Q] N®xs*x 5

s

coef. used
s

Inverse K-L transform with [P],[Q] N®xs®x

Using the times for performing these steps in the implementation done we
can analyze the change in execution time as s increases. If a 16x16 sub-picture
is used the increase in determining the basis pictures is a factor of 64, which
translates into an estimated execution time on the order of 1-5 hours, depend-
- ing on the accuracy needed. This is undoubtedly too long, but by using a faster

computer it is felt that this time can be reduced. It is also possible that another
method for determining the basis pictures could be used which does not take as
long.

Once the basis pictures are determined it is the forward and inverse
transforms that must be executed repeatedly. For the version using [P] and [@]
the increase in execution time for a 16x16 sub-picture is only by a factor of 2.
For a 16x16 sub-picture and a 256x256 picture the complexity of these steps is
16777216. As an example, the CRAY-1 computer can perform a maximum of 160

million floating point operations per second. If the forward and inverse
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transform was such that the number of operations required was equal to the
complexity and the CRAY-1 could be fully utilized, approximately 10 pictures
could be protessed per second. Neither of these assumptions are going to hold
so the best we could hope for on the CRAY-1 would be less than 10 pictures per
second, but probably greater than 1 picture per second. If the basis pictures
can be determined in a reasonable time, this is the computation time we are
looking at. Special-purpose architectures designed for these types of operations

like PASM [B] could significantly improve the execution time.

8. Future Goals and Conclusion

In this report a study on the Karhunen-loeve transform has been
presented. The focus of this study has been on the computational aspects of the

K-L transform. The future goals for this study consist of the following:

1) Implementation of the K-L transform on the CRAY-1 and other
high-speed computers

2) Investigation of faster methods - eigenvalues and eigenvectors
of a block Toeplitz matrix

3) A fidelity criteria for selecting the number of coefficients

The first goal consists of benchmarking the K-L transform using a CRAY-1 simu-
~ lator and analyzing the speed of the algorithm on other architectures, such as
PASM. The second goal concerns the determination of the basis pictures with
the assumption that the sub-pictures are homogeneous. The resulting auto-
correlation matrix is of block Toeplitz form and there is the possibility that fas-
ter methods fo‘r determining eigen vectors exist. The third goal for a fidelity cri-
teria is motivated by the need for an evaluation of data compression perfor-
mance, and as an aid in performing the data compression. These goals will be
worked on in the future to arrive at a better understanding of the computational
complexity of the K-L transform, and to give an estimate of the feasibility of

using this transform.
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The work done so far on the K-L transform resulted in a working model for
performing and evaluating the transform. The results have shown that the
methods used are correct, with expected performance in data compression.
The goals to be met in the future will refine this work and present results that
can be used to better compare the K-1, transform with other data compression
techniques. This will allow the system designer to evaluate if the Karhunen-

Loeve transform will fit his application.
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Figure 1

Upper Left:
Upper Right:
Lower Right:
Lower Left:
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Original Image.

Reconstructed Image Using B coefficients.
Reconstructed Image Using 16 coefficients.
Reconstructed Image Using 24 coefficients.
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