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PART 0

INTRODUCTION

Extension of the concept of the pseudoinverse of a linear mapping
in finite dimensional linear space to a linear operator in Hilbert and
even Banach space has been of interest for some years [B-3] [B-4]
[D-1] [N-1] [P-3]. Our concern in this paper is with the (Moore-
Penrose) pseudoinverse of a linear transformation between Hilbert
spaces. Part of our work deals with basic theory, which we then use
for applications to systems identification and the quadratic regulator
problem.

Since the finite dimensional (matrix) pseudoinverse can easily
be interpreted geometrically in terms of certain orthogonal projections
on Euclidean spaces, generalization to Hilbert sf)aces is completely
natural; indeed, if one limits consideration to bounded operators with
closed range, much of the theory of matrix pseudoinverses generalizes
directly to Hilbert space [D-1] [B-3]. However, widening the class of
transformations to encompass densely defined closed linear operators
introduces substantive complications; domains of definition must be
carefully treated, and account taken of the fact that neither the sum
nor the product of densely defined closed operators necessarily enjoys
the same property. Nevertheless, a good part of the theory carries

over in satisfying fashion.



There are genuine difficulties, however, when an operator has
non-closed range, for then the pseudoinverse is unbounded and only
densely defined; moreover, many of the usual pseudoinverse charac-
terizations become invalid. In case the range of the operator is not
closed, the pseudoinverse usually fails to provide an answer to real
problems (e.g., in statistical estimation), since one cannot tolerate
a "solution" which is only sometimes meaningful. To circumvent this
impediment, we consider (1) shrinking the image Hilbert space and
endowing it with a new topology which insures that the range of the
operator is closed, and (2) replacing the original operator or its pseudo-
inverse by a better behaved approximation. Either procedure can be
applied as desired, but since some change is necessarily engendered
thereby in the figure of merit which is optimized, the changed formula-
tion may no longer be legitimate for its intended application. Roughly
speaking, changes in the Hilbert space or modifying the original opera-
tor is related to proper mathematical modelling of a physical situation,
while approximations to the pseudoinverse are more closely connected
to pseudoinverse theory as such.

There is good reason to analyze pseudoinverses of arbitrary
densely defined linear closed operators, rather than just bounded oper-
ators and/or those whose ranges are closed. Our examples (and doubt-
less many others) will indicate this. On the other hand, it seems evi-
dent that we cannot easily drop the requirements that an operator be

closed and densely defined.



Part I of this work is devoted to a self-contained exposition of the
basic theory of the pseudoinverse for densely defined linear closed
operators with arbitrary range. Il is self-contained in the sense that
no results are borrowed from the literature on pseudoinverses, [inite-
dimensional or otherwise. Much of the material covered in Part [ is
available elsewhere in some form, but we believe some of our results
for unbounded operators represent extensions. The theory we develop
includes the case of operators that do not have closed range, but any
questions regarding approximations and change in topologies are de-
ferred until later. Appendix A consists of a collection of lemmas
("exercises for the reader'') relevant to unbounded operators; they
are intended to facilitate the reading of Part I and of the later sections.

In Part II, a Gauss-Markov theorem on statistical estimation is
proved under the hypothesis that both the quantity to be estimated and
the observations are elements of Hilbert spaces. This theorem is an
improved version of a theorem stated earlier in [R-5], where the proof
was not given; the proof given here suffices for the previously stated
result. Our theorem applies only to non-singular covariance operators,
and reduces to the classical Gauss-Markov theorem when the spaces
are finite dimensional. To obtain our result (in Hilbert spaces) it
becomes necessary to treat the inversion of an unbounded non-closed
operator, which carries us beyond the subject matter of Part I. Con-
sequently, an additional hypothesis and some further argument are

required.



Appendix B (needed for Part II) is a brief development of the
more elementary aspects of the theory of Hilbert-space-valued random
variables. The use of Bochner integrals enables us to establish the
needed facts very quickly, thus sparing the reader the chore of study-
ing the literature on the subject.

Two applications of engineering interest are discussed; the first
is a problem in unknown system identification (Part III), while the sec-
ond (Part IV) is an optimal control problem known to workers in the
field as the quadratic regulator problem. In Part III, Volterra-
Frechet integral polynomials are taken to represent a class of unknown
systems in input-output form, and the Gauss-Markov theorem of Part
Il is applied to the estimation of their kernels. There is also in this
section some discussion of the applicability of the pseudoinverse to
identification problems in general.

In one classical form of the quadratic regulator problem, it is
required to find the minimum energy input which will move a system
from some initial state to the origin at a designated time. PartIV
offers a reformulation which generalizes this problem to admit a
greater variety of linear constraints, possibly including some which
are incompatible and/or unattainable by the system. The solution
always exjsts as a pseudoinverse (even if the system is described by
an unbounded operator), and reduces to the classical result if the sys-
tem is capable of meeting the constraint. Another related quadratic
regulator problem, usually called the free endpoint problem, is also

treated in Part IV. Here, a quadratic loss function involving both input



and output is to be minimized by appropriate choice of input. We show
this loss function to be conveniently represented if we change the top-
ology on the image Hilbert space of the input-output operator; more-
over, the new topology guarantees the range of this operator to be
closed. The solution to a generalization of the free endpoint quadratic
regulator problem can then be directly obtained by applying the pseudo-
inverse. In short, the pseudoinverse is a unifying influence on exten-
sions of some quadratic regulator problems, and as such, provides an
insight not generally obtained through the more Vclassical approaches.
In both Parts III and IV we encounter as a recurrent theme the
necessity of inverting, in some acceptable sense, operators with non-
closed range. The technique of changing the topology on a reduced
image space is employed in both places, but not in identical fashion.
In particular, Part III describes a general approach which may also be
useful in dealing with problems other than those considered here.
Approximations to the pseudoinverse constitutes the subject mat-
ter of Part V. Some known matrix approximations are examined in
the context of unbounded operators whose range may not be closed.
Properties of these approximations, and of other techniques suggested
for operators of non-closed range, are investigated. Systematic use
is made of the pola; decomposition of operators, and of the functional
calculus applicable to the resulting positive operators expressed as a
spectral representation. We believe the material of this section to be

largely original, especially in their coverage of unbounded operators.



Part V also contains some results on the limits to be expected from
any choice of approiimations.

It may be useful to the reader to mention that the entire paper
is dependent on Part I, but that Parts IV and V are Aindependen’c of one

another, and of Parts II and III.



PART I

PSEUDOINVERSE OPERATORS IN HILBERT SPACE

The pseudoinverse of a matrix has a rich literature, and has be-
come sufficiently well recognized to constitute the subject of two recent
books [A-2] [R- 1]. Much of the underlying theory is phrased in matrix-
theoretic concepts, even though some of the principal optimization
applications are more clearly motivated by the "bvevst approximation"
property, which the pseudoinverse matrix possesses with respect to
Euclidean norms. In particular, it has been observed that application
of the pseudo-inverse matrix solves certain optimal control (quadratic
regulétor [K-1]) and minimum mean square estimation [A-1] problems.

The emphasis on norm minimization suggests a function analytic
rather than an algebraic approach to the pseudoinverse. Indeed, it
seems natural to attempt to extend pseudoinverses to a Hilbert space
context [D-1], since Hilbert space itself is no more than a generaliza-
tion of finite dimensional linear vector space with Euclidean norm.

The necessary extension is in fact easily accomplished for bounded

linear operators of closed range [D-1] [B-2]. This class of course includes
all bounded linear operators of finite dimensional range, and a fortiori,
operators on finite dimensional spaces. Thus, the Hilbert space pseu-
doinverse theory is not only a legitimate extension of the matrix theory,

but also represents an approch eminently suitable to optimization

questions.



If we abandon the assumption that an operator is necessarily
bounded and/or equipped with closed range, new complexities are
encountered. These mus! be faced squarely if application to control
or estimation theory are to be contemplated in any degree of general-
ity. One may recall, for instance, that the differentiation operator in
an L2 space is unbounded [R-2], so that the input-output relation of
a dynamical system described by differential equations is represented
by an operator whose range is not a closed set. On the other hand, we
shall see that the Gauss-Markov estimation problem in separable Hil-
bert space is equivalently formulated in terms of unbounded operators.

In order to avoid a complete chaos of pathological behaviors, We
shall suppose that we seek the pseudoinverse of a linear operator
A:H —>'HZ, where A is a closed operator (R-2], Section 115) densely

1

defined on the Hilbert space Hl’ with Hilbert space H, as range space;

2
such an operator will be called DDC (densely defined closed). Roughly
speaking, the pseudoinverse A+ of A will solve the following minimiza-
tion problem: given z € HZ’ A+ delivers X, = A+z, where Xq € H1
minimizes the norm of z - Ax over x € Hl’ and where X is the element
of least norm accomplishing‘the minimization. These notions will be
made precise, and we shall also attempt to determine the conditions
under which A+ exists, what its properties are, and how it may be
characterized.

We begin by defining the symbols we shall need for our analysis.
D(A) is the domain of A, and R(A) its range; an overline denotes clo-

sure, so R(A) is the least subspace containing the range of A, By a



subspace we shall consistently mean a closed linear manifold in the
appropriate Hilbert .space. Thus, the null space N(A) of A is a sub-
space because A is DDC. An orthogonal complement is indicated by
the standard symbol _J__, as for example N(A)—L is the complement of
the null space of A. We use P to stand for an orthogonal projection,

and particularly P_ for the projection on R(A) and PM for the projec-

R
tion on N(A)—L. In addition, standard symbols are employed for norm,
adjoint, inverse and the like.

For the minimization problem, it is convenient to define some

special symbols which are used recurrently. Thus, let

5 = inf || z-Ax]| , z €H, (1.1)
Z % eD(A)

Kz‘ = {X! Ax :PRz} (preimage of PRZ under A) (1. 2)
FA = {z: PRz € R(A)) (1.3)

Finally, the subscript r indicates the restriction of any operator on H1

to the subspace N(A)—l— , or the restriction to R(A) of an operator with

domain space H,. Specifically, A : N(A)—L —~ R(A) and A"r:R(A) -

2
N(A)—L. Properties of restrictions of operators and their combinations

are summarized in Appendix A to the extent that they are required in
what follows.

As we have noted, our applications of the pseudoinverse rest on
its '"best approximation' property. In intuitive terms, the pseudo-

inverse, when applied to z € H,, must give us the best approximate

ZJ
. + . .
solution X = A z to the functional equation

z = Ax (1. 4)
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We use BAS as the acronym for '"best approximate solution, ' the term

being more precisely described by

Definition 1. 1: X € Hl is a BAS of (1.}) if

|z - ax_[| =5, (1.5)

and

IENIRSEY] (1. 6)
for any other x which also attains the infimum (1. 6).
Remark: Uniqueness of the BAS constitutes part of its definition, being
an immediate consequence of the strict inequality (1. 6). The definition
does not assert the existence of the BAS; indeed, there is always a
sequence {xn} € D(A) approaching the infimum (1. 1), but without any
element attaining it as required by Definition 1. 1. However, the ques-
tion of existence of the BAS is quickly settled by

Theorem 1.1: A BAS exists iff z € F, [cf. (1.3)]; whenever a BAS

A
X exists, it is unique and satisfies
Axo = PRz (1.7)
and
X €N(A)—L. (1.8)

Conversely, assume X satisfies (1.7 ) and (1.8). Then X is the BAS,

and is the only element of H, satisfying these two equations.

1
Proof: We know inf___Hz-yH =8, the infimum- being uniquely at-
y €ER(A)
tained by z, =PRz. It follows that (1.5) is met iff x is such that

Ax =P_z. But x of this type exists only if z € F

, in which case K
R z

A

[see (1.2)] is non-empty, and (1.5) and (1.7) are both equivalent to

x €K .

V4
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Suppose now x', x"eKZ. Then Ax' = Ax", or (x'-x'") € N(A).
Hence any x € Kz hés the orthogonal decomposition
Xx=x *+x (1.9)
where X € N(A)—L is the same for every x € Kz’ and Xy € N(A). To

verify X, € KZ, we use Lemma A. 1 to argue X, € D(A), and obtain

Ax = Axo from (1.9) and Xy € N(A). Now apply the Pythagorean theorem

to (1.9); the strict inequality (1. 6) follows unless X, = 6 and conse-

quently x =X Thus X is a BAS satisfying (1. 8).

, whence a BAS x'
A o

exists and satisfies (1.7) and (1.8). But (xo-x'o) € N(A) from (1.7),

For the converse, note (1.7) means z € F

whereas (x -x' ) EN(A)—J— by (1.8). Therefore x =x', or x is seen
o o o) o o)
to be the BAS as claimed. The same argument shows that at most one
vector can satisfy (1.7) and (1. 8). H|
Theorem 1.1 is readily specialized to operators whose ranges
are closed sets, viz.

Corollary 1.1: If R(A)is a closed set, the BAS always exists.

Proof: For any z GHZ, PRZ €e R(A) = R(A), so FA = HZ' HI

We have seen that every z € F, has associated with it a unique

A

BAS x € H., thereby suggesting an operator which transform elements

1’

of H2 to elements of Hl' More formally:

+
Definition 1.2: An operator A : H2 - H. is called a pseudoinverse

1

+
operator (henceforth abbreviated PI)if D(A ) = F,, and if, for each

A:

z€FA

x =Az (1. 10)

is the BAS.
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How can we recognize an operator as a PI? The following cri-

terion is often helpful.

+ F
Lemma 1. 1: The linear operator A : H& - H isa PIiff DA ) =F

1 A
and
Na') = rear- (1. 11)
rR(AT) = NAF- (1. 12)
and
AATy =y forally eR(A) (1. 13)

Proof: (Sufficiency) For z € F,, again call P_z = z,. Then z, € R(A),

R 1 1

+
€eK, i.e. Ax =P_zwithx =z A z
Z o] R o)

A!

+
and (1. 13) asserts A z Second,

1
this X, € N(A)—Lby (1.12), so we conclude X is the BAS [compare (1.8)

1

+ +
in Theorem 1. 1]. To complete the proof, we need only show A z = A z,-

To this end, we decompose z = z, + Z, where z. is as before and

1 1

+ + + + +
z, € N(A ). Now z € D(A ):FA, and A z, =0, whence A z = A z, =
X as required by (1. 10).
. + 1 . .
(Necessity) Clearly, R(A ) ¢ N(A)—, for otherwise (1. 8) fails.
+
To prove R(A ) dense in N(A)—L, observe D(A) N N(A)—l— to be dense
in N(A)—L (cf. Lemma A.}), and each x € [D(A) n N(A)—]— ] is a BAS
o + | +
for y = Ax (Theorem 1.1). Since thenx = A vy, [D(A) n N(A)—=—] c R(A ).
Thus (1. 12) is necessary.
+
If (1.13) is not satisfied, A z £ Kz for some z € R(A) ¢ FA, so
so (1.7) does not hold. Respecting (1. 11), consider that the BAS for
z _1_ R(A) is perforce the null vector from (1.7) and (1. 8), requiring
|

+ +
that N(A ) o R(A)—l— if A is to be a PI. On the other hand, (1.13) de-

+
mands N(A ) c R(A)—L , which then leads to the validity of (1.11). ||
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Remark: The conditions (1.11) and (1. 13) of Lemma 1.1 already in-

' +
sure that R(A)—L and R(A) are in the domain of A , wherefrom FA c

+ +
D(A ). To see this, observe that A is linear by hypothesis, and that

F, = R(A) O R(A)—L (1. 11)

+ +
is then in D(A ). We note FA is dense in HZ, which implies A to be

+ +
densely defined because F, ¢ D(A ). However, if D(A ) is larger

A

+
than FA we cannot claim A to be DDC, whereas (as we shall prove

below) A’ must be a closed operator if D(A') = F .
There are many alternative forms for a matrix PI [R-1], but these
fail to carry over to unbounded operators in direct fashion. The source
of difficulty is that combinations of unbounded operators need not be
DDC, and may in fact be defined only on the null vector; hence, man-
ipulations of such operators is anything but routine. Nevertheless, we
can demonstrate some of the properties of the PI by an explicit construc-

tion, which (inter alia) exhibits the PI as a linear DDC operator.

Theorem 1.2: The PI exists as the uniquely defined linear DDC opera-

tor
A = A P_ . (1. 15)

Proof: Since a unique BAS corresponds to each z € F,, the PI is prop-

A,

erly and uniquely described on F It then suffices to prove that the

Al
right side of (1. 15) constitutes a linear DDC operator which meets the
conditions set forth in Lemma 1. 1.

In the first place, Lemma A. 6 asserts A;l to be defined and DDC.

-1
Then, since P_ is bounded, Ar P_ is likewise a closed operator.

R R

-1 i -
Ar P_ is also clearly linear. To show ArlP densely defined, we

R R



1)

note its domain includes both ils null space R(A)—L and the domain of

A;l, namely R(A) [see Lemma A. 2]. By linearity, we therefore have

-1 ) o . .
D(Ar PR) - FA, the latter having the form (1. 1}); since FA is dénse
1

in H , sois D(A;

2 )

R
+
We have proved that A [as given by (1. 15)] is linear DDC, with

+ +
DA )o F To show D(A ) = F,, consider z £ F,. Then

A A
1
).

A

Pz £ R(A) = D(A;l), which means z ¢ D(A_

R R

Finally, we must verify (1.11), (1.12) and (1. 13) of Lemma 1. 1.
+ | -1
From (1.15), N(A )> R(A)—~, butalso A "y # 6 for non-null
r
y €R(A); in fact, A;lz R(A) -~ N(A)J- has domain R(A) and possesses

+
an inverse Ar. Consequently, the A of (1. 15) satisfies (1. 11).

Next, we see from Lemma A.} that R(A;l) = N(A)—J—, Moreover,
+ : -1 .
R(A ) = R(Ar ), since each range depends only on preimages in R(A),
- ,
and for anyy € R(A), A y = Arly. Thus, (1.12) has been proven.
For any y € R(A), we now obtain
AATy = Aaaly - A A = 1. 16)
y = LY S AA Y =y (1.
where the middle equality results from the definition of Ar as the re-
striction of A to N(A)—l—, which is precisely the range space of A;l.
Therefore, (1.13) is validated also, and the proof of the theorem is

complete, Hl

+
Corollary 1.2: A 1is bounded iff R(A) is closed.

+ -
Proof: A 1is bounded iff Arl is bounded, and the latter is equivalent to

R(A) closed by Lemma A.8. |||



The matrix pseudoinverse is often defined not by its best approxi-
mation property (Definition 1.2), but rather as the (unique) matrix
satisfying thé identities [G-2]

AATA = A, aTaAt - A", AT - P Ata P (L17)
These same identities —suitably modified for DDC operators—are rele-
vant to the PI as per Definition 1. 2. Indeed, the modified identities
(1. 17) follow from our definition. Conversely, a DDC operator for
which a weaker form of (1. 17) is valid must be a PI. We now proceed

to state precisely and prove these relationships.

+
Theorem 1.3: Let A be the PI for the DDC operator A. Then

+
AATA = A (1. 18)
+ o+ o+
ATaaT - a (1. 19)
AAT ¢ P, with D@AAT) = F 1.20)
c R’ wi ( =F, (1.
+ +
and A'Ac P, with D(A"A) = D(A). (1.21)

Proof: (1.20) is a direct consequence of (1.11) and (1. 13) in Lemma
1.1. In view of (1.11), both sides of (1. 19) yield the null vector when
applied to R(A}‘L, so we need consider only y € R(A), and demonstrate

+ o+ + ' +
A AA y = A yfor (1.19). But AA y =y by (1. 13), and so (1. 19) follows.

To prove (1.21), decompose x € D(A) as

x=x, +x_, X EN(A)‘L, x. € N(A). (1.22)
1 2 1 2
Then X, € D(A) by Lemma A. 1, and
+ + -1 -1
A Ax = A Ax1 = Ar PRAer = Ar Arx1 =% (1.23)
‘ +
which shows A A acts like PM for every x € D(A). With this result it

is easy to prove (1. 18), since from (1.23) and (1. 22) above

AATAx = Ax| = Ax (1. 2))
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for all x € D(A). |]

Although A+A .and, AA+ are DD according to (1.21) and (1. 20),
one cannot assume these to be closed operators. In fact, A+A (res-
pectively AA+) closed corresponds precisely to the boundedness of A
(respectively A+), as is seen from

+
Corollary 1.3: Let A be the PI of the DDC operator A. Then A is.

bounded iff A+A is a closed operator; A+ is bounded [or equivalently,
R(A) is a closed set] iff AA+ is a closed operator.
Proof: Because of the duality evident in Theorem 1.3, we need only
consider the first assertion. By (1.21), A+A is bounded and DD, so
A+A is closed iff it is defined on all Hl as a bounded operator. Of
course, A (a DDC operator now defined on all Hl) is then bounded also.
On the other.hand, A bounded and AJr DDC implies A+A to be a closed
operator.

We could state a direct converse to Theorem 1.3, but is is note-
worthy that less restrictive requirements can be substituted for (1. 20)

and (1.21). More specifically, we have

' +
Theorem 1.)4: Suppose A : H, — H. is a linear closed operator with

2 1
+ .
DA ) c FA. Let this operator satisfy (1. 18) and (1. 19), and assume
further
+

A A is a symmetric operator (1.25)
and +

AA is a symmetric operator. (1. 26)

+
Then A is the PI of the (linear DDC) operator A.
Proof: We again turn to the sufficiency conditions of Lemma 1.1, start-

ing with (1. 13). If y € R(A), we may take x € D(A) such that Ax =y,
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*,
whence (1.18) becomes AA y =y for each y € R(A). This disposes of
(1.13).
+

Our next task is to prove (1.11), or N(A ) = R(A)—L. Actually,

+ )_|_ + + .
N(AA ) = R(A suffices, because N(A ) = N(AA ) by the chain

+ +

NAT) ¢ n@aaT) e naTaa) = N (1. 27)

The usual argument on ranges and null spaces produces

RaaT L - N(aATH) ¢ N@aAh), (1. 28)
the right hand inclusion following from (l.26). However, the contain-
ment in (1.28) is even an equality, because D(AA+) is dense in
D([AA+]*), so that N(AA+) is not only dense in N([AA+]*), but is also
closed by (1.27). We then have

Raa" L - naa®) (1. 29)
Finally, R(A) = R(AA") from

R(A)> R(AA') > R(AA'A) = R(A). (1. 30)
The combination of these equalities therefore yields N(A+) =
as was to be shown.

The remaining equality (1.12) of Lemma 1.1 can be written as
R(AJF)—-L = N(A), which is like (1. 11) except that the symbols A and A+
are interchanged. But the hypotheses on A and A+ are symmetrical, so
that the desired identity can be demonstrated in the same fashion as
R@AM- = N4,

We must still show A+ to have the correct domain. The domain
clearly includes R(A), since AA+y =y for all y € R(A). Also, the null

+ +
space of A is R(A)'-L , 80 by the linearity of A
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DA’ > R(A) (3) R(ANL - F,; (1.31)
in view of the original hypothesis D(A+) c FA, we then have D(A+) =
ol
Remark: In the literature on the matrix PI (l. 25) and (1.26) are re- .
placed by the stronger hypotheses that A+A and AA+ are self-adjoint.
Such assumptions are inappropriate here, since (by Corollary 1.3),
they would limit the applicability of Theorem 1. ) to bounded operators
A and A+. Moreover, even the (apparently) weaker assumptions A+A
and AAT closed symmetric already imply A A = P AA" - Py, with
both A and A+ bounded.

Many identities have been developed for the matrix pseudoinverse
[R-1] [A-2]. Most of these equalities are retained in a weaker ver-
sion whén applied to unbounded operators. The two presented below,
however, are generalized without change in their statement, although
the proofs necessarily become sophisticated beyond mere modifications
of the usual matrix arguments.

v + .+
Theorem 1. 5: (A_) = A, (1.32)

+ +
Proof: We construct (A ) by the method of Theorem 1.2. In the first

+ -1 + |
place, (A )r = Ar from (1.15). Secondly, R(A ) = N(A)— by (1. 12).
+.-1 +
But then (A )r = Ar and the projection on the closure of the range of A

+
is PM’ so that the application of (1. 15) to A yields

+ +
(A7) =A P =AP =A. (1.33)

The right hand equality is here justified by Lemma A. 1 and the ortho-

gonal decomposition (A. 1). |||
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+ N Sk +
Theorem 1.6: (A) = (A ) . (1.3))

Proof: The construction of Theorem 1.2 exhibits the PI of A% to be
K + B3 -—l
: (1.35)
. + % + | _
by Lemma 1.1, this PI has null space N[(A) ] =R(A) = N(A), with
the right hand equality being obtained from (1. 12). Since both operators

in (1.3)) have the same null space, it suffices to compare their restric-

+ ¥ * +
tions (A') _and [(A)

]r to N(A)‘-L . Using successively Lemma A. 9
and the representation of Theorem 1.2, we obtain
wh = wh = h . (1.36)

But also
N N A Y (1.37)
here the equalities follow respectively from (1.35), Lemma A.9 and
the interchange of inversion and the adjoint operation (see [R-2], Sec-
tion 117). |||

It is aiso characteristic of the matrix pseudoinverse that it may
be expressed in various forms involving combinations of other matrices
related to A [R-1] [A-2]. For example, among the alternative formula-

+ P sk _1
tions of the matrix pseudoinverse we have A = A (AA )r and

+ x -1 % )
A = (A A)r A . Since such forms also occur in applications to infi-

nite dimensional problems (e.g., Gauss-Markov estimation), it would
be desirable if they were also valid in the more general case of DDC
operators. But again, operators A which are unbounded and/or have
non-closed range lead to complications which must be taken into account.

To this end, we need
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Definition 1.3: A’ HZ - Hl is a restricted pseudoinverse operator

' +
(acronym: RPI) for the linear DDC operator A if AT A

Remark: A”™ need be. neither densely defined nor bounded to be a RPI.

X * -]
Theorem 1.7: A' =A (AA )r PR (1.38)
is a RPI with domain
D(A") = R(AA) () R(AN-. (1.39)
Proof: By Lemma A. ll, (AA’P)r is invertible, and (AA"\);I = (A;)_lA;l.
Thus (1.38) makes sense and
Sk b3 -1 -1
A" = A . Ll
L(A) A "IPy (1.,0)
X koo sk E . |
Now A (Ar) 1 = Ar(Ar) is a restriction of the identity. In other words,
(1.30) implies
-1 +
1 _
A'c AUPL = A, (1. 11)

Let us determine D(A'). It is clear A'is linear and well defined

on R(A)—L. In R(A), A'is at best defined on R(A) because of (1.)1)
and the extent of D(A+); we therefore limit consideration to y € R(A).
Now D[(AA*);l] - R[(AA" )] = R(AA'), the equality on the right follow-
ing from Lemmas A.2 and A. 10 and Corollary A.2. Hence y € R(A) is

in the domain of (AA"‘);l iffy € R(AA-’F). Further, such a y leads to

* -1 1
(A"

sl st
by >R

y ER[(AA*); | = D['(AA*)r] - D(ArAj) c DA )e DAY, (1. 42)

r)
Here we have again used Lemma A. 12 for the equality on the right.
Since (AA>'<);1y automatically falls in D(A") as shown by (1.42), and
since R(A) > R(AA"‘), D(A') is correctly given by (1.39) and A' is an RPI. |H

+ sk
Corollary 1.): A' = A iff R(AA ) = R(A); in particular, A'is the PI if

R(A) is closed (or equivalently, any of the conditions of Lemmas A. 8 or

A. 15 are met).
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Proof: From (1.39) and (1. 1)), D(A'") = D(A+) iff

R(AA") = R(A). ||| (1.13)
Should R(A) be closed (which is true if any of the conditions of L.Lemmas
A.8 or A.15 are satisfied), Corollary A. ) states (1. 43) to be valid.
Remark: A'is densely defined in any event because R(AA*) = R_(K_)
as indicated by Corollary A.3. Also, (l.L41) verifies the existence of
a closed extension for A'; it is plausible that A+ is actually the mini-
mal closed extension of A', although neither proof nor counterexample
has been found to elucidate the question.

Analogous to A', but differing in its domain, is

Av = afa) AT, (1. 41)
If A is a matrix, or even if A is bounded and R(A) closed, A' and A"
are both bounded and coincide with A+, and there is little advantage of
one with respect to the other. But when A is an unbounded operator
of closed range, we can guarantee only A' = A+ (see Corollary 1.4
above) and conclude nothing further on A", whereas A bounded (with

+
arbitrary range) gives rise to A" = A without any simplification of A'.

Theorem 1.8: A''is a RPI with domain

b = @) n ra)l (D RAH-. (1. 15)
Proof: The proof is much like that of Theorem 1.7, so we shall omit

some of the details. Since R(A) = N(A’P)—-L we write

sk _1 %
| J —
A" = (A A)r ArPR (1. 46)
-1 *® -1 ES
= Ar [(Ar) Ar]PR. (1.47)

! sle
3% K

RO | sk
The term [(Ar-) Ar] is a restriction of the identity on R(A) to D<Ar)’

so that
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- +
AV - A lP = A, (1. 48)
r R

The domain of A" evidently contains R(A)—L. On R(A), this

domain is limited to vectors in R(A), and [by (1. 46)] even to

% ' e x * -1
y € [R(A) n D(A )]. For suchy, Al;y € R(Ar) = D[(A'r) |, and
[(A*)- IA*W =y. Buty €R(A) = D(Aul) whence A_ 1[(A* )—1A>E<]Y s
r r r " i i '

defined also. Thus y € [R(A) n D(A )] implies y € D(A"), and D(A")

is described by (1. 145) by the linearity of A", |||

>R

+
Corollary 1.5: A'" = A iff R(A) ¢ D(A ); in particular, A''is the PI

if A is bounded (or equivalently, if any of A, AA or AA are bounded).
b3 +

Proof: If R(A)c D(A ), the D(A") of (1.45) coincides with D(A ). The

second assertion of the corollary is then immediate, since any of the

hypotheses imply D(A>'<) = HZ' Hl

Remark: = Attention is called to a limited duality between A' and A",

1, %] -1

- * * +
If any of Ar , (Ar) , (AA ) " or (AA) ! are bounded, A'is the PI A ,

r r

and is thus a bounded operator defined on all H On the other hand, if

5
any of A, A , AA or AA [i.e., A A;‘, (AA-’")r or (A"A)r] are

+
bounded, A' is the same as the PI A, and is thus a DDC operator on

HZ.



PART II

A GAUSS-MARKOV THEOREM FOR HILBERT SPACE

A natural extension of the classical theory of linear unbiased min-
imum-variance estimators (LUMYV estimators) is to the case that both
the vector of unknown parameters and the vector of observations are
infinite-dimensional in thevsense that both are elements of separable
Hilbert spaces. Although one may well argue that in any aétual'data
processing scheme only a finite set of parameters will be estimated
and only a finite set of data will be used, a Hilbert space Ve‘rsion of
the theory is of interest as providing characterizafion of limit cases.
Indeed, there are many estimation problems which are inherently
infinite-dimensional, and for which reduction to finite sets of observa-
tions and parameters represents an approximation. The subject of
identification of unknown systems to be discussed briefly in Part I1I
provides examples of such problems. In this Part we state and prove
a Gauss-Markov theorem for Hilbert space, but we leave comments
about its application to Part III.

Necessary and sufficient conditions for the existence of an LUMV
estimator in Hilbert space, and a characterization of the estimator in
terms of reproducing-kernel Hilbert space concepts, is given in [P-2].
Our objectivé here is somewhat diffel;ent; we wish to exhibit reason-
able sufficient conditions for the existence of an LUMYV estimator, that

also guarantee an extension of the standard classical formula for the

23
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estimator. Let Hl and H& be separable Hilbert spaces. Consider the

linear model
z = Bx+tw (2.1)

where x € Hl’ where B is a continuous linear transformation from all

of H1 into HZ, and where w is an Hz-valued random variable. Hilbert-

space-valued random variables are discussed below and in Appendix B,
where definitions are given for the mathematical expectation of an H-
valued random variable w and for the covariance operator of w, as
well as conditions for the existence of the covariance. We assume the
expected value of w, Ew, exists and equals zero and that a covariance
operator, K, for w exists. The element x represents the vector of |

unknown parameters to be estimated, and z represents the vector of

observations. A linear estimator C is defined to be a continuous linear
transformation from all of H.2 into Hl; Q = Cz is then an estimate of x.
Since z is an Hz-valued random variable, Cz is an Hl—valued random

variable (see Appendix B). We call E|| Cz-E(Cz)H2 = E||Cwl] . the
variance of fhe estimator C; it will be seen below that if K has finite
trace the variance is always finite. We say C is an unbiased estimator
for x if E[Cz] exists and eqhals x. If C is unbiased, then the variance
equals the mean-squared error, E|| CZ—XHZ. c® is LUMYV if it is
linear, L;nbiased and of finite variance, and E|| c’z- x|| 2 < E||Cz-x|| 2
for all linear unbiased estimators C. In the classical case Hl and H2

are finite-dimensional Euclidean spaces. Then, if Kis strictly posi-

tive definite, and if N(B) = 0, an LUMYV estimator always exists and
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1
is given, e.g., bythe formula

1 -1 % -1

C = (B*K' B); B K . (2.2)

It is this formula we extend to the case H1 and HZ are Hilbert spaces.

If one puts A = K_I/ZB, then (2. 2) can be written
.o - x -1
-t laTx /2,) (2. 3)
+ -
- ATk l/ZZ)

The standard proof of (2.2) is carried out by first proving that C is in
| -1/2
fact the PI when K = I, then transforming z in the model (2.1) by K ,
. 2.
that is by re-norming the observation space HZ. Eseentially, this is

what we do below, although it is not quite literally what we do because

of certain technical considerations.

Before getting to the theorem, some further elucidation of the
conditions already imposed and their implications is warranted. The
discussion to follow also points out the reasonableness, and sometimes
the necessity, of certain additional conditions. First, there are vari-
ous ways of establishing the existence of a quantity w that can reason-
ably be called a Hilbert-space-valued random variable, that satisfies
E(w) = 0, and that Bas associated with it a bounded, self-adjoint, non-

negative-definite operator K such that

1 .
The notation is consistent with that of Part I.

2It would be interesting to extend a Gauss-Markov theorem to Hilbert
space with the condition that K be nonsingular removed, but we have
not done this. The classical method and formula we use does not ap-
pear to be suitable. It would appear more promising, for example, to
try to extend the method and formula in [A-2].
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(Ky,z) = El(y, w)(z, w)]. (2.1)
K is called the covariance operator (since the matrix form of (2.))
characterizes the covariance matrix of a finite-dimensional random
vector). An outline of a simple way of defining w is relegated to Ap-
pendix B, since the material involved is largely foreign to the rest of
the paper. It will be observed that the construction given in Appendix
B automatically implies that K is nuclear (i.e., is conipact with finite
trace). This condition is élso reasonable as a requirement imposed on
the estimation problem; indeed, if E||w|| < oo and the probability
measure is countably additive, K must be nuclear (see Appendi);: B),
and Tr K = EI leZ. The condition that K be strictly definite is
necessary for the forthcoming formula to be meaningful; see the foot-
note p. 25.

The definition of an LUMYV estimator is lifted from the classical
one for the finite-dimensional case. The now additional restriction
that the estimator be continuous as well as linear is almost necessary
for the estimation problem to make sense. In fact, the estimator must
be everywhere-defined or it is useless; for technical reasons we want
it to be a closed operator. Hence it must be bounded. The condition
that B be continuous is certainly a technical convenience. As far as the
modelling of real problems is concerned, it seems natural to require
B to be continuous.

Now if the unknown element x in (2. 1) has a non-zero component
in the nullspace of B, that component in no way affects the observation

z, and it cannot possibly be estimated. Hence we can only estimate the
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orthogonal projection of x on N(B)—L. In a notation consistent with that

used in Part 1, we let PM be the projection on N(B)‘L s Br be the

restriction of B to N(B)-'L and put X = PMx. Henceforth we are con-

cerned only with estimates of X
Since w and z are Hz-valued random variables, Cw and Cz are

Hl-valued random variables for any (bounded linear) estimator C (see

Appendix B). Further, the mathematical expectations and covariance

operators exist, and we have

E[Cz] = E[CBx + Cw] = CBx (2.5)
= CBxl
The unbiasedness condition (for xl) then becomes CBx1 =x), or
CBrxl = % . (2. 6)

-1
Thus, the restriction of C to R(B) is necessarily Br , which is another
way of stating the unbiasedness condition. From this observation we
can make the simple but important inference that B must have closed

range. In fact,

llcll = sup Jlcyll > sup [yl
llyll =1 [lyll =1
y € R(B)
= sup  |IBZYIl = 1BV
Iyll=1
y € R(B)

Thus C cannot be bounded unless B;l is bounded, but this is equivalent
to B having closed range (Lemma A.8). The condition that B have closed
range becomes an essential hypothesis.

The variance of a finite variance linear unbiased estimator C

for xl is



28

E||cz-x,||® = E[[CBx+Cw - x,||*
= El|cwl]®. (2.7)
Let {cl).n}, n=1,2,..., be ac.o.n.s. for H, chosen so that a subse-

L.

quence of the ¢n's exactly spans N(B) Since K, the covariance of

w (see Appendix B), is required to be a nuclear operator, we have for
C unbiased,

Ellcs - x)[1° = Ellcwl’

00}

o0 J—
El I [w.C ¢)1%] = 2 E(C ¢, w)(C ¢,w)

x b3 * x *
2 (KC ¢,C ¢) = 21 (CKC 6,6 )

1}

I

Tr(CKC ) (2.8)
In fact, CKC * is nuclear since K is nuclear and C is bounded, and so
Tr(CKC*‘) exists (cf. [G-1], Chapter 1). We see that the conditions on
K and C guarantee that the estimator is of finite variance. We summa-
rize these comments and make an obvious addition in

Lemma 2.1: Let the B of (2. 1) be a DDC linear operator and let w be

an H2~va'lued random variable with a nuclear covariance operator K
and with Ew = 0. Then a necessary condition that a linear unbiased
estimator C for 3 exist is that B have closed range. If B has closed
range a finite variance linear unbiased estimator does exist, in par-
ticular C = B+ is one. For these assertions to hold K does not have to
be strictly definite and B does not have to be bounded.

Proof: The first assertion has been proved above. By Corollary 1.2,

+
B is a bounded operator. It meets the condition for unbiasedness,
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.
b

(2.6), and the error variance is Tr(l3+KB+ ), which is finite as has

been pointed out abdve. ‘H

Remark: By Corollaries 1.) and 1.5 it follows that BJr can be expressed
in the form B', and if B is bounded, in the form B'. B provides an
estimator whose range is N(B)—L. However, it is fairly obvious that

if R(B) # H2 and N(B) # 6 finite variance unbiased estimators C exist
such that R(C) N N(B) # 9.

We proceed now to a consideration of LUMYV estimation. The key
step in getting the LUMV estimator is solving a minimization problem—
a slightly complicated variant of the basic minimization problem that
led to the pseudoinverse. We treat this problem first out of context.

Let H1 and H2 be Hilbert spaces (not necessarily separable). Let K be

a bounded self-adjoint, strictly positive-definite linear operator on HZ'

Let B be a bounded linear operator with D(B) = H, and closed range

1

R(B)c H Let ¢ be an arbitrary element of N(B)—L. We call the fol-

L
lowing minimization problem, problem I:

find ¢ € H2 to minimize (Kc, c)

sy i)
subject to B ¢ = ¢

It is convenient to change the form of this problem. Since K is self-

adjoint and strictly positive-definite, it has a self-adjoint strictly

positive-definite square root Kl/z. Put & = Kl/zc, from which we

have ¢ = K~ 1/2{5, . Then problem II is defined:

to minimize || &|] .

2
subject to B K-l/zg =é

find ¢ € H
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I and II are exactly equivalent in the following sense: if a §O exists

- - -1/2
that solves II, then K I/ZE,O is defined and c° = K / §O solves I;

1 , * -1/2
if a ¢ exists that solves I, then éo = K /Zco is such that B K / §O

is defined, and §O solves II. Consequently, we can restrict our atten-
tion to II. Except for one thing we could apply the results on BAS di-

rectly to problem II; the difficulty is that the (in general unbounded)

operator B*K_l/“2 need not be closed, although it is densely defined.

We can introduce hypotheses to guarantee that it is closable, but then
just replacing it with its closure is not good enough, because a mini-

mizing element §o in the domain of the closure would not need to belong

to D(B*K- 1/2). The difficulty is circumvented by working with the

adjoint.

Theorem 2. 1: Problem II has a unique solution «‘_3,0 if

(1) K l/ZB is densely defined on H

(2) B® lKI/ZP‘ K-l/z is a bounded operator, where P

r R
-1/2B

1

R

is the projection on R(K ) (This operator is well-

defined as will be shown).

The solution §o is given by §O = KI/ZS*dp, where S is the bounded

-1 -
continuous extension of Br KI/ZP K 1/2 to all of H_ (it will be seen

R 2
-1.1/2 -1/2 , . . .
that Br K PRK is densely defined and such an extension exists).

Further, S has clqsed. range, R(S) = N(B)—L.

1/2

Proof: K~ B is closed since K-l/2 is closed and B is bounded; it is

densely defined by hypothesis (1). Thus, if we put A = K-l/ZB, A is

+ + -
DDC and admits a PI, A, By Theorem 1.2, A = ArlP , where P

R R
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is the projection on R(A) and Ar is the natural restriction of A to

N(A)—L.- We note certain preliminary facts about the transformation

A: first,

N(A) = N(B), (2.9)
or, equivalently,

Ra*) = NAF- = e (2. 10)
second,

A = K’”ZBr (2. 11)

-1
where Br'is as before the restriction of B to N(B)—L; third, Ar is

bounded, or, equivalently, A has closed range. The equality (2.9) is

-1/2B

valid because N(A) = N(K ) and the only element K 1/2 carries

into the null element is the null element. Then (2. 11) follows imme-

diately from (2. 10). To show that A;l is bounded one can verify direc-

-1 -1.1 -1
tly from (2. 11) that Ar = Br K /Z, and note that Br is bounded.

To show that B;lKl/ZPRK— 1/2 is well-defined we must show that

- - - 1/2
D(B 1)3 R(KI/ZP K 1/2). In fact, R(KI/ZP K 1/Z)c: R(K / P_) =
r _ R R R
1/2_-1/2 — .
K K B) = R(B) = R(B) = R(Br)' The one perhaps non-obvious

R(
step in this chain is the first equality, which one can verify straightfor-

wardly using the fact that Kl/2 is bounded.

1/2 1 -1/2

+ -
Now consider the transformation A K = Ar P_K =

R
-1 - + + -
Br KI/ZPRK 1/2. Since A is closed and bounded, D(A K 1/Z) =

S L
D(K l/Z), which is dense in H_. By hypothesis (2) A K 1/2 is bounded.

2
+ -1/2 _—
Consequently, A K can be extended by continuity to a closed bounded

linear transformation S defined on all of HZ'
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We show that SB is the orthogonal projection PM on N(B)—L. Let

X € D(K—I/ZB) and put x = x

+ -
K l/ZB

+ - -
| T xpc N(B)—‘L, X, € N(B). Then,
+

SBx = A = A Ax, +x

1 Z>

(x, +x

1 2 ) 1

by Lemma A. 1 and Theorem 1.3. Since SB is continuous and every-

where defined and agrees with PM on a dense subset of Hl’ SB = PM.

But then SB is self-adjoint, and so B s" =P
1/

M

2 3k
We can now verify that ~§O =K S ¢ solves problem II. First,

since ¢ € N(B)—L

koo kL B koo
BY K 1/2{5_O - Yk I/ZKI/ZS b =B S = o
. o . ¥ _oko-1/2
so the linear constraint is satisfied. Now, A¢ is closed and A o B K ,
. -1/2
since for all x € D(A) and y € D(K ),
-1/2 * -1/2
Ax,y) = (K Bx,y) = (x,B K y).
, e ko -1/2 - *
Consequently, any £ satisfying B K ¢ = ¢ satisfies A § = ¢, and
A"(g-go) = 0. Thus, £-§_eN(A%). It will follow that || §O|\2 is a

1

minimum if E,O € N(A* )=, for then
lell® = lle-¢e 12+ 11e11® > lle lI%

* + -1/2._1/2 +
But §O does belong to N(A )—L. For SK1/23 (A K / JK / = A, and

+ 1/2 + 1/2 % + ¥
since A is everywhere defined, SK / =A . Then K / S =(A), so

Ik

+ o ) . + >:<
£ _eR(A")"). But by Theorem 1.6 and Lemma 1.1, R((A") ) =

rRia®)) = ma L

To establish uniqueness, let us note first that ¢ € R(A >k), and
hence by Theorem 1.1 the problem of minimizing || §HZ subject to
A*g = ¢ has a unique solution §'. §&'is characterized as that one ele-
ment which satisfies A*g' =¢ and §' e N(A* )—L . Since §O has been

shown to satisfy both these conditions, §' = §o. Then, a fortiori, §o

is a unique solution to problem II.
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Finally, we observe that R(S)> R(SB) = R(P ) = N(B)—L, while

on the other hand, R(S ) R(A K l/Z)C R(A A)—l- )—L
Hence R(S) = N(B)—L. 1|

Corollary 2.1: The conclusion of Theorem 2. 1 holds if hypothesis (2)

is replaced by any of the following:

2 ATk V2 is bounded;
(2" A*(AA’) P K 172 (¢ bounded;
1/2

@) (a*4) 'K is bounded.
Correspondingly, S may be defined as the continuous extension of any

of the operators defined in (2'), (2") or (2').

+ 211/,
Proof: From the proof of Theorem 2.1 we have A = BrlK /ZPR,

and from Corollary 1.} A = A (AA )rIPR’ so the assertions involving
S +

(2') and (2"') follow. For (2''), we note that (Aa A)rlA c A by Theorem

1. 8.

Furthermore,

sk P _1 ko _ b3 - b3 -
(A" A); k2 A A B K Vep-1/2 _ s A)rlB K1

ko b3 b3 - P
But R(B K 1)c R(A ), and by Corollary A. ) D[(A A)rl] =R(A A)

-R(A"), soD[(A" Ar)'lA* K™% - Dk™1/?), which is dense in H,.
Thus the continuous extension of the operator of (2'"") is the same S as
before. |H

Theorem 2.1, or equivalently Corollary 2.1, can now be applied
"eoordinate-wise'' to give a Gauss-Markov theorem. For this, we need

again that the Hilbert spaces be separable. We retain the notation of

Theorem 2. 1.
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Theorem 2. &l: In the linear model given by (2. 1) let H, and HZ. be

1

separable Hilbert spaces, and let w be an Ha—valued random variable
with mean zero and strictly positive definite, nuclear covariance opera-
tor K. Assume:

(1) B is a bounded linear operator with D(B) = H,, R(B)c H,, and

1 2
R(B) = R(B).
-1/2 . .
(2) K B is densely defined on Hl'
+ -1/2 . : :
3) AK is a bounded operator (or equivalently the operators defined

by (2), (2") or (2'""') of Theorem 2.1 and Corollary 2. 1 are bounded).

Then C = S is an LUMYV estimator for Xy where X, = PMX. The

solution C = S is unique.

Proof: For C to be an LUMYV estimator of Xy it must be bounded, satis-
[00)

sk
fy CBx, = ‘xl, and minimize Z (CKC q)i,q)i) over the class of all C

1

satisfying the other conditions. From Theorem 2.1, S is bounded and

SB = PM, so S = C satisfies the first two conditions.
Now the condition CBx1 =% implies CB = PM. Hence CB=B C ,

%) %k
and the condition CBxl = x, can be rewritten as B C X =X, Recall

that the c.o.n.s. {¢i} was chosen so that a subsequence exactly spans

* .
N(_B)‘L. Put c, = C cl)i, i=1,2,... . Then the unbiasedness condition
becomes
il
B c, = ¢i for those ¢i € N(B) (2.12)

and the expression to be minimized is

1See also [R—S].
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0
Z) Kc,(1 (2.13)

1:

[w——

If we can find bounded C so that the corresponding < satisfy (2.12), so
that all A corresponding to ¢i € N(B) are zero, and so that each non-
zero term of the sum in (2. 13) is minimized, then C is LUMV, provi-
ded the sum in (2. 13) is finite. However, the finiteness of the sum is
automatic since C is bounded (see (2. 8) and the suc ceeding comments).
But c, minimizes (Kci, ci) subject to B*Ci = q;i if Ci =K l/z’(Kl/ZS* cl)i)
=S *xbi by Theorem 2.1 and the equivalence of problems I and II. Fur-
thermore, s*¢i = § for all ¢, € N(B) because N(S¥) :§7§)—|— = N(B).
Thus C* = S* provides a minimizing set of ci's, and C = Sis LUMV.

The uniqueness follows from Theorem 2. 1. IH

Cdrollary 2.1: If the subspace R(B) is invariant under K, then condi-

tions (2) and (3) of Theofem 2.2 are automatically satisfied, and B+ is
the unique LUMYV estimator.

Proof: Since Kis self-adjoint, R(B)—-L as well as R(B) is invariant
under K, that is K[R(B)] c R(B) and KfR(B)—l—] = R(B)—L. Then since

K is nonsingular on H_, its restriction K_ to R(B) is a 1:1 mapping of

2 B

R(B) into R(B). KB retains the properties of self-adjointness, strict

“1is defined, and D(K‘1

B B ) is dense in R(B).

positivity and nuclearity; K
-1
By Lemma A. 8, Br is bounded from below, hence D(K Br) is dense in-

-1
N(B)—L, whence by Lemma A. 1, D(K B) is dense in H This implies

1"
condition (2) of Theorem 2. 2.

-1..1 -
We now consider B K /ZPRK 1/2, where PR, it will be recalled,
—1/2

is the projection on R(K B). Let PB be the projection on R(B). It
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commules with K, from

1/2

is immediate from the hypothesis that PB

which it follows that PB commutes with K (c.f. [R-2 ], p. 143).
-1 -1/2 1/2
/2B / /

Then, since B has closed range, R(K ) = R(K , PB) = R(PBK— )

- - - -1
=P_, and B l.Kl/ZP K 1/2 =B lKl/&P K /e
B r R

r B
_ B-1P K1/2K-1/.2 _ B-IKI/ZK—I/Z‘
r B r

T

>s]

os]

=

jon
=
®

)
1

This operator is bounded, so
condition (3) is satisfied, and its continuous extension is B+. Hl
Remarks: (1) Althou‘gh in the case of Corollary 2.1 the LUMV estimator
 does not depend on K, the error variance, as given by (2.8), does. The
result of Corollary 2.1 is to be expected, of course, from the classical
case. Intuitively, Corollary 2.1 is saying that if the noise in R(B)—J-

is uncorrelated with the noise in R(B), one may as well first project

the observations on R(B).

(2) The hypotheses of Theorem 2.2 are presumably somewhat awkward
to verify in many instances. An example where they are satisfied, in-
volving conditions similar to but somewhat less restrictive than the
commutativity condition of Corollary 2.1, can be constructed as follows.
The verifications are routine and will not be given, Let B be written in

the form DU where D is a self-adjoint operator on H, and U is par-

2

tially isometric from H1 into HZ' Suppose D has discrete spectrum,

SO Dq)i = )\il‘bi’ where {Lpi} is a c.o.n.s. for R(B) and )\i >0. Let {77.1}

be a c.o0.n.s. for R(B)—-L. Let K=K.P. +K_.P_ +K P3, where: K

171 2 2 3 1

is a nonsingular covariance operator on M, = V{q;l, .

1 . . .
Myseees M} ) K2 is a nonsingular covariance operator on

NG

1
V{...} denotes the subspace spanned by the vectors.
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M, = Vibgsp e

...}, K, is a nonsingular covariance operator

3

on M ..}, and Pi is the orthogonal projection on Mi'

SALVESTURVEPIE

Then conditions (2) and (3) of Theorem 2.2 are satisfied.

(3) The condition that B have closed range is, as we have seen,
essential, but it is often not satisfied in the kinds of applications one
would like to consider. In some instances, one can replace the 'natu-

or L., by a smaller Hilbert space H'

" 1 .
ral HZ’ which is typically JZ2 5

2

which still contains all elements y € R(B) HZ’ but in which the range
of B becomes a closed set. This cannot be done satisfactorily unless

the noise is small enough in an appropriate sense. We shall describe

this procedure in connection with the example of Part III.



PART III

AN APPLICATION TO SYSTEM IDENTIFICATION

To identify an unknown input-output system means to determine a
suitable mathematical model for the unknown system from incomplete
prior knowledge of the system, using data obtained by measurement of
outputs and either measurement or prior knowledge of corresponding
inputs. A model is suitable if (i) it will reproduce the behavior of the
system well enough, according to some set criterion, when the system
is stimulated by any one of the class of inputs of interest, and (ii) it is
in a useful form. Both the criterion of fit and the usefulness of the
model will depend to some degree on what the identification is to be
used for, e.g., to permit control of the system, to allow transmission
of information through the system, to yield predictions of future behav-
ior, etc. There is usually no reason why there sh‘buld be only one ac-
ceptable model. A definition as general as the one above encompasses
a tremendous variety of problems; any two of them may have very lit-
tle in common with each other, and acceptable solutions may involve
disparate mathematical methods. However, at bottom, identification
problems are inversion problems, as will be pointed out specifically.
below, so it is not surprising that certain examples involve generalized
inverses. Often the measurements are noisy enough that the basic in-

version required becomes a problem of statistical estimation.

38
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To fix ideas, let u denote an input to a system, and y the corres-
ponding output. We suppose u € U, the class of inputs of interest, and
y € 1., any fixed class of outputs containing all y corresponding to

Y

u € ’/ 'Thé sets ’/. and "!,/f will be assigned mathematical structures
as seem appropriate (of CO‘;JI‘SE, in modelling a problem, these struc-
tures are not unique). We assume there is a functional relationship
from u to y, that is, for each input u e 7( there is one corresponding
output yl; then we have

y = F(u), uel. (3.1)
The function F characterizes the system in question completely, of
course, as far as input and output data are concerned (as long as we
think of the system as a '"black box"), and we shall refer to the mapping
F as the "'systefn. " This simple terminology carries with it the impli-
cation that what one is perhaps accustomed to calling one dynamical
system, but with different initial states, here becomes a collection of
systems.

Now suppose the system F is unknown and we want to identify it.

First, either from prior knowledge, or purely as a working hypothesis,
we postulate a class of systems to which (we hope) the unknown system

must belong. In different language, we postulate a set % of mappings

1 . . . p
There has to be some relation between inputs and outputs or identifi-

cation makes no sense. There are more general situations of course,

e.g., an input u might determine a probability distribution on outputs.
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/

from W into »/ which we assume contains the unknown F. Then we
carry out if possiblé a set of experiments to yield data to fix F closely
enough within the class (% Temporarily we can deal with the map-
ping F as an abstract entity, but eventually it must be represented
concretely. The final representation of the estimate of F is the identi-
fication. Often an unknown dynamical system is represented in terms
of a differential equation, the parameters of which are to be deter-
mined by the identiﬁcation.. This really amounts to representing F_ 1.
_Another type of representation is directly in terms of integral operators,
and this is the kind of representation we work with here.
Suppose now that Z, .."",./f and ¥ are given as sets and that in

addition 7/ is a linear space. We do not yet need to require any mathe-

/
. : 17 . . .
matical structure for .. There is then a linear structure imposed

-~

on ys/ in the ordinary way; i.e., one defines ¢F, @ a scalar, and

F +F , F, F, F_e /A, by the equations

1 2 1 2
[@aF](u) = aF(u) (3.2)
(F +F, ) = F)+F, ). (3.3)

Let a{ be the linear space of mappings from 7¢ into 7/ generated by
¢

]f . Consider first the problem of noise-free identification of F in

which the outputs y = F(u), ue 2, can be known exactly, We inter-

change the roles of u and F and regard u as determining a mapping

~ 1

/ £, ' .
from %, and even from X , into f/ . So we can write
7~
4

y = U(F) = F), Fe L. (3.4)

for each u € 7/, where U is the mapping corresponding to the input u.
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The problem of finding F is now the problem of inverting U. U is

always a linear mapping. In fact:

U@F, +BFZ) [aFl +[3FZ](u) = aF (u)+BFz(u)

1

a U(F,) +BU(F,).
Thus, in a basic sense, noise-free identification is always a linear prob-
lem. If the output of the system can be observed only in the presence

of noise w, then the model (3.1) is replaced by

z = U(F)+w. (3. 6)
Equation (3. 6) is an abstract version of the usual linear model for
statistical estimation.

This simple observation that identification is basically a linear
problem, under fairly general conditions, is often not appreciated. It
indicates the potential applicability of generalized inverses to identifi-
cation, quite apart from the particular example to follow. We note,
obviously, that the linearity can be lost by using representations of the
unknown systems which do not preserve it, and such representations
are often used, sometimes for good reasons.

In the generic example to follow, a situation is to be considered
in which Z/ is a Hilbert space, so that w and z are Hilbert-space-
valued random variables. A/ , the space of systems, will also be a
Hilbert space, and U, which is necessarily linear, will be a bounded
operator, sometimes with closed range. The model used in the exam-

ple has been chosen so that we can illustrate the application of theorems
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in Parts I and II, and hopefully provide some insight into certain aspects
of identification theéry. However, the model is not typically used in
practice, partly because of the computational complexity it introduces.
A number of comments need to be made to place what we are doing in
better perspective, but these are postponed till after the example.

We model the class of systems to which the unknown system is to
belong with a class of Volterra-Frechet polynomials. In particular,
consider transformations of the form

T

N T
y&) =[H@I®) = 2 [ ... [ & @
n=l " 0

te T (3.7)

where T is a finite interval in R, T is a positive number or + oo, N is

a fixed positive integer, and the functions u, kl’ cens kN’ y are real or
complex-valued. Letue€ LZ(RI). and kn € LZ([O’ T]n), n=1,...,n; that
is, let.kn satisfy
T T 2
fo...fo i (Ve v )1 vy dy <o (3. 8)

Clearly, if one permutes the arguments v of the kn's the integrals in
(3.7) are unchanged. Consequently, one can symmetrize each kn, i.e.,

replace kn(v ..,V ) by nl—, %k (v v )) where the sum is over

| n n r(l)y """ 7n
all permutations 7 of n integers, and we suppose this done. The sym-
metric kernels of n arguments form a closed linear subspace of

LZ([O,T]n

) which we denote :Z n
The transformation defined by (3.7) represents a system which,

in systems engineering terminology, is causal with finite memory.

Clearly, by changing the interval of integration, the causality condition
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can be removed. If T = [0, 7] and if u(t) = 0 for t <0, then the integrals
can be rewritten with the variable upper limit t without changing the
transformation.

It is convenient to introduce the notations: Fn for the integral oper-
ator with kernel kn’ and Yo for the nth integral in (3.7). Then (3.7) can

be written

n n
n=1

N N
y =2 F.(w = 2y (3.9)
n=1

We identify the operators Fn with their symmetric kernels kn, and define

H FnH to be the L, norm of kn. Thus, the Fn form a Hilbert space that

2
is isometrically isomorphic to 'lf"n under the correspondence Frl - kn'
and to cut down the verbiage we say simply that Frl € ofn. We define a
2 N 2 N 2
norm for F by HFH = L HFnH = 221 Hknll , and, with again an
n=1 " +f | = e
i < (+ (+) £
abuse of notation, regard F as an element of 0‘\1 j) oo ) N’

which we denote by < .

An application of the Schwarz inequality shows that

ly 1% < e |12 1]l 2%, 5. 10)
and hence that y € L'2(T), with
2 2 2
Iy 11 < m (T 7 Hall 77 (3.11)

where m is the length of the interval T. Thus F is a mapping from LZ(RI)

into LZ(T), and it is bounded on bounded sets. It can be shown without much

difficulty that if Yy = Fn(u), y! = Fn(u') then

1° LAY 5

oo

y,-v' 117 < c)lfu-u'||"[max(||u

(c.f., [R-4]), where C(n) is a constant for fixed n. From (3. 12) it follows

that H is a continuous mapping from L (Rl) into L_(T). We do not need

2 2

this fact in what follows, so we do not bother to prove (3. 12).
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We are now ready to discuss identification of systems modcled by
(3.7) in accordance with the ideas leading to (3.6). Let 7# , thg class
of systems to which the unknown system is to belong, be *{ . Reinter-
pret (3.7) as y = U(F), where F = {kl, e kN}E f, and U is the op-
erator determined by the right side of (3.7) with fixed u. U is a linear

v
operator from .~ into L_(T). It follows easily from (3. 11) that U is a

2
bounded linear operator. Actually, U is compact. To see this, let us

again introduce notation for each term in the sum in (3. 7).' Let Un be

nth integral operator in the sum; Un has kernel [u(t- vl). .o (uft- vn)].
N N
We have y = L U (k )= £ U (F ) with an obvious abuse of notation.
n=] . 1 p=] n 1
Further, if we regard Un as the operator on 7/: which carries Fn into

y, and all 'FJ., j # n, into zero, we have

N
y = 2 U _(F). (3. 13)
n
n=1
Now each Un is Hilbert-Schmidt, in fact
0P 2 2n
f [ f lu(t-v,)...u(t-v )|~ dv....dvdt < mllul|”". (3. 14)
I 1 n 1 n -
T -0 -0
Thus, each Un is compact, and from (3. 13) it follows that U is compact.
Suppose that observations of the output are made in the presence of
additive noise w, where w is to be represented as an LZ(T)-valued ran-
dom variable with mean zero and nuclear covariance operator K (see
Appendix B). The model is then of the form of (3. 6), which we repeat,
z = U(F)+w, (3.06)
p 7
and we wish to estimate F € /2/ = A.. Consider first (non-statistical)
least-squares estimation of F—for this, of course, we disregard the
statistical properties of w; w is just an error. U is DDC, so by Theorem

1.1 a BAS exists iff z € F__, the set of z's for which the projection of z on

UJ
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+ +
R(U) belongs to R(U). The BAS is given by U z, where D(U ) = FU'

Since U is bounded, .U+ =U" = (U*U);'IU#< by Corollary 1. 5. These
results, though they describe the situation that obtains, are of little
practical interest if R(U) is not closed, because an unbounded estima-
Ator that is not always defined is of little value. Unfortunately, R(U) is
not closed unless U is a degenerate operator, since U is compact. If
we consider the estimation of F by linear unbiased estimators from a
statistical point of view, the same difficulty obviously arisées. In par-
ticular, Theorem 2.2 does not guarantee an LUMYV estimator unless
(aside from other hypotheses) R(U) is closed. Fortunately, this diffi-
culty can be circumvented mathematically by replacing the observation

space L_(T) with a smaller Hilbert space in which the range of U is

>
closed; we do this below. This replacement changes the model of the
problem in such fashion that, speaking loosely, some output informa-
tion is lost. This loss of information may or may not be of consequence,
depending on the noise, as we shall see.

We digress from the example temporarily to construct the new
Hilbert space that replaces the observation space HZ' This can be done
in more generality than is needed for the example.

Lemma 3.1: Let T be a DDC operator on a Hilbert space H. Then the

linear space D(T) is itself a (complete) Hilbert space with the inner
product

(x, y)'T = (x,y) + (Tx, Ty), x,y e D(T). (3. 15)
If T is bounded from below, D(T) is also a Hilbert space with the inner

product

(x, Y)T = (Tx, Ty), x,y e D(T). (3.16)
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Proof: Since T is closed, the graph of T, G(T), is a Hilbert space
with the norm, || 6o, Tx)|| = ||x]|® + || T||*(D-2], p. 1186). That is.
(3. 15) defines an inner product for G(T), so D(T) is a Hilbert space.
If T is bounded from below there is @ > 0 such that ||Tx|| > al|x]|,
x € D(T). Then
2 2 2 2 -1 2

xllp = HT=ll® < H=l7 + =™ < @+l =l

so the norms given by (3. 1£) and (3. 16) are topologically equivalent, Hl

Theorem 3.1. Let B be a DDC linear transformation from the Hilbert

space Hl into the Hilbert space HZ' Then there is a Hilbert space ;12
formed on the linear set FB c HZ’ but with a different norm, such that
(1) R(B)c ﬁz and R(B) is closed in ﬁz,

(2) The orthogonal complement of R(B) in H2 is the same set as the

orthogonal complement of R(B) in ﬁz, and furthermore the Hz-

norm of y € R(B)—J— is the same as the I—le—norm.

into H., has

(3) I;, the mapping B reinterpreted as a mapping from H1 2

closed range,. and is bounded iff B is bounded.
Proof: B%*, being DDC, has a polar decomposition, B* = JT, where
T = (BB*)I/2 is sélf-adjoint and J is partially isometric ([D-2], XII
7.7). Then B = B¥* = T*J* = T-J* since J is bounded ([D-2], XII 1. 6),

" and J* is also partially isometric ([D-2], XII, 7.6) with initial domain

R(B*) = N(B)—L and final domain R(B).

—

To avoid some confusion of notation later we put M = R(B) and

—

N = R(BI-, so that H, =M (+) N. Now R(T) = R(B) = M, and the

restriction of T to M, Tr’ has a self-adjoint inverse T;l by Lemma

A.14. We note further that D(T;l) = R(T) = R(B). In fact, from
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3
B = TJ it follows that R(T)> R(B). To show that R(B) > R(T), sup-

pose y € R(T), then y = Tz for some z € N(T)“L = R(T) = f{—(-ﬁ). But

z € R(B) is given by z J'PX for some x ¢ N(B)—l—, since J restricted

1}

to N(B)—L is a unitary mapping onto R(B). Thus y = TJ>'<x = Bx, so
y € R(B).
- -1
We can now apply Lemma 3.1 to R(B) = D(Trl), with Tr replac-

ing T, and call the resulting Hilbert space M. Then we define

A
HZ"MC)N‘

The assertion (1) is now immediate since M is itself a Hilbert

space. (2) is obvious from the definition of ﬁ . R(g) R(g) is just a

2

restatement of (1) since R(B) and R(}g) are the same set. We have

left to show that B is bounded iff B is bounded. Let P and P, be the

projections on M and N respectively. For x € Hl’ let X be the projec-

tion of x on N(B)—L and x, the projection on N(B). Now, using the norm

2
induced by (3. 18) for 1\71, and denoting norms in ﬁz by ||- H _» we have
for x € D(B)
~ 2 2 -1 2
[IBx|l = I[Bx[|" + [| T, Bx|

1Bl + |7 T |12

1Bl # + 1], 11

which proves the assertion. H‘

Remark 1. If B is bounded the norm established by (3. 16) can be used
for 1\71, and then B is partially isometric.

Remark 2. If B is compact, ’I'2 = BB* is compact as well as self-

.. " 2
adjoint and positive, sothat T’ e = X _e , n=1,2,..., where the e
n nn n

are orthonormal and span R(T) = R(B), and where )\n > 0.and converge
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monotonically to zero. The norm induced by (3. 16) is applicable in

this case, and we have for y ¢ HZ’

Iyl1Z = 2 e )12 ¢ 1Pyl

(3.17)

where the norm in the last term is the norm of HZ.

Let us return to the identification problem for which the model is
given by (3.6), or by (3. 4) in the noise-free case, and for which W
is the class of Volterra-Frechet polynomials which has been introduced.
The operatorvU now plays the role of the operator B in the preceding

theorem; otherwise we shall use the notation of that theorem and of

~

Remark 2. For the noise-free case, since R(U)c H_, (as a set), we can

2

clearly replace the observation space H, and the equation y = U(F)

2

with the space H_ and the equation;r = G(F), where ﬁz and U are as

2

given by Theorem 3.1 with B = U. When there is additive observation
noise, however, so that the model is given by (3. 6), this replacement

may mean taking unjustified liberties with the model. For if LZ(T) is

the "actual' observation space, then for some values of w(w), z will not

lie in ﬁZ; changing the mathematical model would in this case actually

mean changing the original problem. The only case where no harm is

done in changing to H. is when w(w) belongs to the set H. with probabili-

2 2

ty one.
A condition which guarantees this is given in the theorem to follow.
Furthermore, the condition will prove to be necessary in a sense to be

specified. Since w(w) is an H_-valued random variable, in the sense

2

defined in Appendix B, {(w, en)}, with the e, chosen as in Remark 2,

is a sequence of scalar-valued random variables. We suppose w has
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mean zero and nuclear covariance operator K; then E[(w, en)j =0,

2 ' ~ . .
El (w, en)l = (K e en) = variance [(w, en)J. From Remark 2 it follows

that
2
| w(w)| 2 ?3 o), e )1+ (| P,wlo)]] (3.18)
for all w for Wthh the right side is finite,
Theorem 3.2: If
Tl Ke o) <oo (3.19)
n n n

~ ~ ~

then w(w) € H, (as a subset of H,) with probability one. If w(w)e H

2 2 2

is defined to equal w(w) for all w for which ||w(w)|‘ _ is finite and zero

otherwise, then w(w) is an Hz—valued random variable with mean zero

and with a nuclear covariance operator K.

Conversely, if w(w) € H. with probability one and w is defined as

2
above, then the existence of a nuclear covariance operator K for w

implies that (3.19) is satisfied.

Proof: From (3. 18) it follows that

I

0.0]
E|lww||% = 2 -)\;ll(K e e ) +E|| P, wo) (3. 20)

Since the second term of the right-hand side of (3.20) is finite by the
properties of w, the condition (3. 19) guarantees the finiteness of (3. 20)

which in turn implies that w(w) € H, with probability one.

2
With the notation used in Theorem 3.1, ﬁz =M @ N. We

establish a c.o.n.s. for H2 by separately specifying c.o.n. systems

for M and N. The c.o.n.s. for N can be taken arbitrarily; we denote

it by {f,}. For M it can immediately be verified, using the fact from
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Remark 2 that T %e = e , that {e Jisa c.o.n.s. in M if
r n 'n n n

gn = )\rll/Z e Then, with w defined as in the statement of the theorem,

we have with probability one,

~

(w, fn) = (w,fn) (3.21)

~

~ ~ _1~

and (w,e ) (Tr w,Tr en)

n’'~

w720 2e )

= )\;ll/z(w,en). (3.22)
From (3.21) and (3.22) and the fact that w is weakly measurable it
follows that (\;, fn)~ and (\;, gn)~ are measurable scalar-valued functions.
Then a limit argument implies that v; is weakly measurable, and hence
is an ITIZ—valued random variable (see Appendix B»).

It now follows from the fact that E||w||% = E||w||2 < oo, which
has alreé.dy been established, that w has a bounded (and hence self-
adjoint) cévariance operator K. The proof is the same as the corres-
ponding propf in Appendix B. To show that K is nuclear we show that
121/2 is Hilbert-Schmidt and use the fact ((G-1], p. 39) that the square
of a Hilbert-Schmidt operator is nuclear. In fact

Z kY% )12

n=1 n=1 n n=1

I
N/
=
(0]
°
"
g
=
D
2

f
™M 8
>

Ken,en) < o (3.23)

and,
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> 1KY % |2

(0 0]
2 (K £.1).
n=1 n=

1

1}

(0 0]
2 (Kf

n=1

;) < oo, (3.34)
n’ n

where we have used (3.21) and (3. 22).

The finiteness of the left sides of (3.23) and (3.24) demonstrates
that 121 2 is Hilbert-Schmidt ((G-1], p- 34). The existence of the mean
of w follows as in Appendix B. Equations (3.21) and (3. 22) together
with the fact that Ew = @ imply that Ew = 0.

To prove the converse we suppose K exists and is nuclear. Then

(00)
K has finite trace, so a fortiori the sum Y (K e en)~ must be finite.
o~ /2 S
But this sum is the same as L ||K en| 2 and the conclusion
‘ n=1 e
follows by (3.23). ||

Thus, in the identification example, if the condition (3.19) is

, U and \;, respectively,

satisfied, we can replace H,, U and w by H

2 2

and then apply Theorem 2.2 to thg new model with the assurance that
the new model is qut as faithful a representation of the real -life prob-
lem as was the original one. Theorem 2.2 will apply, of course, only
if the covariance operator of the noise is such .that conditions (2) and
(3) of that theorem hold. These conditions do not conflict, at leastin
general, with (3. 18), as consideration of Corollary 2. 1 and the remark
(2) following i.t will show.

As indicated earlier there are a number of comments to be made,

both regarding the example as such, and its place in identification theory.



Remarks (1). The condition (3. 18) can be interpreted as specifying

that a 'noise-to-signal-ratio' is finite, or more properly that the sum

of noise-to-signal ratios in each orthogonal component is finite. (Ken, en)
is the variance of the noise component (W,en), and )\n is the square of

the '"signal' component along e .

(2) There is no difficulty in extending the system model of (3.7) to the
finite-dimensional vector case where u and y are vector-valued (c.f.
[R_-3]). The same results follow.

(3) The restriction that F be time-invariant. can be relaxed in the fol-
lowing way with no essential changes resulting. Let the kernels kn be

of the form:

n 1" 'n

.

1=

fo—

M
K (tvp o) = O ok Yo,y (3. 20)

With M finite and suitable restrictions on ai(t)’ the function spaces are
still Hilbert spaces, and U is still compact (c.f. [R—4])- Certain clagses
of time-varying systems can be modeled this way.

(4) The estimate one obtains is, of course, only for F., the projection

E
of F on N(U)—L. How 'large" N(U)—l— is depends of course on U. If 7
is finite, one can choose a sequence of inputs uj, ﬁz, ..., of duration

m-T, say (recall that m is the length of T); then, allowing T units of
time between inputs (dead-time), make repeated measurements. If p
measurements are made, the output space becomes the p-fold product

of L2 (T), the input space becomes the p-fold product of L, (T-T), and

2

U is suitably determined by Upseeesu . :é/ , however, remains effectively

the same, Clearly, N(U)--L is a monotone nondecreasing sequence of
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subspaces with increasing p. One would expect to do a better job of
identifying F as more measuremenis are made, if the u, are suitably
chosen (see Remark (5)). Bul making the P repeated measuremecnts
is just one special way of making one measurement where the input
has duration pm-7 and the odtput has duration pm.

(5) From the point of view of identification theory as reasonably con-
strained by practical considerations, we feel a better approach than
what has been done here is the following. Assurﬁe a priori that ul

1

is a compact subset of -f and that ?L is a compact subset of L_(R").

2
Then, given € > 0, the model (3.4) can be replaced by a finite set of lin-
ear equatiqn_s with finitely many unknown parameters to be found with the
property that the solutions for the parameters in the finite set of equa-
tions will determine the true system in ‘?’;uniformly to within the speci-
fied €> 0. With the addition of observation noise ';N, the problem be-
comes that of estimating parameters in a finite-dimensional version of
(3.6). Then the classical theory of pseudoinverses and of LUMV esti-
mation applies (c.f. [R-3], for example. One can at least argue that
the compactness assumptions required are reasonable for most prob-
lems.

When identification is studied from the point of view of finite-
dimensional approximations, the question raised in the previous re-
mark about the number of measurements necessary (or the required

duration of one measurement) is easier to phrase satisfactorily, and is

often answerable in principle at least (c.f. [R-3]).



(6) In fairness to the reader unfamiliar with the area, it should be
pointed out that the application of Volterra polynomials to problems

in system identification has been considered for some time (c. f. [B-2])
but as has been indicated, has not been widely used in practice. A
much more common approach is to estimate parameters directly in a
state-variable model, using techniques from the Kalman-Bucy recur-

sive filtering theory.



PART IV

ON THE QUADRATIC REGULATOR PROBLEI\/I1

In optimal control theory, no problem has received more attan-
tion or attained a greéter degree of maturity than the one indicated by
the title of this section (see [I-1] for detailed summaries and biblio-
graphical information). Various versions of the quadratic regulator
problem (hereafter designated QRP) have appeared in standard texts
[A-3] [B-6], perhaps because minimization of a quadratic loss func-
tional applied to a linear dynamical system with linearly constrained
inputs leads to a simple and easily understood solution. Here we shall
exhibit the PI as unifying apparently disparate aspects of the QRP, pro-
viding generalizations beyond its customary form, and having broad
capabilities to solve QRP specified in infinite dimensional spaces and
by unbounded operators.

The optimal control literature generally relates the QRP to the
notion of a linear dynamical system, as described byZ

x = C(t)x + B(t)u x(0) = x . (4. 1)
Here u(-) and x(* )—usually referred to as input and output, respective-

ly—are finite dimensional vector functions of time over [0, T], C(-) and

1The authors wish to thank Professor Elmer G. Gilbert for his helpful
comments on this section.

ZThe PI was first applied to 2 QRP for a linear dynamical system in
[K-1].
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B(-) are matrix functions of consistent dimension and assuring that a

unique solution x € Lg corresponds to every input u € Lg. By Lgn we

m

5 implies that v(t) is an m

mean a Hilbert function space; v € L

dimensional vector for each t € [0, T], with v having measurable

components Vi and being possessed of the L norm

& .
P T T
Hvlil =y 2 v, (0)] “at :\/fo [l vl at (1. 2)

i=1

We can now state one form of the QRP, sometimes called the
fixed endpoint QRP. It is desired to choose u € Lg which moves the
system from x(0) = x° to a designated x(T) = xl, and among the u satis-
fying this constraint find the u having minimum LE norm. (See [B-6],
p. 137). As usually phrased and solved, this QRP presupposes condi-
tions insuring that any x1 can actually be attained by the system (L. 1)
at time T; the solution is then said to exist. But actually, this is an
unnecessarily narrow interpretation of the fixed endpoint problem due
to the limitation of the techniques sometimes used. Application of the
PI places this QRP in a natural setting admitting easy generalizations.

Let us begin our analysis by describing a classical approach to

the fixed point QRP, and thus exhibiting the limitations resulting

therefrom. Since

T
x(T) = [ W(T,t)Bt)u(t)dt + W(T, 0)x° (. 3)
0

in terms of the state transition matrix W(+, ), the constraint x(T) = xl

. . 1 . .
can be expressed for an n dimensional x by the simultaneous linear

equations
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(u,hi):ai, i=l,2,...,n . )

1 .
with a, the iE}l component of the n vector x - W(T,O)xo, i.e.

a = ] &' - w(T, 0x°),

i 6li E’Zi 5ni

... .th
and h.l(- ) the p component row vector function with i— entry

To complete the classical solution, let M be the subspace of Lg
spanned by hl’ hZ’ cees hn’ and write u in terms of the orthogonal de-
composition

n
w = 2ah +u (1. 6)
i1 1
1
with u, € M—L If (4. 6) is substituted in (4. )), we see u meets the
1
required constraint x(T) = x~ iff
n
j~21> @) =2 i=LZ...n (. 7)

The second term u, in (4. 6) plays no role in meeting the constraint,

and (by the Pythagorean theorem for orthogonal elements in Hilbert

space) only serves to increase lHqu ; consequently, H uH| is mini-
mized uniquely by choosing
u. =6 . (4. 8)
Evidently, the system can satisfy the final state constraint
x(T) = Xl for arbitrary xl iff the matrix with elements {(hi’ hj)} is
nonsingular. This matrix is Gramian [A-1], which means that its

invertibility is equivalent to the linear-independence of the h,,
i

i=l,2,...,nin LP. 1f we say—following standard terminology in

2
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linear systems theory—that the system is controllable over [0, T] if,

P

> taking the system from

L

for every x_ and x there exists an input u € LL
1

x(0) = x° to x(T) = x, we have attained the following result: the system

(L. 1) is controllable over [0, T] iff the n rows of the matrix W(T, - )B(-)

p-

5 This criterion is well known in sys-

are linearly independent in L
tems theoi'y [C-1]; our arguments constitute a short and elegant proof
of its validity.

We now turn to a PI formulation generalizing the fixed endpoint

QRP in several directions. First, the QRP can be solved even if the

system is not controllable. In fact, the optimal input u to (k. 1) min-

P

>’ regardless of controllability; if

imizes HX(T) - xll‘ over allu € L
the system (4. 1) should be controllable, this norm is zero and the u
obtained via the PI model agrees with the optin'ium resulting from the
clasSical problem statement. Second, we shall be able to consider
constraints not only on the endpoint x(T), but also on x and u. These
three classes of constraints can all be expressed in terms of linear
functionals on u, so that they can be viewed in unified form. It is also
noteworthy that the.PI yields valid optima even when the constraints are
incompatible with one another. Finally, the PI model permits us to
consider dynamical systems (4. 1) in which u(t) and x(t) are Hilbert-
space-valued (i.e., infinite dimensional) for each t € [0, T], although
we will continue to be restricted to a finite set of constraints.

To apply the PI to the fixed endpoint QRP, we need to express

the input-output system relation by a linear transformation, that is

Lu = x, (4. 9)
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where u is any element of a Hilbert space Hl’ and L:I—I1 - H& is a
linear bounded operator defined for every such u. In general, a dy-

namical system such as (4. 1) fails to satisfy (4.9), but we may write

(substituting X for x)

x(t) = (Lu)t) + St ; (1. 10)
then, taking x = X - Sxo, we see (4. 9) to be applicable without loss of
generality.

The linear constraints are considered next. They represent de-
sired system behavior, but do not preclude the possibility that they
cannot be attained; in the latter event, the PI automatically chooses a
u which causes the constraint values to be approached as closely as
possible. As we have mentioned, there are three types of constraints,
all of Which ultimately lead to constraint equations having the form °

(u,f.l) = ai .
A linear functional on u is already in the stated form. As for a linear
functional 6n X, we may write Gi(x) = a, which, by the Riesz repre-
sentation theorem and the definition f.1 = L*gi gives rise to

Gyx) = b, g,) = (L, gg) = (0, T¥g)) = (0, ) = 23 (k. 11)
the constraint is then in the proper form. Lastly, choosing fi = hi as

in (4. %), and defining a, as in the equation above, (4. 5) renders (u,fi)

1
= [X(T)]i and a, = x., whence (w,f) =a;, i=1,2,...,nis equivalent to

Application of the PI involves an operator equation to which the

PI gives the BAS. Thus, the constraints expressed as (u, fi) = a, must



60

be translated into a more appropriate form for this purpose. Accord-

ingly,let H, be a separable Hilbert space with a maximal linearly

3

independent set {yn}, and define A:LS ~ H, by

Au = 2 (u,£,)y, - (. 12)
Then, with

z = 2y, (4. 13)

i’i

we obtain

Au =z (4. 1h)

as the operator equation embodying all the desired constraints.
If a finite constraint set is set forth, the range of A is a finite

dimensional set in H3 and perforce closed. By Theorem 1.2 and

+
Corollary 1.2, A possesses a PI A which is bounded and delivers a

BAS (cf. Definition 1. 1)

+ +
w =A'z=21aAy , (1. 15)
o 1 1

p

> is the unique input to the dynamical system satis-

which means u €L
fying

inf ||z-Au||® = int {.E‘[(u,fi)-ai][u,fj)—aj](yi,yj)} =
uELIZ) uELIZ) )
(4. 16)

iEj L5, £)-2, )6, T)-a ] (v, v,),

-

P

and having smallest L >

norm (i.e., least energy) attaining the infimum
(4. 16). By choosing suitable families {yn} we are thus able to prove

existence and uniqueness of optimal controls for a variety of quadratic
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loss functions. We remark parenthetically that if there exists a
u € Lg exactly satisfying all the constraints (u, fi) =a, (4. 16) be-
comes zero, and g is the element of smallest norm which meets the
constraints. In particular, if the constraints represent x(T) = xl and
the system (4. 1) is controllable, the ug furnished by the PI (4. 15) is
the same as the optimurn obtained as the solution of the classical
fixed endpoint QRP.

In applying the PI to the QRP in the manner described, we need
not be concerned with the consistency of the constraints; if the con-
straints are incompatible, the PI mediates among them to produce a

compromise BAS. To illustrate this property, we given an example

involving a simple constraint. Consider therefore the system (L. 4)

with n=2, hl

= hZ = h and a, # a,, s0 that (4. 7) is clearly impossible
to satisfy. We may, however, apply (4. 15) to determine the BAS u,

The latter naturally depends on the choice of ¥y and y,» as can be seen

from (4. 16). If we choose Y1 and Y, orthonormal (for convenience), we
have N(A)—Lv: Vi), R(A) = Viy +y,), Ah = H\hH\Z(yl +y,), and

+ a In view of P_z = l(a + az)(y1 + YZ)’ the description

272 R® " 21
+ .
of A by Theorem I.2 leads to

z = alyl

w = Az = Yo el
o 25 2% TR MM E

Thus far, reference in (4. 1) has been to dynamical systems in

which x(t) and u(t) are finite dimensional vectors of fixed dimension
for each t. Since we have made no use of the finite dimensionality, we

may as well generalize (4. 1) as follows: U(t) € K, for almost every

1
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t € [0, T], K, being a separable Hilbert space. Assume u(-) strongly

1
(Bochner) measurable [H-2], and u € H(Kl), that is

T
lal|]® = fo utt) ]| %t < oo. (1. 17)

Further, in (4. 1), let B(-) be an essentially uniformly bounded meas-

urable operator valued function which for each t carries Kl into a new

Hilbert space K, and let C(-) be locally Bochner integrable, with C(t)

2

an endomorphism on K, for almost every t. Then, if (4. 1) is inter-

2
preted in integral equation form, there is a unique solution x(-) which
is uniformly bounded (cf. [M-1]) and hence belongs to H(KZ); indeed,

) and

one obtains (4.9) and (4. 10) as before, with L:H(K,) = H(K

l) 2

S(T):K2 - K2 both bounded operators. The remainder of the analysis
is unchanged, provided that there is a finite constraint set, which then
implies R(A) in (4. 1)) to be finite dimensional.

The finite dimensionality of R(A) [with A specified by (. 12)] be-
comes inconsistent with a constraint of the type x(T) = xl whenever K2
is infinite dimensional. At this point we could confine ourselves to a
finite constraint sét as represented by the projection of x1 onto a hyper-
plane of finite dimension. Alternatively, we might attempt to deal more

directly with infinite dimensional x(T) (or any infinite constraint set)

by choosing ,{fi} and {Yi} in
o)

Au = Z; (u, f.)y.

7 i’

so that A [cf. also (4. 12)] is DDC with closed range. Only then is the

+
PI A defined for arbitrary z (Corollary 1. 2) and hence for every choice



63

1 . L
of x . Moreover, z makes sense only if the sum 2 a,y, appearing in

(4. 13) is convergent in H3. The requirements on A and z are formi-
dable, and cannot be met in general. For instance, the obvious termi-
nal constraint choice of {y.l} as a complete orthonormal set in H3 = K2
and the a, as projections of x1 on V{yi} lead to a convergent sum for
z, but in combination with a DDC operator A whose range is not closed.
The limitation of the above PI technique to a finite constraint set
is avoided in a somewhat different QRP rﬂodel, which is termed the
free endpoint QRP. As usually described in the optimal control lit-
erature, the free endpoint QRP is concerned with moving the system
(4. 1) from x(0) = x0 toward the origin at time T with minimum ex-
penditure of energy, simultaneously maintaining x as small as possible.

More pfecisely ((B-6], Section 21), one wishes to attain the infimum of

the loss function

T 2 2 2
) = [ [lemll® +1le,xel] “lat + [l x(T)]] (1. 18)
0
where the || || are Euclidian norms on the relevant finite dimensional

vector space. Analysis of the free endpoint QRP revolves around the
existence and uniqueness of the optimal control [i.e., u attaining the
infimum of (4. 18)], and the computation of the optimum whenever it
does exist.

In what follows, we shall generalize the free endpoint QRP to
infinite dimensional spaces, and demonstrate that the optimal input
is (uniquely) provided by the PI even for some models involving un-

bounded operators. Moreover, our loss function
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o) = |]@, -2 112+ 1@, e-n )] £ + |l @, [x(T)-2,] |

3 (4. 19)

will be more general than the J(-) of (4.18). The zi in (4. 19) may be
thought of as target values of the input, output and terminal state
sought in the system design; they also reflect the change of variable
(4. 10), so that (4. 19) becomes equivalent to (4. 18) if we specify in

t) = - C(t)x_ and z_ = - C(T)x°. We should men-

particular zy = 9, ZZ( ., 3

tion, however, that any interpretation of (4. 19) in terms of an optimal
control problem is merely an intuitive convenience, since we shall make
no use of any special properties of the dynamical system (4. 1).

For treating the minimization problem iﬁcompletely posed by

(4. 19), we establish the following structure. Letu € H (an arbitrary

p
Hilbert space), and take L:Hl - HZ’ with

Lu = x. (4. 20)
It will be supposed that L —like all other operators mentioned here—
is linear and DDC. We shall assume further that H‘2 is a Hilbert

function space, so that we are writing x for x(-), and that there is a

linear DDC operator S:H, = H, such that

1 3
x(T) = Su. (4.21)
We introduce yet another Hilbert space, K = H, X H, X H,; its norm
is the standard
o, v, w312 = Ll + 1vl1 + (Wil % (1. 22)
The operator A: H ~ K is defined by
Au = {u, Lu,Su} (L. 23)

and we have

D(A) = D(L)n D(S). (4. 2))
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Since L and S are both closed, Au is a closed graph in K, and A iiself

is a closed operator. But D(A) is not necessarily dense in H,, so A

1
must be assumed densely defined by hypothesis. Lastly, let us de-
fine Q: K - K by the relation
Qfu,v,w} = {Qlu,sz, Q3w} (. 25)
where each Qi is not only bounded, but also bounded from below. The
latter condition is expressed by the existence of én @ >0 such that
HQiyiH 3a||yi|| for all y, €H, . (4. 26)

We can now state

Theorem ). 1: Let L and S be DDC operators as defined above, with

D(L) n D(S) dense in H Assume that each Qi is bounded and bounded

1

below. Then, for each z = {z X z3} € K there exists a unique u € H

2’ 1
satisfying

o)) = inf [I(u)], (4. 27)

u EHI

with I as in (4. 19). This u is given by
+
)

u = (QA

o Qz . (h.28)

Proof: It is clear from (4. 25) and the properties of the Qi that Q is an
endomorphisfn on K, and is -bounded below; from this (and that A is
DDC) one shows QA tb be a closed operator. Furthermore, A is
densely defined, so the same is true for QA, and in fact QA is DDC.
The range of QA is closed because [see Lemma A. 8(e)] for all
u € D(A)
llQacl| > llQull >allull . (4. 29)

and the inequality also shows that QA is one-to-one, In the light of
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these properties, we can now consider the BAS for the equation
(QAu = Qz ; (.30)

since QA is DDC with R(QA) closed, the BAS is furnished for every

(Qz) € K (Corollaries 1.1 and 1. 2) by the PI. This means the u of

(4. 28) satisfies

|| Qz - (QA)uOH = inf ||Qz - QA)]| . (4.31)
u €H

1
If we compare the norm of Qz-(QA)u with the expression (k. 19) for
I(u), we see at once they are identical, so that (4.31) is equivalent
to (L. 27).

To prove ug is the unique element attaining the infimum of (}.31),
note (from the proof of Theorem 1. 1) that (QA)u0 must be the projec-
tion of Qz on R(QA). But QA is one-to-one, so u is the only element
of H, such that (QA)u = Pp (Qz). 1]

Various other combinations of assu‘mptions also yield free end-
point QRP having the same solution (4. 28). Most of these are of little
interest, and can be reproduced by the reader as needed. However,
we may want to consider bounded L and S, especially since these corres-
pond to the dynamical system (4. 1) with infinite dimensional vector
valued functions as per our earlier discussion. We find that the

assumptions on QZ and Q3 can then be relaxed, as is indicated by

Corollary ). 1: If L and S are bounded operators, if each Q.1 is bounded

and Q1 is bounded from below, the conclusions of Theorem L. 1l continue

to hold.
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Proof: QA is now a bounded operator which is everywhere defined. The
remainder of the proof of Theorem L.l remains unchanged, the same

assertions being valid throughout. |||



PART V

PSEUDOINVERSE OPERATOR APPROXIMATIONS

In the literature on the matrix PI, it is sometimes proposed that
the PI be obtained by a sequence of approximations involving AA* or
A*A (see [A-2], Theorem 3.} and [L-2], p. 167). Such forms exhibit
computational simplicity, since they substitute the inversion of a strict-
ly positive (Hermitian) matrix for more complicated combinations of
inverses. When approximations of the same type are applied to DDC
operators, the objectives are necessarily different. Computational
simplicity is no longer at issue; we are now concerned with analytical
tractability, particularly for unbounded operators whose range may not
be a closed set.

One goal is to circumvent the problems that inevitably arise when
R(A) is not closed, and AJr is unbounded and not defined everywhere;
we have already sought solutions in Parts III and IV by changing the
topology, but now we also conAsider approximating sequences of opera-
tors. The description of A% and approximations thereto in terms of the
positive operators AA® orA*A not only generalizes matrix approxima-
tions of the same type, but also suggests use of the spectral represen-
tation and tke associated functional calculus. We shall find that the PI
can be expressed in terms of positive operators (and the functional
calculvus) as a consequence of the use of the polar decomposition ([D-Z],

XII.7.7); indeed, the polar decomposition proves to be an extremely

68
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powerful tool in the analysis of the PI, and will be used nften in this sec-
tion. Finally, we remark that the approximations considered below are
closely related to the operators A' and A' defined by (1.38) and (1. L}),
respectively; these operators are studied extensively in Part I, and

find application in Parts II and III.

Sincevwe are dealing with DDC operators, we shall face questions
that fail to arise in the context of the matrix PI. In addition to the
boundedness and domain properties as in ‘Part I, we shall need to in-
vestigate thé mode of convergence for each approximation to the PI.

In particular, we shall show that certain approximation sequences al-
ways converge to the PI strongly, but in norm iff R(A) is a closed set.

In what follows, we shall freely use the notation and results of
Part I and Appendix A, although we shall assist the reader with speci-
fic references whenever possible. For future reference, we also call
the reader's attention to the well known content of

Lemma 5.1: Every DDC operator A has a polar decomposition

A = VS (5. 1)
where V:le - H2 is a partial isometry from N(A)—L onto R(A), and S
. s *,1/2 :
is the positive operator (A A) with spectral representation
" 00
s = @t [ g, (5. 2)
0

In (5.2), Gg is the projection on N(A). Alternatively, A may be de-

composed as

o,

A = TU (5.3)

U:H2 - H1 being a partial isometry from R(A) onto N(A)'-L [and null on
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R(A}—L], and T:HZ - H_ the positive operator

1

T - aaH? [ naE, (5. 1)

here Eo is the projection on R(A)—L.
Proof: The first decomposition is stated and proved in [D-2], XI11.7.7,

and the spectral representation discussed in XII. 2 of the same ref-

NS
R

erence. Now apply this decomposition to A"\, i.e., A =UT. On
taking the adjoint of A"\, we obtain (5.3); the equality is a consequence
of U bounded ([R-2], Section 115).

From the equality ([D-2], XIL 2.6)

oo
ITyll® = [ ralle,yll® (5. 5)
and the properties of the resolu?tion of the identity, we see that Eo is
the projection on N(T) = R(T)- = RAA" - = R(ArL (compare
Corollary A.3). The proof that GO is the projection on N(A) is similar.|||
The representations (5. 1) and (5. 3) lead to a natural way of ex-
pressing approximations to the PI when these involve
An" = T? or A =8°. (5. 6)
To conveniently cémpare the approximations with A+, we then write
the latter in terms of T (or S) also. Furthermore, the formulation

+
of A in terms of the polar decomposition may be of some independent

interest. Motivated by these considerations, we state and prove



71

+
Theorem 5.1: The PI A of A can be represented a.s1

+ -1
A = UT P, (5.7)

or alternatively

+ -1
Proof: We apply the characterization of A = Ar PR of Theorem 1. 2.

e
%

From the definition of U as a partial isometry, N(U ) = N(A), so the

results of Appendix A on restrictions of operators are applicable. By

sk % *
Lemma A.9, we may write U to denote either (U )r or (Ur ) inter-

changeably; hence, for x € N(A)-l—, Arx = Ax = TU*x = TU;x. Fur-
thermore, Ur is a unitary operator on the restricted spaces, with

R(U )=R(U*) = R(A) so that we even have

Kk sk -1
A = TU = T U =T U . (5.9)
r r rr r r

To compute A;l from (5. 9)—th'1s‘ inverse exists by Lemma A, b —we
first argue that Tr is invertible; this follows because (5.9) implies
ArUr = Tr’ with both operators on the left side of the equality having
inverses. With the existence of T;l, inversion of (5.9) yields

Ar = UrTr (c.f., [R-2], Section 114), and this profves (5. 7).

The argument on (5. 8) is analogous and even easier. R(S) = N(A)—L,

RS

which means A = VrS, Vr being a unitary operator from N(A)—— to

- 1 - +
Clearly, Ar = Vrsr from which Arl = Serrl. Then A is given by (5.8)

as claimed. |||

1To avoid possible confusion, we again remind the reader that the restric-
tions applied to any operator are to the nullspace or closure of the range

of A, The identities and relationships given in Appendix A apply to U, T..
etc. only because the null and/or range spaces coincide with N(A) and/or
R(A).
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The restrictions of S and T are easily identified in terms of the
spectral representations (5.2) and (5.1). Since the spectral represen-

tations will appear again later in this section, we need

=

Lemma 5.2: Let

H, =G, -G, and F, =E, - E_. (5. 10)

Then Sr and Tr have the respective spectral representations
s = [ aH and T = [ \dF (5. 11)

Proof: The verifications are identical for Sr and Tr’ so we need prove

the spectral representation only for the first of these. From Theorem

5.1, Go is the projection on N(A), whence ka = 'H)\x for any x € N(A)~+;

this means the spectral integrals (5.2) and (5. 11) are the same when

applied to any such x. It remains to show that Hk is a resolution of

the identity on the Hilbert space N(A)—L. Evidently, H, is a right con-

A

tinuous increasing family of projections with HO = 6 and lim HX =
A= o

I- GO. The latter is the projection on N(A)—L, which is the identity

in the restricted space. Thus, H, satisfies all the conditions required

A
of a resolution of the identity. |H
We are now ready to define the approximations to the PI which
constitute the principal objects of our study. For any positive number
o, let
At = ATer+ )]t (5.12)
In the finite dimensional case ([A-2], Theorem 3.) and [L-2], p. 167)

the limit of AU’ exists as o = 0, and in fact

+
lim A' = A . (5. 13)
ag—-0 d
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Since one is only required to invert a positive matrix to implement Al(r’
(5. 12) appears as an attractive formula for approximating the PI.

Some matrix manipulations on (5. 12), followed by a passage to the
limit, yields

lim A'O_ = A', (5. 1))
o —+0

where we have previously defined

Al = A*(AA*);IPR . (5. 15)
Clearly, A'is another form of the PI in finite dimensional spaces; this
also is obtained as a special case of our Corollary. L. ).

As we shall sere, the simple and straightforward results pertain-
ing to finite dimensional spaces continue to hold in the more general
context of operators whose range is closed. In the event R(A) is not
closed, A'is an RPI as shown by Theorem 1.7, whereas A'U behaves
quite differently from A', and moreover fails to converge to A+ in norm
as ¢ > 0. The comparison of A+, A and A'O_ for operators of non-closed
range is of particular interest in Part II, where the PI of a Hilbert-
Schmidt operator makes its appearance.

The essential facts regarding A'cr are summarized in

Theorem 5.2: The operator A'G given by (5. 12) is bounded and defined

on all HZ’ and the same is true for

)
b

AA' = (AA oI+ (aA )7L, (5. 16)

+ +
The restriction of A'o_ to D(A ) converges strongly to A . The con-
vergence

lim A' = A (5.17)
g -0
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is uniform (i.e., in norm) iff R(A) is a closed set.
Remark: Since AA‘O; is defined for all z € HZ’ one might conjecture
that A'O_ accomplishes what A+ cannot. As we know, the BAS fails to
exist and z d D(A+) if PRz £ R(A) (see Theorem 1. 1), but it is reason-
able to expect that A'o_ delivers something close to the optimum as ¢
becomes small. These possibilities will be explored later in this
section.
Proof: It is known that [¢I + (AA*)]-1 is bounded and everywhere de-
fined ((R-2], Section 118), and since Aﬁ< is DDC, the operator A'U is
closed. We also have

R{[c1+ (AAM)] Y = Dl + (aA™)] = D(AAT) ¢ DAY (5. 18)
SO A'Or is everywhere defined and, being closed, must be bounded ac-
cording to the closed graph theorem. The same reasoning shows AA'(T
bounded and everywhere defined also.

For a comparison of A+ and A' it suffices to consider the appli-

o

+
cation of these operators to z € R(A). In fact, N(A ) = R(A)—l— as

L

then z € R(A)—L, which implies [oI + (A.Aa\ )]_lz = cr_lz € R(A)—l—, or

shown in Lemma 1.1, and we now prove N(A'U) > R(A) Suppose
. b . B
in other words, R(A)—J— reduces [¢I + (AA )] L But N(A ) = R(A)—L,
so we obtain A'O_z = 0.
.+.
To demonstrate the asserted strong convergence of A'U to A,
+
we apply (A'o_ - A )toz €R(A), Since z = Ax for some x € N(A)—L,
+

and since A Ax = x for such an element (Theorem 1.3), we have

At - A%)2]|% = [[{A o1+ (aa )] a)x - x| 2. (5. 19)

All operations on the right side of (5. 19) take place in the restricted
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5 sk -1
Hilbert spaces N(A)—-L and R(A) because [cI + (AA")] ~ reduces R(A)
as we have shown. Thus we obtain

5k b - - -
A [cl +(AA ) ] la -urT [o1 +T2] 1T~ U 1. (5. 20)
r T T T r r r T r r

Now Ur is unitary over the restricted Hilbert spaces, so that (5.19)
becomes
00

2
T -1yll" = fo

|47 [o, +T2]" 3

1%

2
2‘ dHF)\y (5.21)

o +t\

for U;lx = y € D(Tr); the rules applicable to such calculations may be
found in [R-2], Section 128. On putting these last three equations to-

gether we find

a

lim || A! Z'-A+z|\2 = lim HZ
g+ 0 7 oc—+0

o
(5.22)
0

2
' dl| F, v
0'+)\2 A

The measure generated by || F)\yH2 is finite, and the integrand in (5. 22)
is bounded by unity. Consequently; the Lebesque dominated convergence
theorem insures that the right side of (5. 22)’is zero, thus yielding the
strong convergence asserted by the theorem.

Suppose now R(A) is not closed. Then A'(r remains bounded but
A+ is unbounded (.Corollary 1.2), so A'cr cannot converge in norm to Af.
On the other hand, for y € R(A) it is always true that

Lyl 2 s e e )2

+ 2 2 -
L = +
A -a")l1% = U [T (o1s77)
(5.23)
+
by the characterization (5.7) of A, and the fact that Ur is unitary.

The norm of (5.23) can once more be written in terms of the spectral

representation, viz.
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)\_l(r
0'+>\Z

Al - [
0

o

“all vyl

(5.2))

“all ey yll° -J

-1
Y
2

&\

If R(A) is closed, R[(APT )r] is likewise closed (Corollary A.3), whence
Ti and a fortiori Tr have bounded inverses. But then ((R-2], Section

128) there exists an @ > 0 such that F)\ = 6 whenever A <@. The

lower limit of integration in (5. 2)4) can then be changed from zero to @,
-6
with the result that the integrand is bounded by @ 0-2 over the entire

interval of integration. Consequently,

+ 6 211 112
[ (ar -A il % <a |yl (5. 25)
and hence A'(T converges to A+ in norm as ¢ tends toward zero. IH

b3 sk -1
In Section I, we introduced not only A' = A (AA )r PR, but also

another RPI which enjoyed a limited duality with A'. The latter opera-

l sk
A , whose domain was quite complicated (see

tor was A" = (A*A);
Theorem 1.8) in general; nevertheless, A' proved useful in connection
with the applications of Section II. The relation between A' and A"

is mirrored by a corresponding similgrity of A‘o_ to A(‘T' , Where

A('r' = [oI + (A*A)]_IA , o >0 (5.26)

The principal properties of A(;_' are stated in

Theorem 5.3: A('T' is bounded and is possessed of the domain D(A(’T‘) =

D(A*)., The (closed minimal) extension of A('r' to an operator defined on
+ +

all H2 converges strongly (as ¢ > 0)to A on D(A ), and converges

+. 1
to A in norm iff R(A) is a closed set.

1Strong convergence of A(’r' for bounded A is already asserted in {B-1]
p- 60.
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5k
Remark: If A (and hence A ) is unbounded, A('r' cannot be closed. To
avoid the ensuing pathologies, we therefore state the convergence parts

of the above theorem in terms of the closed extension of A('T' .

B -1
Proof: The domain of A(')_' is indeed D(A%*) because (eI + (A A)] is

bounded and everywhere defined on Hl' To show A('T' bounded, observe

thaf (A'P)('r =AleI + (A‘SA)]_1 is bounded and everywhere defined, as
may be seen by applying the last theorem to A in place of A. Then its

adjoint [(Aa\)c'r ] is likewise bounded and defined everywhere of HZ' The

adjoint satisfies (see [R-2], Section 115¢c)
[(a7)] > Al (5.27)

Thus A("_' is bounded on D(A’P), and since the latter is dense in HZ, the

minimal closed extension of A'O'r is the bounded operator [(A,P )('r ]

ES3 ES +
We call [(A )C'T] = A;{. When R(A) is not closed, A is unbounded,

+
and A;{ cannot converge to A in norm. On the other hand, A

bounded whenever R(A) is a closed set, and then

i

1A% -aT = L@ -an | = (hahy; - @l =1lahy - @)~ o,

o

(5.28)

These relations are justified by: (1) a bounded operator and its adjoint

+ ES F3 +
have the same norm ([H-1], Theorem 22.2), (2) (A ) = (A ) by Theo-

e

rem 1.6, and (3) since R(A’P) is closed also (Corollary A, 1) (ATP)('r con-

X+

verges to (A ) by Theorem 5.2 above.

To complete the proof, we verify the strong convergence of AX
to A+ on D(A+). We note at once that N(Ac'r') = A ) = —L =
so (as in the proof of Theorem 5.2) we confine ourselves to z € R(A),

which we will represent as z = Ax, x € N(A)—‘L. Consequently, it is
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sufficient to show
HA? Ax—A+AxH2~>O. (5.29)

+
Here again A Ax = x, and Ai:A may be replaced by its minimal closed

extension SZ(O'I + SZ)_ l. That the latter is in fact the closed minimal

extension follows from the definition of Ai and

(AjA) = A¥aY)y = sfpr+sth (5.30)

in which we have used (5. 16), and adopted once more the notation

S2 = A"A. The minimal extension is obtained from (5.30) by taking

the adjoint of both sides of the equation, and noting that

(o) 2
2.1
sfer+sh) = [ 2—, dg, (5.31)
0 oA '

-1
wherefrom SZ(U‘I + SZ) is self-adjoint. A repetition of the argument

employed in Theorem 5. 2 indicates that the restriction of SZ(O'I + SZ)_1

to N(A)—L is simply Si(clr + si)‘l. The left side of (5.29) is then

Q0
2 2.-1 2 2 2
(01 +85)7"-1 Jx|| = [ j—zl df | H, x[| .

| a*a-ata)||% = || [s
a r O

(5.32)
The desired convergence now follows, because the integral in (5.32)
tends toward zero with ¢, as is easily shown through use of the dom-
inated convergence theorem. |||
Of course, A:,- and A('r' are merely two of the many possible approx-
imations to A+., Except for the convenience of dealing with positive op-

erators, we might as well have chosen

A =U(T ) P_. (5.33)
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with

oo

(T ), = fo (A +o )dF

\ - (5.34)
+ + .
When so defined, A is bounded, and converges to A in the same modes
o
as A' (vide Theorem 5.2); proofs of these claims follows the same
PR A2

lines of argument already used in Theorem 5.2. Alternatively, one

might have taken the T(r as
T = [ \dE (5. 35)

or perhaps based on approximation on the decomposition (5.8) as a
starting point. If we apply (5.3)), or use either of the above approx-
imations in the context of the other form of the polar decomposition
(5.8), we again obtain strong convergence to A+ in general, and con-
vergence in norm whenever R(A) is closed. From the practical view-
point, little is gained by applying the approximations mentioned earlier
in this paragraph; no computational advantage is evident. We do, how-
ever, assure that a solution exists for every z € HZ’ for the above
approximations have the effect of closing the range of A.

When R(A) is not closed, the introduction of a new topology can
be used to modify the minimization problem (perhaps in undesirable
fashion) to insure that R(A) is closed in the new topology. One such
technique has been analyzed in detail in Part III, aﬁd its validity demon-
strated by Theorem 3.1. Another appeared in disguised form as part
of Theorem ). 1. Here we describe an approximation similar to the

latter, but in more explicit form. Let us take Ko‘ as the Hilbert space
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K(T = Hl X HZ’ with norm specified by
' 2 2 2
ey 1 = oll<I®+ Iyl e >0, (5.36)

Given the DDC operator A:H - Ilz, we define the new operator

1

A :H, - K as follows:
1 1 o

Ax = {x, Ax} . (5,37)

Because A is closed, Al has closed range ([H-2], Definition 2.11.2).

If we now let z, = {6, z}, there always exists a BAS (Definition 1. 1).

for the functional equation Alx =z, and the BAS is furnished by the

+
PI of Al’ i.e., X, = Alzl' In this instance, the BAS X is the unique

element attaining the infimum of

14 peng11? = 16 Ax)- (0, 2l 2 = o llxl1 2+ [ Axezl| % 5.38)
Formally speaking, one hopes that for small ¢ the infimum of (5. 38) is
close to the infimum of HAx-zH , and that this is accomplished without
excessive .growthh of HxH .

Although the above touches on the question, we have been unable

to solve the following: given z € H and @ » 0, is there a (unique?)

2

x € 'H1 of smallest norm satisfying HAx-zH <sta ?1 If the answer

is affirmative, how is the optimum X related to z? A partial conjec-

ture suggests a construction of such x_ona ''piece-by-piece'' basis.

1

The answer to a related problem is better understood: If A is a bounded
operator and C a closed convex bounded subset of I-Il, there exists x € C
sat1sfy1ng 1nf |Ax z|| = ||Ax —z|| To prove the assertion, consider

{x }ecC such that HAxn—zH tends to the infimum. Now C is weakly
cornpact, so a subsequence of {x_} converges to x , say. This subse-
quence has, in turn, another subsequence whose Cesaro sums {w }
converge (in norm) to x . Lastly, ‘1|Aw -z|| tends to the infimurrrll
and Aw - Ax in norlrn0 This result is stated as an exercise for
compacl;cl opera%ors in [B-1], p. 59.
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In the first place, this problem (in fact, any BAS linear problem) can
be reduced without loss of generality to an equivalent formulation in
which x € N(A)—L, zZ € N(A)—L, 5=0, and A is a positive operator on
N(A)—L {we omit thé proof). In the new form, the optimization problem
can be viewed in terms of the spectral representation of A, whose as-

sociated resolution of the identity now divides N(A)—L into mutually

orthogonal subspaces with projections (E)\ - E)\ ). Now if we take
i | jitl ]
Ax =\ E -E. )z, we diminish HAx-zHZ by ||E, -E )z\|2
I NN
while enlarging ||xH 2 the amount )\-,ZH (E)\ -EK )zH Z; these are esti-
il

mates tending to true values as lxj*”l_)\jl -+ 0. To obtain HAx—zH <a,
we take as many increments AjX as are needed to bring this norm down
to the desired level. For each increment AjX, we choose for the index
j the one (not already used) corresponding to the largest )\j, and hence
the smallest possible AJ-X- We remark that the orthogonality and re-
ducing property of the incremental operators on z imply

lax-al| =B, 2|l and |lx||® =20 @

-E)\ )ZH ) (5.39)
ntl j

A
where x = E ij, ‘and there are a total of n terms with the )\j arranged
in decreasing order. If we formally pass to the limit, we find that

R |

x = [ AdE, =z (5. 40)
N

B
in which B is chosen as the largest number consistent with || Ax-z| |_<_ a.
Since 8 is dependent on z, (5.40) does not define a linear operator, so

we must assume that the solution of the optimization problem (if this is

indeed the solution) represents a nonlinear operator.
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To gain further insight into the behavior of PI approximations
when Pz £ R(A), let us study an example involving A('r' Let us call

x =A'z, P_z £R(A), (5. 141)
o o R

and evaluate HAxo_ -zH and on_ H . It will become apparent that
chr” - 00 as HAx—zH - §; as we shall show later in Theorem
5., this undesirable behavior of x(r is inevitable. However, by ana-
lyzing the specific case (5.41) we will obtain sharper results on the
variation of HAXO_-ZH and Hx || as a function of ¢ .

As we saw in the proof of Theorem 5.2, N( A' = A)——L and

not only A(',_ but also AA('T is defined on all HZ' Therefore, the first

norm becomes

2
lax -zl = | AAL 2= Poal 24| 0-Py)al = o +f - ‘ a7, Pl
(5. 42)
in which we have used the fact that AA! = T%[o1 + T%]" ), thus giving

rise to a spectral representation and corresponding form for norms.

From the right hand integral in (5. 42), one infers that HAxG-zH de -
1

creases monotonically with o, possessing the limit

lim ||Ax -z]| = : (5. 43)

z
o0

1Equa’cion (5. 43) is actually a simple corollary to the strong conver-

gence of A' asserted in Theorem 5.2. Obviously, A" then produces
[ o

convergence in the sense of (5. 43) also.
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Thus, we can approach the infimum (1. 1) as closely as desired by

choosing o sufficiently small. The convergence does not require

PRz € R(A); in fact, A' can be applied to z € H2 which leaves the
i
+
PI A undefined, and retains the desirable property of minimizing

|| Ax-z|| even for such z.

But our analysis remains incomplete without consideration of the

-1
norm of x . Since A'! =U T (¢l + TZ) P_ a direct computation shows
o o rr r R
00
2 A 2 2
Ix 12 = f 2 allE pell® . 6o

0 o +\
Since the integrand is monotonically increasing as ¢ tends towards zero,
the same is true of HxO_H . In fact, if PRz € R(A), PRz is in the do-

main of T;l [see (5.9) and the argument following], and
-1
[PRIPRIES 5.45)
From (5.7), we recognize the right side of (5.45) as the norm of the
BAS X - Accordingly, as o tends towards zero
lax 2l s llax-zll end [l ll7 )l 6.16)
for all z such that PRz € R(A); the norms are strictly decreasing and
increasing, respecvtively.
Whenever PRz € R(A), the right side of (5. 4)) tends toward infi-
nity (see [D-2], Theorem XII. 2. 6) because then PRz £ D(T;l) from (5.9).
We may therefore conclude that
Ilx || # o for P_z £R(A). (5. 147)
o R _

The rate at which this norm tends to infinity can be bounded from above

by majorizing the right side of (5. 4)}). Indeed, we always have
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[ENIE (5.18)

whether or not PRz belongs to the range of A,

That HAxU—zH 5, is accompanied by H xUH - 00 is not merely
a coincidence attributable to a poor choice of operator or sequence
{Xo' }. Rather, the comparative behavior of the two norms is immuta-
ble, as is indicated by

Theorem 5.)4: Suppose PRZ £ R(A), and {xn} € D(A) such that

HAxn-zH > 5, - (5. 49)
Then

Han - o . (5. 50)
Proof: By an argument identical with that leading to the left hand equal-
ity in (5. 42), we can replace (5.149) by

||ax_ -yl =0 (5. 51)

if we take y = P_z. Let us then suppose {xn} bounded and reason

R
by contradiction. If {xn} is bounded, it is weakly compact, and we
may assume without loss of generality that the entire sequence conver-

ges weakly, say

X — x . (5.52)
n w o

Then {xn} has another subsequence—which we again denote by {xn} for

brevity in notation—such that ((R-2], Section 38)

m
W = m_1 Z) X. (5.53)
m ]
1
and
W T X in norm. (5.5))

But also, the triangle inequality yields
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law -yl < m™ 2 llaxyll -0, (5. 55)

with the right hand convergence following from (5.51). But A is a
closed operator, and HAwm—yH » 0, together with (5. 5)), implies
x, € D(A) and AxO =y. This contradicts the original hypothesis

y £R(A). |||



APPENDIX A

SOME PROPERTIES OF OPERATORS IN HILBERT SPACES

In the classical literature on linear unbounded operators in Hil-
bert spaces [D-2] [R-2] [A-1], one is generally confined to densely de-
fined closed (DDC) operators; operators which are not DDC fail to
yield significant useful results, and are therefore seldom considered.
But even the DDC assumption leads to a much more complex structure
than is encountered for bounded operators (which can be trivially ex-
tended to DDC'operators). For instance, if one of A and B is bounded
and the other DDC, AB need not be DDC. Thus, applications to pseu-
doinversgs requires some knowledge on the characteristics of certain
compositions of DDC operators and their restrictions to subspaces.
Consequently, we offer here a series of technical lemmas, to which
we shall refer in the body of work from time to time. Although each
lemma is quite easy, and perhaps not interesting in itself, we have not
found these results conveniently accessible in the standard literature.

Our notation is consistent throughout the paper. A is a linear
DDC operator from a Hilbert space H

to another, H The operator

1 2’

A has domain D(A), and is endowed with range R(A) and nullspace N(A);

its restriction to N(A)—L will be called A . Projections on N(A) and

N(A)—L are denoted by PN and PM’ respectively. Analogously,

B:H2 - H1 will have a restriction Br to R(A) = N(A*)—L, and the cor-

responding projection on this substance is PR.

86
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Lemma A.1: x € D(A)iff P X ¢ D(A),

N

Proof: Consider the orthogonal decomposition

= x + x A,
X PMx \1, (A. 1)

where x, € N(A)c D(A). It is clear from the linearity of A that

PMx € D(A) implies x € D(A); conversely, if x € D(A), so is

PMx = X=Xy Hl

Lemma A, 2: R(Ar) = R(A).

Proof: Since R(Ar) c R(A) is obvious, we need only prove the set inclu-
sion in the opposite direction. To this end, take any z € R(A), so that
there exists an x € D(A) such that Ax = z. The decomposition (A, i)
then yields A (P, x) = A(P, x) = Ax = z because Ax = 6. 11

The next lemma applies to any restriction of A, and we take Ar

to be such. Of course, our interest here is the specialization of the

result below to K = N(A)—L.

Lemma A, 3 Any linear operator Ar c A has a closed extension :&:
If, in particular, D(Ar) = D(A) N K, where Kis a subspace, Ar is a
closed operator.

Proof: The graphvG(A) of A is a Hilbert space under the usual norm,
and G(Ar) c G(A). Clearly,' Ar and hence G(Ar) can be extended to a
linear manifold dense in some subspace of G(A). We may therefore

suppose G(Ar) already extended in this fashion. Since {6, y} £ G(Ar)

for any y # 6, R: can be defined uniquely in terms of G(Ar) (H-2],
Section 2.11), and A_r is a closed operator because its graph is closed.
Assume now K is a subspace; we show G(Ar) is then complete in

G .A, . , : ,A . .
(A). In fact, if {{xn X0 }} is a Cauchy sequence in G(Ar), {xn} € D(Ar)’
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and since Kis closed, x = x_ € K. Moreover, {xn, Arxn} = {xn, Axn}
~ {x . Ax )} €G(A). ‘Thus x_ €G(A) N K =D(A ), which means
{xo, Axo} € G(Ar). This completes the proof. |||

We return to the notation of Ar as the restriction of A to the sub-
space N(A)—L. By virtue of the lemmas above already proven we see

Ar is a closed linear operator from the Hilbert space N(A)—L c I—Il

into the Hilbert space R(A) < HZ' Its domain D(Ar) consists precisely

of the set D(Ar) = {fusu = P, x, x € D(A)}, and its range coincides with

M

that of A. That Ar,is in fact a DDC operator now follows from

Lemma A, ): Ar:N(A)—J—* R(A) is densely defined.
Proof: Since A is densely defined, there is for each x € N(A)—-I- a se-
- <z 1 < - s
quence {xn} € D(A) such that X, X But Hx PMXnH < Hx xnll 0,
and {P ;x } €D(a ). ||
It sometimes becomes necessary to deduce the properties of an

operator from those of its restriction, or to extend an operator from

N(A)—J— to H'1 [R(A) to HZ]. That the extended operator is well be-
haved is assured by

Lemma A.5: The linear operator A:Hl - H2 is DDC if

(a) N(A)is a closed sét
. _.L (A.2)
and (b) its restriction Ar is DDC on N(A)—*.
Proof: Since A is linear, N(A) is a subspace. Let Aq be the restric-
tion of A to N(A), and take G(Aq) to be the corresponding graph, con-

sisting of elements {x, 6} with x € N(A). Then G(Aq) is a subspace in

H1 X I-Iz, and is orthogonal to G(Ar). We observe further [cf. Lemma

A. 1 and the linearity of A] that G(A) = G(A ) @ G(A,), which exhibits
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G(A) to be closed. To demonstrate that A is densely defined, first note

that D(A) = D(A ) (Y)N(A.If now x € H,, there exists {x_} € D(A )

1)

such that an - PMx, whence X1

shows D(A) dense in Hl' H\

+ PNx =x X As {xn} € D(A), this

We next exhibit some results on inverses of operators related to

A. If Ais invertible with range dense in H_, there is little content to

2)
the theory of the pseudoinverse. We therefore do not suppose A has

an inverse, but rather subsume it under the more general results that

follow. The first of these is

Lemma A. 6: Ar has a DDC inverse A;l.

Proof: The inverse exists if Ar is one-to-one. For X0 X, € N(A)—-L

Arx1 = ArXZ is equivalent to Ax1 = sz, which shows X)X, € N(A).
But xl-x2 € N(A)‘L also, which means x| F X5

thus, Ar:N(A)—L - R@A)
is one-to-one. That A;l is closed follows from the fact that Ar is
closed (cf. Lemma A.3 and [H-2], Theorem 2.11.15). Finally,
DA )= R(Ar), and the latter is dense in __(A—) from Lemma A, 2, H|
Lemma A, 7: Ar has a DDC inverse, and

TN (A.3)
Proof: A::< and (A; )y’ are themselves DDC, whereupon the desired

conclusions follow from a well known argument based on G(Ar); see

[R-2], Section 117 for details. |H
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Lemma A, 8: The following conditions are equivalent:

(a) A;l is boﬁnded.

(b) (Ar*)-l is bounded.

(c) R(A)is a closed set.

(d) ArA;1 is a closed operator,

() There exists m >0 such that m||x|| < HArXH for all x € D(Ar).

(f) There exists k > 0 such that k|| y|| < HAr*yH for ally € D(Ar*).
Proof: Since D(A;l) = R(A) and A;l is a closed operator (cf. Lemma
A. 6), condition (c) implies (a) by the closed graph theorem [R-2], Sec-
tion 117). Conversely, the domain of a closed bounded operator is a
closed set, whence (c) follows from (a) and Lemma A, 2.

To prove (b) from (a), consider (A.3) and the fact that (a) implies
(A;l)>k bounded. On the other hand, (b) requires (A;l)* bounded, and
(a) follows.

-1 -
Respecting (e), observe D(Ar) = R(Ar ), so we may put x = Arly,

with y uniquely defined and ranging over D(Ar ) as x ranges over D(Ar)'
, -1 -1 -1 -1 -1

This means HAr yH < m HyH for all y €D(Ar ), i.e. HAr H <m .

For the converse, one proves (a) from (e) by retracing the above steps

in reverse order. The equii/alence of (b) and (f) is similarly demon-

strated.

We turn our attention to the relation between (a) and (d). ArA;_l:

R(A) - R(A) is the restriction in this space of the identity operator to
. -1 -1
its domain D(ArAr ) = R(A). Thus ArAr is bounded and densely de-

. -1,
fined. Consequently, ArAr is a closed operator iff its domain R(A)

is a closed set. |||
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It is tempting to assert that (b) is equivalent to yet another condi-

tion, namely

X
(g) R(A )is a closed set. (A. L)

However, the proof given in the first paragraph (of the proof of the

Ie

lemma) fails because the connection between (A .)r and Ar is not

clear. We recall here that by Br for B:H2 - Hl we mean the restric-

tion of B to R(A) .

Lemma A. 9: (pf)r = Ar"‘ (A. 5)

s
<

Proof: For any x € D(A), y € D(A ) we have

(Ax,y) = (x,A y) = (XI’A y) = (Xl’A yl) = (x (A )‘ryl) (A.6)

where X, = PMx and vy = PRy. At the same time

(Ax,y) = (Ax |, y,) = (Axy)) (A.7)

The right sides of (A. 6) and (A.7) are valid for all Xy € D(A ) from
r

Lemma A. 1, Therefore, Arﬂ\ - (A'p)r, the latter being defined at
least on D(A "\) n N(A"\ )—L. To demonstrate equality, consider any

y € D(Ar"‘). For such y and all x; € D(A )

1

(A x,y) = (kLA Ty) = &Ly ), (A.8)

x sk ES
in whichy € R(Ar ), and R(Ar ) = D(Ar) because [see Lemma A, 7]

At
b3

(Ar )_1 is densely defined. But any x € D(Ar) has the orthogonal de-

composition x = X + x‘2 with X, € D(Ar) and XZ. € N(A) (cf. again Lemma

fe

A.1). Hence in (A.8) Arx1 = Ax1 = Ax, while (Xl’ Y,.‘) = (x, y-’ﬁ) because

& *

y is orthogonal to N(A). In other words, (Ax,y) = (x, y’-r ), or y € D(A ).

s
>R

The proof is completed by noting that the inclusion D(Ar ) c D(Aﬂ‘)

just obtained yields
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The validity of Lemma A. 9 permits us to use the notation Ar

to replace both (£ )r and Ar’ . This lemyma may also be applie& to
strengthen the results of Lemma A.8, viz.

Corollary A, 1l: Lemma A.8 remains true if condition (g) of (A.})

is added; i.e., conditions (a) through (g) are equivalent.

ol 3
3 K

Proof: R(A ) =R[(A )r], an assertion whose proof we defer for the

sk sk _,1
moment. Since R(Ar ) is closed or not according as (Ar) is

bounded or unbounded, (b) and (g) hold simultaneously. By Lemma
A.8, (b)is equivalent to the other properties (a) to (f), so the proof

is finished.. ‘ H

b

Lemma A.10: (Duality of Ar and Ar ) Lemmas A.1, A.2, A.), A.5

and A. 8 continue to hold if symbols are consistently interchanged as
follows:

A with A , A_with A;. P,, with P_, and H  with H

" N (4.9)

5

Proof: A,P:V»HZ - H

1 is DDC, and Ar is its restriction to R(A), where

m = N(A*)—L._ The arguments of Lemmas A, 1, A.2, A.) and A, 5
therefore lead to the desired results in terms of the sumbol substitu-
tion (A.9). No proof is reciuired for Lemma A. 8, in view of its in-
herent symmetry with the addition of Corollary A. 1. |||

Our next objects of study are the restrictions of A*A and AP:k'.
As we have pointed out earlier, compositions of DDC operators need

be neither closed nor densely defined. However, it is known that A A

3
and AA" are not only DDC, but even self-adjoint positive operators
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((R-2], Section 119). The restriction (A>'<A)I_:N(A)--L - N(A)—J— is then

closed by Lemma A. 3, and similarly for (AA*)r: R(A) ~ R(A). Itis less
obvious that (A*A)r and (AA*)r are densely defined and self-adjoint.

We now prove these facts, together with other properties of (A*A)r

and (AA *)r useful elsewhere in this work.

Lemma A.11: N(A) = N(A A); N(A ) = N(AA ). (A. 10)

Proof: We prove only the first set equality. Clearly, N(A’PA) o> N(A).
Consider then x € N(A’PA); we compute
* 2
0 = (A Ax,x) = ||Ax]||®, (A.11)
which demonstrates that x € N(A). |||
. 3 £ _J_ b _L
Lemma A. 11 above enables us to write (A A)r: N(A A= - N(A A)5
showing through use of identical arguments that

Corollary A.2: Lemmas A.1, A.2, A. L and A. 6 remains valid if A is

replaced by A A and A_ by (A"A)r.

In particular, (A 'zA)r is densely defined and possesses a DDC inverse.

sl
<

Corollary A.3: R| (A*A)rj =R(ATA) =R(A ); R (AA*)rJ _R(AA") = R(A).

(A.12)

Proof: Lemma A.2 yields R[(A’FA)r] - R(A A), while R(A"‘A)—L < R(A*)—l—

follows from the standard result N(A) = R(A ')—l— and (A, 10). The second
set of equalities is similarly obtained. \H
To verify the self-adjointness of (A‘)FA)r [as well as (AA*)r], and

to provide a useful alternative form, we state first

b 3%k % sk
Lemma A.12: (A A) =A A and (AA') = A A . (A.13)
r rr r r r
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Proof: The left side of the first equality satisfies

% X . %k
‘A A)rx = A Ax for any x € D(A A) N N(A)—L,. For such x,

AAx = A (Ax) = A Ax; (A. 1))
r r T

5

the latter equality is true because Ax € R(A), and Ar is the restriction
of A to R(A). We have thus shown (A’PA)r c A;Ar' To complete the

proof, we demonstrate that D(A;Ar) c D[ (A*A)r]. In fact, A:Arx is

defined only if x € D(A) n N(A)—L and Ax € D(A") 1 R(A). But

Ax € R(A) in any case, so the second condition becomes merely

Ax € D(A"). That is, x € D(A*A) n N(A)—l— = D[(A*A)r]. ||

Remark: The proof makes implicit use of Lemma A, 9, since we de-
duce the domain of A; as that of (A*)r, whereas the applications of

%
(A.13) interpret Ar as Ar

Lemma A.13: (A "A)r and (AA'P)r are self-adjoint operators on NarL

and R(A), respectively.
Proof: Although it was shown earlier that (A A)r is DDC, this follows
*s wiark - narl

again from Lemma A. 12 and the fact that ArAr:N(A) - N(A is

DDC. Indeed, A;Ar is self-adjoint on this space ((R-2], Section 119),
*

so the same is true for (A A)r by (A.13). As usual, the assertion

regarding (AA >'<)r is analogously proven. |H

* y
Corollary A. 2 already claims that (A A)r and (AA% )r possess

DDC inverses. We now repeat and shai‘pen this result via

Lemma A. l): (A A " A)—‘l— - N(A and (AA )r: R(A) = R(A)

have self-adjoint inverses given respectively by

* - ¥ - - K-
(A A)r -A lA ! and (AA }r = A 1A 1 . (A. 15)



Proof: We recall that (A*A)r = A’;Ar by (A.13). Then, since A_and

A1 have inverses from Lemmas A. 6 and A.7, respectively, (A '<A)r
has the inverse stated in (A, 15) (see [R-2], Section 114h). The inverse
of a self-adjoint operator is likewise self-adjoint ((R-2], Section 119),

. b3
and so the self-adjointness of (A A) ! is a consequence of Lemma A. 13. IH

r
Finally, we give the conditions under which the inverses of (A>'=A)r
and (AA*)r are bounded, and their ranges closed.

Lemma A. 15: Suppose

(a) any one of the ranges of A, A>'<, (A*A) or (AA>'<) is closed

|

or (b) any of the inverses A;l, Ar , (A *A);l, or (AA*) ! bounded.

r

Then all the ranges in (a) are closed, and all inverses (b) bounded.
Proof: By virtue of Lemma A. 2, and its application to adjoint and com-
posite operators via Lemma A. 10 and Corollary A. 2, we consider the
ranges of the restrictions of the operators appearing in (a). Then the
arguments of Lemma A.8 demonstrate the desired result for A and A*,

and also yield the relation between range and inverse for (A*A) and (AA¥).

- k-1
If now Arl and Ar are bounded, formula (A. 15) verifies the

boundedness of (Aq<A);l and (AA>'<);1° Conversely, suppose (A*A);1
x '
bounded. Then R(A A) is a closed set, and we have from (A. 12) and

Sk

R(A*A) cR(A)

R(A) = R(A A)c R(A™)c R(A); (A. 16)
this means R(A ) = R(A*A), or R(A*) is closed. The latter enables us
to show that all the other conditions of (a2) and (b) are met. Likewise,
R(AA*) closed or (AA.*);1 leads to R(A) closed, and hence the truth of

each condition (a) and (b). Hl
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In the course of the above proof, we have additionally deduced

Corollary A, ): If ény of the conditions (a) or (b) of Lemma A. 15 are

satisfied,

P

R(AA)=R(A") and R(AA’) = R(A), (A.17)

each of these ranges being a closed set. Hl

o
b

It is well known that if A| and A, are DDC, (A,A,) 5 A;A;, but

this sheds little light on the closed extension of the right side. However,

if either Al or A2 are bounded, at least partial results can be secured

((R-2], Section 115). Our interest lies in taking A_ bounded, since

2

this occurs in Gauss-Markov estimation. More specifically, we have

Lemma A.16: Suppose

a. A, is densely defined and closable, with closure A

1 1
b.- Aé is bounded and everywhere defined.
c. KIAZ is densely defined.
Then the closed extension of AZAI is (K1A2)>:<.
Proof: Since A2 is bOu'nded and A1 is densely defined, AZAI is

e
“*r

densely defined and hence has an adjoint; in fact, A.2

being bounded

implies (see a‘gaiﬁ [R-2]., Section 115)

LS —
(AA)) = AA. (A.18)

Taking adjoints once more then yields the conclusion, viz.

k% Sksk _— sk
AA = (AA) = (AA] al (A.19)
Remark: It does not follow that A’;Al‘ = (XIAZ)'P’ because the left side

need not be a closed operator. This can be demonstrated via a counter-

and A2 are each self-adjoint, and A_ has finite

example in which A 5

1

dimensional range.



APPENDIX B

HILBERT-SPACE-VALUED RANDOM VARIABLES

In discussing statistical estimation in Hilbert space we deal with
random quantities taking values in a Hilbert space. There is an exten-
sive literature concerning Hilbert-space-valued random variables, or
what is essentially the same thing, probability measures in a Hilbert
space (see [P-l]). However, what we need is relatively simple and
can be presented briefly in a form that directly fits our requirements.

Let (£2,({,P) be a complete probability space, where ¢ is a o -
algebra of subsets of @ and P is a probability measure on (¢ . Let
{wi}, i=l,2,..., be a sequence of (real or complex-valued) random

variables on (22, ) such that

(00] QO »
EE\wilz -2 \wi(w)‘zdP(w) <. (B. 1)
Q

We note that, by the Fubini theorem, the inequality (B. 1) implies

0 oo
2
E(Dlw|®) = [ T |w()]| P
Q
o0
-2 Elw|® < . (B. 2)
i
Now let {¢n}, n=1,2,..., be a complete orthonormal system

(c.o.n.s) in H2 and define w(w) by

(0,0]
w(w) = E w, (w)d., we A
ot (B. 3)
= 0, we N
0 0)

where A c Q is the set of all w for which Elwi(wﬂ 2

<w . By (B.2)

97
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and the assumption of completeness of P, A ¢ (I, and P(AC) = 0. Thus,

for all w, w(w) is an element of HZ, and for a.e. w

00

lw@l® = 20 |lw il (5. 1)
We can now define ;n(w) = (W (w), ¢n) for all w. The \;n are measurable
(Q) and are equal to the W except on a fixed set of probability zero. It
should cause no confusion if we drop the tilde and henceforth simply de-
note (w(w), c])n) as w_. Then (B. ) holds for all w. Since the (w, cbn) are
all measurable it is easy to establish that w is weakly measurable,
that is that (w,y) is a measurable scalar-valued function for each y € HZ'
Then, since H2 is separable, w(') is also strongly measurable (see [H-2]
Section 3.5 for both definition and proof). We call w a Hilbert-space-
-valued random variable.

The condition (B. 1) is sufficient to establish both a mathematical

expectation of w and a covariance operator. Since, by (B.2) and (B. L),

Ellw||? = [ |lww]||?dPw) <w (B.5)
Q
then,
J Ilw@)l dP) < . (B.6)
Q

The strong measurability of w and (B. 6) imply that w(w) is Bochner-

integrable «@,, P) (see [H-2], Section 3.7). We define

Ew = | w(w)dP(w) (B.7)
Q

where the integral is a Bochner integral. An application of a basic

theorem of Hille ((H-2], Theorem 3.7.12) gives

(y,Ew) = [ (y,w)dP,
2
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Hence, if the LA have mean zero it follows that Ew = ¢.

Also, we have from (B. ) that

E| v, w)zw)| < llyll-llzll Ellw|]® < . (B. 8)

E{(y,w)(z, w)} is a Hermitian symmetric conjugate

i1

Since Y (y, z)
bilinear form, which by (B. 8) is bounded, there exists a bounded sym-

metric operator K defined on all of HZ such that

(Ky,z) = $ly, z). (B.9)
K is obviously nonnegative definite; it is called the covariance opera-
tor of w. The assumption (B. 1) further implies that K is nuclear, that
is that it is compact and has finite trace. ! One can verify directly from
(B. 1) that the bounded operator K is Hilbert-Schmidt, and hence com-

pact, and then, using the compactness, verify that it has finite trace.

lWe refer the reader to [G-1], pp. 26-47. A nonnegative self-adjoint

compact operator T has an o.n.s. of eigenvectors {n n} that span R(T),

and nonnegative eigenvalues )\n; Tn = )\n . By definition, T is

. n
nuclear if

0 00
27 (Tn.n) = 20 N <oo.
' n n n
n=1 n=1
If T is nuclear,
on

20 (To_,b) =

T = Tr(T),
! ( nn,nn) r(T)

TN

1

where {¢n} is any c.o.n.s.
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However, a shorter proof is as follows. Since K is self-adjoint and

1/2

nonnegative, it hasva‘nonnegative square root K Then
-~ 1/2 2 = - 2
2|1k % |1% = Do, 0) = 2 E| (6w
o)
. Z)Elwnlz < o (B. 10)
The convergence of 2 || K1/2¢n|| 2 ensures that KI/Z is Hilbert-

1/2- Kl/2 is nuclear (cf. [G-1],

Schmidt (cf. [G-1], p. 34). Then K = K
p. 39).

Finally, we observe that K is strictly pos‘itive definite if and only
if (K¢ _, ¢ ) >0 for all n, that is, if and only if E |w | 250 for all n,

The preceding remarks may be summarized as a theorem:

Theorem B.1: Let (2,(i, P) be a complete probability space and

{Wﬁ}, n=1, Z, ..., a sequence of scalar-valued random variables satis-
fying (B.1). Let {¢n} be a c.o.n.s. in the separable Hilbert space H.
Then w as defined by (B.3) is an H-valued random variable, i.e., a
strongly measurable H-valued function on (Q,4). The expectation of
w as defined by the Bochner integral in (B.7) exists, and a unique
bounded self-adjoint, nonnegative-definite covariance operator K exists
that satisfies

(Ky,z) = Ey,w)(z,w), vy, zecH.
Further, K is nuclear.

K is strictly positive definite if and only if E| Wnl 2 >0, for all

n, and Ew = 0 if and only if Evvn =0 for all n.
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Remark: The nuclearity of K is essential in the following sense. Sup-
pose v is an H-valued random variable satisfying EHVHZ < oo. Then
a covariance operator K for v exists and is nuclear. In fact, the
existence of K follows exactly as above, and K is bounded, self-adjoint
and nonnggative definite. Then for any c.o.n.s. {¢n} the first two

equalities in (B. 10) hold. But

00
2 2
Z el % - Bl
which is finite. The rest of the argument follows as before.
One standard situation is for the observations to be functions in
an L space. This leads us to discuss stochastic processes whose

2

sample functions belong almost surely to L Let w(t,w ) be a meas-

5
urable, separable, real or complex-valued stochastic process with t
belonging to the parameter set T < Rl, and with probability space
(Q,C(,,, P) (c.f. [D-3], Chapter 2). T can be an interval, or all of Rl,
or indeed any measurable subset of R1 with positive measure. wi(t, ")
is a random variable on (2,(L, P). As is conventional, we usually
suppress the probability variable and write w(t) instead of w(t, w).

Let w(t) satisfy

[ Elw®)]%dt <. (B. 11)
T

d —
Then R(t,s) = E w(t)w(s) exists for a.e. t and a.e. s, and

f Iw'(t,w)\Zdt < o0
T

for all w in some A, P(A) = 1. We put R(t,s) = 0 for those values of
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t, s for which Ew(t)w(s) is not defined. We define w(w) € LZ(T) Lo be
the Lebesgue equivalénce class of functions w(s, w) for each w € A,
and to be the zero element otherwise, Then we have

Theorem B,2: w(w) as just defined is an H-valued random variable

(H=L,(T)). It has a nuclear covariance operator K given by

2

[Kylt) = | Rt s)y(s)ds (B. 12)
T

forye LZ(T). The expected value of w(w) exists and is characterized
by

(Ew,y) = Ew,y) = | Ew(t)yadt (B. 13)
T

for all ye L_(T).

2

Proof: The assertion that w is an H-valued random variable means

that it is strongly measurable., Since LZ(T) is separable this is equiv-

alent to weak measurability. We have for any y € LZ(T),
(wiw),y) = [ witwy®)dt, we A (B. 1)
T
= O, w € AC

The integral in (B. 1)) is a measurable function of w(c. {. [D-3], Theorem
2.7)hence (w,y) is measurable. Thus w is an LZ(T)—valued random
variable. From (B. 11) we have E||wl|| 2 < 0. Hence, as in the pre-

ceding theorem and the remark following, w has a nuclear covariance

operator K.
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(Ky,z) = El(y, w)(z, w)]

I

E{[ ytwt)idt | z(s)wis)ds )
T T

ff R¢s, t)z(s)y(t)dt (B. 15)
T T

where the interchange of integrals is justified by the Fubini theorem

after the following calculation:
[ [ Elws)w®)] [y®)] |=(s)| dds
T T

< [ R s ARE 012 |y 12(s)] atds
T T

< ([ Res,8)ds) [lyll [lz]] <
T

by the assumption (B. 11). Since (B. 15) holds for all y,z € L_(T),

2
(B.12) is proved. The expected value of w is given by the Bochner

integral
Ew = | w(wdP(w) (B. 16)
which exists because
fQ lw)|| dP() < oo, (B. 17)

which in turn follows from the square integrability guaranteed by (B. 11).
(B. 13) follows from (B. 16) and a theorem used previously ([H-2],

Theorem 3.7.12). ||

Now let C be a bounded linear transformation from all of H‘2 into

Hl’ and let w be an Hz-valued random variable satisfying EHWH 2 < co.
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Then Cw is an Hl-valued random variable. Clearly Cw(w) is defined

for all w. Also Cw is weakly (and hence sirongly) measurable since

(Cw, x) = (w,C*x), x cH_ , and w is weakly measurable. Finally,

1

HZ dP(w) < .

[ ewwl| %P <lc)? [ ||wi)
Q Q

Thus E[Cw] is defined, and a covariance operator K_ for Cw is defined.

2

We have, furthermore, again by the Hille theorem,

ElCw] = | Cw(wdP) = C [ w(w)dP(w) = C(Ew)
Q Q

and

(K,,u,x) = E[(u, Cw)(x, Cw)]

ES % E ES
= E[(C u,w)(C x,w)] = (KC u, C x),

from which Kz = CKC*,
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