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ABSTRACT

In this paper we develop a framework for an Evidence Based Decision Process
(EBDP) for investors who allocate money into the financial sector. In particular,
we analyze the structure of such a process for those investing in mutual funds under
the assumption they consider the measure of performance, the modeling approach
and the selection of the pricing model as their decision criteria. Using seven groups
of equity mutual funds, classified by investment objective, we exemplify the impact
of the EBDP on investor strategies.

We find that the selection of the performance measure may have a critical
impact on the resulting decision an investor makes. Additionally, the choice of risk
adjusting pricing model as well as the econometric tool used could lead to very
different decisions using the same data. We demonstrate the advantages of using a
predictive approach to quantifying the uncertainty accompanying each EBDP. A
key finding is, at the present time, quantifying mangerial skill in selecting funds is
a very difficult challenge; diametrically opposite conclusions can be drawn in this
context as exemplified by the EBDP analysis.
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I. Introduction

It is necessary to formalize a procedure that carefully accounts for various levels of
uncertainty in an investor’s world; we state such a procedure as an Evidence Based
Decision Process (EBDP). It is true that any attempt at constructing such a process
will always be incomplete and imprecise because of the complex uncertainties an investor
encounters in practice. But it is also true that all attempts to formalize this process
should help an investor make calculated decisions. The EBDP developed in this paper
tackles, simultaneously, three critical aspects that investors typically consider: (a) the

measure of performance; (b) the pricing model; and (c) the modeling approach.

Throughout, “inference” and “decision” are used intérchangeably. As Smith (1984)

notes:

The supposed dichotomy between inference and decision is illusory, since
any report or communication of beliefs following the receipt of information

inevitably itself constitutes a form of action.

That is, the problem of reporting inferences is essentially a special case of a decision
problem. This fact is important in light of (c) above because it automatically suggests
the need for statistical methods that recognize an investor’s strategy as actions based
on the ubiquitous notion of “learning from experience.” Formally, of course, this is what
we are calling EBDP. However, the explicit recognition of an investor’s decision will

necessarily involve considerations of utility functions which is outside the scope of this

paper.

Why (a), (b) and (c¢)? Because the plethora of papers that have appeared in the
literature recognize, among others, these three aspects as most critical. The point of
departure here, however, is the simultaneous consideration of the three. The resulting
inference for an investor’s strategy, it turns out, is substantially different from previous

work reported in this context.



Although the idea of EBDP is general and, in principle, applies to many problems in
finance, here focus is on its use in the equity mutual funds sector simply because there has
been considerable interest in this sector in recent years from a theoretical and practical
perspective; see for example, Hendricks, Patel, Zeckhauser (1993); Elton, Gruber, Das,
and Hlavka(1993); Goetzmann and Ibbotson (1994); Brown and Goetzmann (1995);
Malkiel(1995); Gruber (1996); Wermers (1996); Nanda, Narayanan and Warther (1998);
Zheng (1999); Wermers (2000).

In order to employ an EBDP:

under (a), we consider two measures: (i) raw returns; (ii) performance evaluation, typi-

cally referred to as a firm’s alpha;

under (b), three pricing models are entertained: (i) Capital Asset Pricing Model (CAPM);
(ii) Fama & French (1993) 3-factor model; and (iii) Carhart’s (1997) 4-factor model;

under (c), two parametric hierarchical models are developed: (i) correlated random

effects; and (ii) error components.

The rationale for the selections under (a) and (b) is based on related research dis-
cussed below. The rationale for the choice of the hierarchical models under (c) will be

discussed in several parts of the paper starting with the following.

A central idea in the paper is the notion of persistence of returns. Theoretically,
investing money into funds with high positive persistence should result in a simpler
decision criteria than investing in funds which exhibit no clear patterns. In practice,
however, the performance of the mutual funds rarely exhibits clear patterns, and the
differences among the funds or groups of funds are too small to give conclusive invest-
ment strategies. Consequently, investors following advice based only on the persistence
phenomenon may very often be mistaken. Recognizing this uncertainty in the persis-
tence of returns is to recognize it has to be studied via a formal mathematical model.

The hierarchical models under (c) are designed to accomodate this feature.



But modeling persistence also depends on factors such as the performance measure
used (see (a)); the pricing model (see {b)); statistical assumptions (see (c)); and the

horizon of the analysis.

Recognizing and modeling this interdependency between (a) (b) and (c) is at the
heart of the EBDP developed in this paper. From an investor’s perspective failure to
understand and model this interdependency could lead to substantially different invest-

ment strategies. That this is so will be exemplified via illustrative analyses.

The problem of performance evaluation and performance persistence of the equity
mutual funds has been well documented in the literature. Carhart (1997) provides an
excellent summary of most of the previous findings in this context. Christopherson,
Ferson, and Glassman (1998) consider conditional measures of persistence. Carhart
(1997) and Christopherson et al. (1998) focus on factors which contribute to persistence
without giving any suggestions how those measures could be utilized by investors facing
potential portfolio allocation problem. Baks, Metrick, and Wachter (2000, henceforth
BMW) provide more intuition about the decision making process and the conditions
under which investors allocate their money into equity funds. But they do not relate
performance to persistence. Pastor and Stambaugh (2000(a), henceforth PS) consider
the adequacy of the pricing model and quanitfy the stock picking ability of the managers.
Additionally, both BMW and PS use Bayesian methods in their analysis. But neither

consider persistence in such framework.

The research described in this paper complements and extends the work summarized
above. First, we mathematically relate the factors that influence persistence to different
performance measures. This is important because investors are typically divided on the
choice of performance measures that they deem ideal to develop their personal investment
strategies. Thus, if raw returns were the focus for an investor, persistence may play a
critical role in their assessment of the risk underlying future investements. On the other

hand, an investor may feel that a firm’s alpha (performance evaluation) is a better



indicator of risk; in this case as well, persistence of performance may be of considerable
importance to the investor. In both cases, the influence of the pricing model(s) could

substantially influence the investor’s strategy.

How should one encapsulate all these dynamic elements together so that each investor

can rely on a process that appeals to them?

This question is answered in this paper. But to answer this query satisfactorily, a
key feature is the statistical models required in the analysis. Since investor strategies
are hardly, if ever, static, the natural choice is to develop mathematical forms that
explicitly recognize conditioning on all relevant information available to the investor.

Hence a Bayesian approach is used under (c).

Two nice consequences of the approach result. First, it naturally provides “what if”

alternatives to the investor. Smith (1984) writes:

...one of the most attractive features of the Bayesian approach is its recog-
nition of the legitimacy of a plurality of (coherently constrained) responses
to data. Any approach to scientific inference which seeks to legitimize an
answer in response to complex uncertainty is, for me, a totalitarian parody

of a would-be rational learning process.

To which we may add, attempting to legitimize an answer in the equity mutual fund
sector could prove costly. From a practical perspective, the investor is presented with
easy-to-understand summaries of the uncertainty via complete probability descriptions
of the random quantities of interest; for example, the probability distribution of the
persistence parameter. It is not sufficient to know whether or not there is persistence;

it is necessary to quantify the uncertainty associated with it.

Second, for obvious reasons, investors, typically, are interested in potential future
outcomes. As an example, investors may be anxious to discern - with some reasonable

degree of confidence - the future performance of a fund; the future may be a week, month,



2-months and so on. Conditional on expected behavior of certain market variables, the
EBDP developed in this paper can provide a complete probability description of the
uncertainties involved in future performance of equity funds that an investor is keen on;

this is obtained via so-called predictive distributions.

The Bayesian models developed in this paper differ substantially from those used
in BMW and PS. This is because we are posing a different question and because our

approach models time-series and cross-sectional data; more details are provided later.

Section IT discusses the construction and properties of the data used. In particular,
we distinguish between performance measures with respect to simple raw returns without
. controlling for any fund-specific characteristics, such as loads, expenses, turnover, etc.,
as well as performance adjusted for all those factors. Under the latter, we construct
the sample given the standard Fama-MacBeth (1973) type regression. In Section III,
the methodology is developed. Section IV provides a comprehensive empirical analysis
under various combinations of (a) (b) and (c) described earlier. Comparative analysis,
where appropriate, to previous work is also provided. Some conclusions are discussed in

Section V.

II. Data

In this study, we construct data based on the CRSP 99’ Survivor-Bias Free US Mutual
Fund Database. In particular, the CRSP 99’ data is consistent with the dataset used by
Carhart {1995). This database reports monthly returns of the open-end mutual funds
from January 1 1962 to December 31*¢ 1999 for funds of all objectives, including defunct

funds.!



CRSP dataset provides the cumulative Total Returns per share, calculated as follows:

_ NAV, | & XAMTP = E X AMT{
Rt—-l,t - (NAVi_l) (k=1 (1 + RE_NAIGD)) (’El (RE_!VAVLS)) -1 (1)

where NAV,_; is the Net Asset Value(NAV) at the end of the previous period; NAV;
is the NAV at the end of the current period; J is the number of dividend or capi-
tal gains distributions during the period; K is the number of NAV splits during the
period; X_AM TjD is the 4% dividend or capital gains distribution during the period;
RE_NAVP is the NAV at which the j* dividend or capital gains distribution was rein-
vested; X_AMT? is the number of new shares per RE_NAV of old shares investors
received in the k'* N AV split. That is, ?E——A—'—_ﬁl{g is the split ratio for the k%* N AV split.

In order to obtain comparable results, in this paper we constrain our analysis to
the period from January 1* 1989 to December 31% 1998. In particular, we include only
those equity funds which survived until the end of 1998, consistent with the methodology
used by BMW(2000). However, our dataset includes only those funds which fall under
one of the seven broad investment objectives, according to the classifications provided
by Wiesenberger, ICDI, and Strategic Insight. Following PS (2000a), we additionally
exclude multiple share classes for the same fund as well as funds with less than 10 years

of available returns.?

For the purpose of this study we construct two sets of initial data. The motivation
for this separation comes from the supposition that the evidence base for investors might
very well differ. One set ~ henceforward Set A — may prefer raw returns while the other
set —henceforward Set B - may be more comfortable with performance measure of a

fund (alpha); see (a) in the Introduction.

Set A consists of residuals obtained from the time-series regression of the excess

returns of the funds on the respective pool of factors coming from the following pricing



models: CAPM, 3-factor model of Fama and French (1993), and 4-factor model of
Carhart (1997); see (b) in the Introduction.®

These models were chosen because they are the ones most widely considered in
the literature cited in this paper. Note each model is itself part of the evidence in the
EBDP; stated differently, our analysis will provide the investor a form of robust inference

~ robustness of the decision to the choice of the pricing model assumed.

The excess returns have been calculated based on one month Treasury bill. For
the CAPM model the only regressor is the excess return on the broad market index
(MKT); for the 3-factor model we additionally have SMB defined as payoffs on long-
short spreads constructed by sorting stocks according to market capitalization and HML,
defined as the book-to-market ratio; for Carhart’s 4-factor model we also include the
so called momentum factor, denoted as PRIYR. PR1YR is constructed as the equal-
weight average of firms with the lowest 30% eleven-month returns lagged one month. The

portfolios include all NYSE, AMEX, and NASDAQ stocks and are re-formed monthly.

Set B is constructed in two steps and is mostly consistent with the approach used by
Carhart (1997). In the first step we estimate monthly alphas, each month on every fund
according to one of the following models, CAPM, 3-factor model, and 4-factor model,

respectively:

~

g = Ry — Rpy — b o \MKT, (2)

iz = Riy — Ry — by \ MKT, - hig \HML; - 3;, ,SMB, (3)

~ P

0ig = Riy — Rpy — big\ MKT, ~ hiyo \HML, — 5,4 SMB, — p;,_ | PRIYR,  (4)



The loadings on the factors are estimated over the first three years. Clearly this
influences the number of funds included in the analysis in contrast to data under Set

A'lX

The second step to develop the data under Set B involves the following cross-sectional

regression.

Qi = + btxi,: + €y i=1..,n t=1,..,T, (5)

- where ¢ is an estimate obtained from the first step, z;  is a set of fund’s characteristics,
¢ indexes the number of funds in the sample, and t is the index of time. The explanatory
variables in equation (5) are: In(Total Net Assets), turnover (Mturn), maximum load

fees, and expense ratio.®

Similar to Carhart (1997) TNA is lagged one year to avoid spurious correlation.
Mturn denotes modified turnover reported as turnover plus one-half the rate of change in
TNA. Load fees are lagged one year to avoid the possibility of funds changing their fees
in response to performance. Mturn and expense ratio are measured contemporaneously
with the alphas. Consequently, the characteristics we use span the period from 1988 to
1998. The choice of independent variables is similar to the methodology used by Pastor
and Stambaugh (20002). Unlike Carhart, we do not include two additional variables
constructed from turnover measure as they seem to be useful mainly in the ex-post
analysis. Separate regressions of the equation (5) are run for each period #, and the
residuals from the least-squares regressions are kept and used as our data. No generality
is lost in working with residuals; it merely simplifies the mathematics somewhat. Details

are provided in the Appendix.

In summary, two sets of data, Set A and Set B were created. These data are residuals

from the appropriate regressions described above. Set A corresponds to investors who
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prefer returns as evidence, while Set B should appeal to investors who prefer a fund’s
performance — as measured by alpha — as evidence. The details of the samples under

both Set A and Set B are reported in Table L.

Insert Table I about here

IT1. Hierarchical Bayesian Models

This section along with the Appendix, provides the details of the methodology used in
the paper. Section IIL.A considers the case of the correlated random effects model. In
Sectiqn II1.B we discuss the error components model. Section HI.C discusses predictive
inference for the models presented in the first two subsections. Before delving into the
details, we note that the Bayesian framework used in this study makes it possible to

avoid the survivorship bias problem; see BMW (2000) for explanations.

A. Correlated Random Effects Model

It is obvious that mutual funds, over time, differ from each other with respect to their
performance and in particular with respect to the stock picking ability of their managers.
This fund-to-fund difference in statistical terminology is called a random effect. Clearly,
a prudent investor would like to account for the uncertainty underlying such effects in
their investment strategy. Additionally, as described previously, there has been consid-
erable interest in the idea of persistence of performance of a fund; persistence could be
| positive or negative. In statistical terms, this is simply the autoregressive parameter in a
time-series regression. Denoting this parameter as p, persistence (positive or negative) is
measured by the probability description of p, whose range, from standard econometrics,

is constrained to be less than one in absolute value. Employing notation, a parametric



version of such a random effects model, treated initially as a simple AR(1) (persistence)

process, is given by:

Yig =Y + PYig-1 €ty i=1.,n t=2.,T. (6)

where «; is a fund specific component.

For the moment we assume that both the errors and the random effects are normal

and mutually independent:
e ~ N(0,771), (7)

%~ N, Q) (8)

7, % and 2 are hyperparameters.

Under Set A — the intercepts obtained from raw returns — v;, can be identified as a
performance measure, whose value may be dependent on the fund specific characteristics
such as loads, expenses, value of the fund, etc. Under Set B ~ the intercepts obtained
via the two step regression - +; represents the manager specific value, which can be
understood as the stock picking skill of a manager. This value has already been adjusted

for the fund specific characteristics.

This suggests that if the distribution of +y is similar for the data under Sets A and
B then the stock picking ability is the main factor explaining the performance of the
fund. If these distributions are substantially different then the performance of the fund
1s a composition of various factors, including ability of the managers. In this respect,
our approach sheds new light on the problem of the decomposition of the performance

measure.”
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Managers of mutual funds are constantly adjusting their decisions based on past
evidence. But, as it stands, Equation (6) suffers from a drawback. The dependent
variable starting with the second time period is conditional on ;. This means, the
random effect +y; does not depend on ;. This is clearly a restrictive assumption. For,
given ;, if y; is drawn from its stationary distribution, there would be strong correlation
between +y; and v;;. To bypass this difficulty, the Bayesian approach allows one to build
in the correlation by conditioning ; on ;. That is, the random effects parameter is

given an initial probability distribution that respects this correlation:
% |y ~ N, Q). (9)

Equation (6) in conjunction with the above prior for 4; is used in the analysis. We
refer to this modeling set-up as the Correlated Random Effects Model (CREM); see

description of {c} in the Introduction.

In order to be relatively non-informative; i.e., allowing little or no influence of prior

values on the analysis, we defined the following prior distributions.

Improper flat priors for p and ¢ were assumed and independent scaled chi-square

priors for 7 and Q1

x*(1)
T~ o1 (10)
-1 Xz(l)
e ~ ol (11)

See Box and Tiao (1973) for details.

Since the posterior distribution of the parameters for the hierarchical model would
be difficult to derive analytically, we use a Markov chain Monte Carlo (MCMC) ap-
proach, initially proposed by Metropolis et al.(1953) and further extended by Hastings

11



(1970). Deatils are provided in Appendix A. Also, the details of the MCMC algorithm
for obtaining the posterior distributions of the parameters in equation (6) are given in

Appendix A.

B. Error Components Model

Just as there are competing performance measures and pricing models, there are com-
peting statistical approaches to modeling uncertainty. And just as no one performance
approach or pricing model is “right”, so also no statistical model is “right”. They all
have to be taken with a large pinch of salt. The size of the pinch will depend on the
investor, the risk, and the time and effort investors are willing to commit. At best, one
can put forth a process based on evidence that will present the investor with a set of
credibie alternatives, from which he or she subjectively chooses one that carries the most
appeal. One component in this decision process is the statistical model. In this section,
we propose a second parametric model that is flexible and useful from an investor’s
perspective. Why? The CREM is adequate in many cases, but from the specification
in (6) it is clear that predictive distributions obtained from this model can be quite
sensitive to the behavior of the returns (or alpha) in the last period; i.e., there is little
or no “smoothing” of the predictions for time periods following the last time period. To

temper such predictions, one could consider the model described below.

Yie =Y T Vig + €t t=1,.,n, t=1, ’Tl (12)

Vi = pv,',hl + Wity 1= 1, ey 2y t= 1, ,T, (13)

where:

12



’Uf,l ~ N(O, 0‘3), (14)

€t ~ N(O, 02): (15)
wig ~ N0, a7), (16)
Y ~ N(0, Uﬁ)- (17)

This Error Components Model (ECM) is equivalent to an ARM A(1,1) up to second
moments. A problem with this formulation is that the fund components ~; become
unidentified when p = 1. The posterior distribution is still well-defined if a proper prior
distribution is used for all the parameters, but for diffuse priors the posterior can be

ill-behaved. Dropping then the individual effect we have:

Yig = Vi + €54, (18)
Vig = PUie | + Wiy, (19)
Vi1~ N(O, 0‘3) (20)
wi,t ~ N(O) 0’3;): (21)
€t ~ N(0, o?). (22)

Heterogeneity; i.e., fund-to-fund differences, is still retained in the model, because v; |
will vary across funds. Note, however, if p is much smaller than 1 in absolute value, this
heterogeneity will shrink over time. That is, if persistence of performance is negligible,
then, over time, one can expect to see little differences across the performance of funds.

This inference, of course, would vary depending on investment objective.

13



As under CREM, for the ECM, to be non-informative, we use independent %}2
priors for 072, 032, and 0,2 and a uniform prior for p. The MCMC details are given in

Appendix B.

The process of reaching an informed decision under CREM and ECM is the same.
The evidence however could be different, leading to potentially different insights into the

data. The illustrative analyses will exemplify this feature somewhat dramatically.

C. Predictive Distributions

Prediction is a critical factor for an investor to devise any investment strategy. Market
volatilities require one to capture the uncertainty in future predictions. The Bayesian
models developed earlier can be easily used to obtain predictive distributions for hy-
pothetically observable periods ¢ = 7'+ 1,...,7 4+ H. In practice, we want to obtain
predictive distributions for the returns or performance measure (alpha), depending on

the investor’s choice.

Using 6 to denote the vector of parameters, z = {y;;: j=1,.,n t=1,..,T}

the past data, the predictive distribution, in canonical notation, is given by

PWir+1, o YiTen | 2) = / PWirs1, - YiT+n | 2,0)dP(0 | 2) (23)

In (23), note that the parameter is being integrated out. The consequences of this is

important and will be described later under REMARK 9.

In the illustrative analyses, we will show that these predictive distributions can vary
quite dramatically depending on investment objective, and the particular EBDP used
in the analysis. Knowledge of future performance is thus critical if an investor wants to
be more consistent in picking “winners”. As is to be expected, the farther one attempts

to forecast the future, the greater the uncertainty and hence higher the risk. While

14



this paper does not address the issue of optimal portfolios, it is clear that questions of

optimality will hinge on obtaining reasonably “good” predictions.

From a computational perspective, obtaining predictive distributions is straightfor-
ward since no additional simulations are needed. One merely uses the samples from the
posterior distribution o}f 8, obtained via MCMC, to obtain a close approximation to the
above integral.® Details pertaining to the specific form of the integral under CREM and
ECM are given in Appendix C and D, respectively.
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IV. Empirical Results

In order to illustrate the impact of different factors on the DMP we analyze the sample of
the equity mutual funds constructed under Section II. For seven broad investment groups
we successively measure the impact of the performance measure, the modeling tool,
and the pricing formula adjusting for the risk selected by the investor. We compare all
surviving funds for the period 1989—1998.° Additionally, we conduct predictive analysis

to show how investor strategies are influenced from a “looking-ahead” perspective.

To facilitate understanding, we have classified the results in terms of CREM and
ECM. Within each we have provided discussion on Set A and Set B response measures
(defined earlier), for each of the three pricing models. Predictive inference is described

later. ‘

A. CREM Analysis

Unless otherwise noted, the description that follows is across all investment objectives.

Set A {(Raw Returns) Results

(A1) The persistence parameter, p, is somewhat larger under the CAPM model
compared to the 3 - and 4-factor models. A reason for this may be because more of the
variation in returns is accounted for by the inclusion of additional independent variables
in the model, thereby diminishing the lag effect in the response variable. The estimates
of p across the different groups of funds do not differ by more than 0.03, and the errors
of those estimates, measured by their standard deviations, are relatively small. It means
for the investor following a strategy based on persistence, qualitatively, the inference is

invariant to the pricing model.

(A2) The distributions of the standard deviations, 77/2, of the error component, ¢,

are, in general, not different across pricing models. This implies that all three pricing
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models describe approximately the same amount of variation in raw returns. Likewise,
the distributions of the standard deviation of the random effect’s term, across all invest-

ment objectives and pricing models, are similar.

(A3) The random effect’s mean 3 is negative under each of the pricing models and
for each of the funds. This provides evidence against abnormal performance of equity
funds. Perhaps the most telling feature here is the standard deviation of the random
effect for the Other Aggressive Growth investment objective. Regardless of the pricing
model used, this value is substantially different in comparison to the same statistic under
all the other investment objectives. The reason for this is the much higher volatility one

can expect in this class of equity funds. The EBDP nicely captures this feature.

Set B (alpha) Results

(B1) The distribution of p under CAPM is similar to that obtained under Set A. But
for the 3-factor and 4-factor models, the distribution of p is centered around positive
values. In particular, there is a substantial difference in the mean of the persistence
parameter under the three pricing models for the Income objective (0.1697), when com-
pared to the other objectives. This is quite interesting because it sheds new light on
the persistence phenomenon and its consequences for investor strategies. If investors
believed in alpha as a more appropriate measure of fund performance, then they would
choose to invest in the very funds that they might have discarded if raw returns (as in Set
A) were under consideration. In other words, it may be inadequate to define persistence
in terms of a mathematical relationship alone; the choice of the response variable may

be at least as important. This result is more stark when we look at the analysis under

ECM.

(B2) As in Set A, the distributions of the standard deviations, 77%/2, of the error
component ¢ are in general not different across pricing models. This implies that all

three pricing models describe about the same amount of variation in alpha. Likewise, the
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distributions of the standard deviation of the random effect’s term, across all investment

objectives, are similar.

(B3) The random effect’s mean 1 is positive under each of the pricing models and
for each of the funds in sharp contrast to Set A. This reiterates the strategy investors
might take based on which performance measure is under consideration; see (B1) above.
Also, this might resolve the puzzle as to why investors are willing to invest in the equity
mutual fund sector even though their performance may not be abnormal; see (A3).
Again, as under (A3), regardless of the pricing model used, the standard deviation of
the mean of the random effect, 1, is substantially different for the Other Aggressive
Growth class. Regardless of the performance measure used, the investor should factor

this higher volatility in their portfolio selection.

The detailed results for all groups of funds have been presented in Table IL

Insert Table II about here

B. ECM Analysis

Unless otherwise noted, the description that follows is across all investement objectives.

Set A (Raw Returns) Results

(A1) The striking differences are to be noted in the distributions of the persistence
parameter, p, which is dramatically higher than what resulted under CREM. Also, here
we see the impact of the pricing model on the investment objective more clearly. Consider
Small Company Growth. CREM values for p appear in paranthesis. For CAPM: 0.4137
(0.1124); for 3-factor model: -.0432 (-.0056); for 4-factor model -.0454 (-.0061). Now
consider Growth. For CAPM .3776 (.0728); for 3-factor model .2085 (.0401); for 4-factor
model .2024 {.0387). Consequences to investors will be examined after we discuss the

impact of ECM using Set B.
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(A2) The distributions of the standard deviations, o, of the error component, ¢, are
in general not different across pricing models. This implies that all three pricing models

describe about the same amount of variation in raw returns.

Set B (alpha) Results

(B1) Consider p for the investment objective, Small Company Growth. Numbers
in parantheses are from CREM. For CAPM: .3431 (.1174); for 3-factor model: .0878
(.0246); for 4-factor model: -.1113 (-.0340). Now consider Growth. For CAPM: .4265
(.0761); for 3-factor model: .4414 (.0931); for 4-factor model: .4258 (.0801). Contrast
these results with (A1) above. It is clear that any definition of persistence must consider
the response variable. Thus, under Growth, regardless of the pricing model (except,
perhaps CAPM), conclusions about the persistence of performance of funds in this sec-
tor are dependent on the response variable used. Coupling this feature with the type of
model one uses in the EBDP, leads to conclusions about persistence that are diametri-
cally opposite. This finding is of utmost importance to investor stratgeies. It shows that
one must be extremely careful in understanding the various components of the EBDP
while constructing portfolios. It also shows that the task of quantifying managerial skill
and its subsequent impact on fund performance is a very difficult and imprecise task as

it stands.

(B2) The distributions of the standard deviations, o, of the error component, ¢, are
in general not different across pricing models. This implies that all three pricing models

describe about the same amount of variation in alpha.

The details of the ECM analysis have been presented in Table III.
Insert Table III about here

Based on the results described above, we discuss some consequences of, and note

some features to, the EBDP for an investor.
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REMARK ! For most investment objectives, we can observe the dramatic increase in
the absolute value of persistence for Set and Set B data using ECM. The magnitude of
change is very similar for all pricing models with the parameter of p increasing about 3
to 4 times. These results suggest a very significant dependence of the decision strategies
on the econometric techniques and/or the data investors use in their analysis. Thus,
based on CREM and Set A data, an investor might conclude little or no presence of
persistence, when in fact such a dependence might exist as implied by ECM and Set
B data. The selection of mathematical tools in this paper is meant to be illustrative.
In practice, the range of econometric models used by investors is vast. The purpose of
this comparison is to illustrate the nature of EBDP on investor strategies. Note that all
the analyses were carried out using non-informative priors. In practice, it is clear from
the mathematical development in the Appendix, that the strength of an EBDP is its

capacity to incoporate prior beliefs.

REMARK 2 In the comparison of pricing models under CREM we can observe one
dominant feature in the behavior of the persistence measure, p. For the performance
measure based on Set A, the estimates of persistence differ only between the CAPM
model and two other multiple factor models. This result is important for at least two
reasons. First, it suggests that in this case the 4-factor model of Carhart(1997) does not
provide information which would be marginally significant for the EBDP as compared
to the 3-factor model. Since the resulting decision will be almost the same it is a matter
of preference as to which of these two models investors should consider in their EBDP.
However, as we mentioned before, if we relate the “factor models” to the standard
CAPM, in most cases, the results will be significantly different. In particular, the 3-
factor model gives substantially lower estimates of p for other aggressive growth, growth,
maximum capital gains, and the small company growth funds. Especially, for the last
group, the differences are extremely significant and suggest completely different decisions

depending on the pricing model an investor assumes.
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One of the reasons for a lower trend in persistence both for CREM and ECM may
be a better pricing ability of the multiple factor models. It means their construction
helps to explain more of the systematic risk as compared to the simple CAPM model.
However, this study does not aim at justifying the reasons for using any of the pricing

models used in this analysis.'

REMARK 3 In this study, we separate our samples according to seven broad investment
objectives as reported in Table I. From a statistical perspective, unequal samples across
the groups is not an issues since the sample sizes are substantially large; besides pooling

helps in “borrowing strength” from data across funds within the Bayesian framework.

REMARK / Based on the measure of persistence, we can observe meaningful differences
among funds under ECM. Under CREM, for all pricing models using Set A and Set B
data, the persistence parameter, p, varies in absolute value between 0.0056 and 0.1873.
Correspondingly, under ECM this range is 0.0432 to 0.5167. In particular, the higher
values of persistence for the growth, income, maximum capital gains, and the sector

funds suggest that investment in those four groups are dependent on past performance.

REMARK 5 The inference based on the measure of alpha shows more heterogeneity
among the funds. Recall that 7 is the mean of the random effects +;. For the CAPM
model, ¥ attains the highest mean value of 0.0518 for the maximum capital gains funds,
which suggests a significantly positive average performance of that group. At the same
time, the lowest value —0.0378 for the income funds suggests a considerable underper-
formance of that particular group; consequently, the decision rule is self-evident for an
investor. Note, however, if one were to consider the same decision question using Set
A data, the investor would be faced with the inference that there are differences in the

perfromance of the same two funds!
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C. Predictive Analysis

Under ECM and CREM, for each of the pricing models and performance measures
considered in this paper, one can obtain the posterior predictive distributions of the
residuals. For illustration,we discuss the analysis under CAPM risk adjustment for Set
A and Set B data under both ECM and CREM. A similar analysis can be obtained
for the 3-factor and 4-factor pricing models. Previous analysis in this paper focused on
fund histories. That analysis revealed many differences. Now using a predictive tool,

the EBDP shows some stark differences in the future performance of each of the funds.

(P1) Consider Figures 1 and 3. At a glance, it is clear that there are substantial dif-
ferences in how the funds will behave one period ahead, -depending on the performance
measure under consideration; i.e., Set A vs. Set B. This is particularly the case for
Ot;her. Aggressive Growth Funds and Small Company Growth Funds. Note also the
sharp differences in the variances of the distributions of the funds future performance.
The volatility in the future performance of Growth and Incime and Growth funds are
much smaller than the rest. It is an appealing feature of the EBDP that these differ-
ences can be nicely quantified, leaving the investor a better way of making decisions. To
aid the investor, snapshot summaries of the distributions via their means and standard

deviations are provided immediately below the graphs.

(P2) Consider Figures 1 and 2. This comparison illustrates the differences in the one-
period ahead predictions depending on the modeling strategy employed in the EBDP;
i.e, CREM vs. ECM. Again, note the remarkable differences in the behavior of all except
Growth and Income, Sector and Growth funds. What is surprising is that when the same
comparison was executed using Set B data, namely, the alpha measure, the Growth and
Income and Growth are strikingly different as well. Once again, first and second moment

summaries are provided in tables below the graphs.
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(P3) Comparing, somewhat randomly, the tables under Figures 1 through 4, it is clear

that there are reversals in sign for the means of some of the groups of funds.

(P4) In our study, we provide predictive inference for up to 12 periods ahead, which is
equivalent to one year. We report predictive .1, .25, .5, .75, and .9 quantiles to illustrate
the predictive inference in Figures 5 through 8. For CREM, we can observe that the
predictions of residuals originating from Set A differ mainly only up to two periods
ahead. Investors may may increase their valuation as in the case of Growth & Income
and Income funds. On the other hand, they may behave in the opposite manner for the
Growth, and Maximum Capital Gains funds. In the long run, however, their behavior
will not be significantly different. This, obviously, is not surprising. But note that the
strength of the Bayesian method is if, as is typically the case, investors have access to
prior knowledge abput the future, such information can be included straightforwardly

into the EBDP. For the ECM, the quantile analysis is similar to the CREM.
What does the above mean for an investor?
REMARK 6 Selection of perfomance measure is critical.

REMARK 7 Having selected a performance measure, one must carefully assess the
consequences of the mathematical model employed in the analysis. Here, for illustration,
we have considered ECM and CREM. The rich modeling possibilities open to the investor
via a careful input of prior knowledege can go a long way in feeling confident to some

degree about eventual portfolio selection.

REMARK 8 At the present time, quantifying mangerial skill in selecting funds is a
very difficult challenge. Diametrically opposite conclusions can be drawn in this context

as exemplified by the EBDP analysis.

REMARK 9 While fund history data analysis is the first step in assessing fund
performance, a predictive analysis is needed. Why? If the goal is to model investor deci-

sions, it is unclear whether they have the same information set as the financial analyst,
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or access to the same data and/or subjective prior knowledge. In reality, the EBDP
analysis points out that no investor can know the “true” stochastic process underlying
performance, be it raw returns or alpha. Which information set should the investor rely
on? Clearly the EBDP points to many credible alternatives. One way of tackling this
question is via the predictive distribution. Recall from Section III C, that the predictive
distribution is not conditioned on any unknown parameters since these are integrated
out, but they are conditioned on past fund history. Said differently, the uncertainty in
the parameters are removed when the investor assesses a strategy using the predictive
distribution. Having sé.id that, the EBDP analysis in this paper echoes a sentiment due
to Jimmy Savage: “no model is true, some models are useful.” And that’s the best an

investor can hope for.
Insert Figures 1-4 about here

Insert Figures 5-8 about here

D. Classical vs. Bayesian Inference

While we favor the Bayesian approach for many reasons as argued in Smith (1984), here,
for completeness, we contrast the results with those obtained via standard procedures

(a.k.a classical statistics).

CREM Comparisons

We executed a classical analysis, where appropriate, for illustration. First, we esti-
mate the parameters p and 7='/2 for the CREM.!! We obtain these estimates using an
AR(1) model for the residuals obtained in the classical analysis. We also use the resid-
uals obtained in the two-stage regression that includes the cross sectional regression.

Since the series for Set A and Set B is covariance stationary and ergodic, we can apply
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standard time-series procedures. Some highlights are given below. Table IV contains

the details of the classical analysis.

(A1) The estimates of p and 7 are very similar to the corrsponding Bayesian estimates.
This is because we used non-informative priors for our analysis. But the standard
errors based on the standard analysis are typically larger. This is also to be expected
because this analysis gives us asymptotic estimates, a somewhat unpleasant feature of

the classical approach.

(A2) Estimates of persistence are also quite comparable, although some differences could
be meaningful to an investor. As an example, for Sector funds, with the Fama-French
pricing model, and using Set B data (alpha), the Bayesian estimate of persistence equals

0.1682, while the classical approach yields 0.1158.

ECM Comparisons

For the ECM, classical estimation is more complicated. Basically, the equivalent of
the Bayesian representation described by equations (18) and (19) is the random effects
model with an additional autocorrelated term. In general, this model can be presented

as follows:

rie=a+ 0 T+ v + € (24)

where

Vig = PUig—1 + Wiy (25)

7 is the raw return/performance measure of the mutual fund 4 in time ¢, and z is the
set of regressors from the regression on the respective factors coming either from CAPM,

3-factor or 4-factor models.

We obtain the estimate of persistence by calculating the residuals v;; from the Least

Squares Dummy Variable (LSDV) model and then performing an AR(1) regression (with-
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out an intercept) on those residuals. This estimate will be consistent in nT as well as in
T. For details of this approach, see Baltagi (1995) and Green (2000). The autoregressive
process will also provide us with the estimate of innovation variance o2, equivalent to
the value of 7 from the Bayesian CREM. Again, the additional two hyperparamters o,

and o, do not enter the frequentist analysis. Some highlights:

(B1) For the performance measured both by raw returns and alpha the estimates of
persistence are substantially lower when compared to the Bayesian estmates. One reason
may be because the Bayesian ECM does not have an exact counterpart in the classical
methodology. The random effects model we estimate here is only a close approximation

to the Bayesian approach.

(B2) The variance of the innovation term o is very similar to the results obtained from
the Bayesian analysis. It means that both methods provide similar explanation of the
factors driving the performance of the mutual fund. What is interesting, regardless
of the Bayesian or Classical approach, is that the standard errors for the persistence
parémeters under ECM are smaller than those under CREM. Ceteris paribus, this is

generally a desirable feature.

Insert Table IV about here

V. Concluding Remarks

The selection ability of investors is a complex process. In this paper, we have developed
a process to enable investors to choose from among various mutual funds. The evidence

in EBDP is comprised of three interdependent components.

¢ The response variable used, namely, raw returns or a fund’s performance (alpha).
o The pricing model used: CAPM, Fama-French 3-factor, and Carhart’s 4-factor

models.
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s The statistical model used: CREM and ECM, both designed to model performance

persistence.

Previous research in this area has focused on a subset of the above. In this paper,
we consider all the components simultaneously. This consideration is the process in
EBDP. The illustrative analyis using data from the equity mutual funds sector are quite
surprising and informative. The upshot is that selection ability of investors will depend
heavily on the interactions between various combinations of the components that define

the EBDP.

While the Bayesian approach developed in this paper models parameter/uncertainty,
a key feature that could potentially influence the EBDP is volatility of returns; i.e.,
uncertainty in the variance of the returns. Modeling volatilities simultaneously with
expected returns could be useful in arbitrage pricing. This could be another feature to
add on to the EBDP. Finally, since the choice of pricing model could have a significant
impact in the EBDP, it would be interesting to see if one can build a model selection

feature into the EBDP framework. These will be reported elsewhere.
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AppendixA. Parametric Correlated Random Effects

Gibbs Sampling (Smith and Roberts, 1993) is a special type of MCMC,; it is by far the most
widely used algorithm in Bayesian analysis at the present time. Gibbs sampling is a Markovian
updating scheme that proceeds as follows. Given an arbitrary starting set of values V,-(O), -y V}:(O)
we draw Vl(l) from (V; | V(O),..., Vk(o)] , then Vz(l) from (Va | Vlm, ...,Vk(o)] , and so on up to
Vk(l) from (Vi | Vl(l) yeres k(i)l] to complete one iteration of the scheme. After ¢ such iterations
we arrive at (Vlm, ...,V}f”). Geman and Geman (1984) showed under mild conditions that
Vs(z) =2V~ V) ast - 0. Thus, for t large enough we can regard V,(‘) as a simulated

observation from V).

Thus in the context of the models in this paper, the above implies we need the full condi-
tional distributions, up to proportionality, of all the unknown random variables in the model.
Successively drawing random variates from these conditional distributions, and iterating the
process a large number of times, will result in draws from the posterior marginal distributions

of the parameters of interest; see Smith and Roberts (1993) for examples.

For the models described in the text, deriving these conditional distributions is analyti-
cally involved. However, these are fairly standard results based on the theory of the normal
distributions. Hence these derivations are omitted, and the resulting conditional distributions

are given below.

The Gibbs sampler successively samples for blocks of parameters according to the following

set of distributions:

Blocks:(p, 7), (v), (¥, Q71

(p,7): Define

. il I, Yig-1 (Vi — 1)
p= n T 2 (Al)
Zi:l Yt=2 Yie-1
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Then draw

X (T -1))
~ , A2
T [O1+ X0y Yy (yie — % — 6 gie1)Y (42)
n T
PN Ty, D vhe)™) (A3)
1=1 t=2
(7i): Define
H=Q '+ (T -1)7) (A4)
and T
YV =H Qi+ TZ (it — p gie-1)]- (A5)
=2
Then
u~NEGHETY. (A6)
(#,Q71): Define
P D=1 % il
= &= DA A7
1!) E?:l yi2,1 ( )
Then
Qe X*(n) (A8)

[01+ Y2 (-9 wi1)¥

YNGR QS i)™ (A9)
=1

AppendixB. Parametric Error Components Model

Define v; = (vi1,..,vi7), and v = (vy, ..., vp).
Blocks: (7%}, (p,052), (672), (01, - vn).
(ov):

_ X*(1+n)
Y o [-01 + Z?zl vi2,1] (BL)

(p,0w): Define
?:1 Z,tF:2 Vit Vi1 (BQ)
2im1 221;2 vi2,t-]

b=
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Then

=2 X* (n (T~ 1)) B
et (01 +3>1, Zg_‘:‘z (vie — P vie-1)3 (B9
n T
PN oy > k)™ (B4)
1=1 t=2
(o) X
2 x° (nT +1) (B5)

i =17 (yig — vey)?
(vi): Define y; = (yi1, ..., ¥i,r)". By examining the kernel of the posterior distribution for terms

involving v; and simplifying the resulting expression to get the kernel of a multivariate normal

density:
v~ NLETY, (86)
where
H=0¢"2p4+A™? (B7)
A = A diag{02,02, AW (B8)
[ 1 0
p 1
A=1p p 1 (BY)
L)
and
uy=H"1g2y (B10)

30



AppendixC. Predictive Distributions in the Autore-

gressive Model

We simulate the predictive distribution of (Y741, 0m) yiT+H). By recursive substitution,

YiTeh=(1+p+..+ Ph"l) %+ p" YiT + €Tan + P 6 0phoy + ... + pP € T+1-

So in the models with €;; ~ N(0,7~!) we can write

YiT1
~ N(’L]q, Ei)?
Vi, T+H
where-
1 P
Hi = E Ll B T
Sha o o
[ 1 0
g 1
A=|p p 1
1
and
A !
5 = ._4_
T

(C1)

(C2)

(C3)

(C4)

(C5)

This suggests the following method for evaluating the predcitve distributions using Monte

Carlo simulation. Let (o), 70} ’)’,-(j)) denote draws for the parameters from the 7™ iteration of

the Gibbs sampling algorithm, after discarding some initial set of iterations to allow for burn.
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in. We form pgj ) and Zgj ) according to the previous expressions, and construct the predictive

distribution as:
1< () )
Fyizs1, - Viren | 2) = 7 > YWirst o Virn |1 ) (C6)
=1

where ®(- | u, £) denotes the distribution function of the multivariate normal random variable

with mean variance g and variance matrix X,

AppendixD. Predictive Distributions in the Error Com-

ponents Model

Similar to the autoregressive model we use recursive substitution to write

YiT+h = o Ui, + WiTeh + 0 WiTea + .+ ph_l Wi T+1 + €T +h- (D1)

So, we can write,

%141
: ~ N(,u,', Ei)a (DQ)
Yr+H
where
P
Ui = : vi,Tl (DS)
o
and
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i =0l AA + 0% I, (D4)

and A was defined for the autoregressive random effects model. To construct the Monte Carlo
approximation to the predictive distribution, let (p(j),vfg,ai U),02 (5)) denote the j** draw
from the Gibbs sampling algorithm, after discarding some initial set of iterations to allow for

burn-in. For each draw, we form p,w , Egj ), AY)| and construct the predictive distribution as:

J

1 . R
Fyirsts - Yiren | 2) = 3 S BT, Yirs | 1Y 5. (D5)
i=1
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Notes

'CRSP, Center for Research in Security Prices, Graduate School of Business, The

University of Chicago 1999, crsp.com. Used with permission. All rights reserved.

2We are grateful to Klaas Baks, Andrew Metrick, and Lubos Péstor for helpful com-

ments regarding the data.

3We use the factors provided by Kenneth French and publicly accessible from his

personal webpage.

1Additionally, the sample size is also diminished, because for some funds the CRSP

database does not report values for the characteristics used in the second step.

®Because of computational reasons we exclude from the sample all funds which had

a reported TV A value of zero.
SCompare Péstor and Stambaugh (2000a)

"For the comprehensive reference of the performance decomposition, compare for

example Wermers (2000).
8See: Geman & Geman (1984); Smith and Roberts (1993)

SWe also conducted analyses for the horizon of 15 and 20 years for the samples
following Table I (Panel A). For the group of funds, which existed at this time we

obtained similar results; in the interest of space we have not reported them here.
For a comprehensive study of pricing models see P4stor and Stambaugh (2000b)

"'We cannot, estimate the two remaining parameters ¢ and Q because they do not

enter the classical model.
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Maximum Capital Gains 0.06021 0.00049
Small Company Growth (.001 0.00079
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Figure 1. One-month predictive distributions of residuals for the correlated random

effects (SetA /CAPM)

This figure presents the one-month ahead predictive distribution functions of residuals for
all groups of the mutual funds. The predictions have been performed for the correlated
random effects model given CAPM and raw return as a basis of performance measure.

--- represents Other Aggressive Growth funds, -.- Growth funds, 000 Growth & Income
funds, eee Income funds, ... Maximum Capital Gains funds, - Small Company Growth

funds, and asa Sector funds.

The table below the graph shows the mean and the standard deviation of the distribution

for each of the objective group plotted.
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distribution
Other Aggressive Growth -0.0012 0.00089
Growth 0.00041 0.00049
Growth & Income -0.00038 0.00028
Income -0.00086 0.00024
Maximum Capital Gains 0.00085 0.00068
Small Company Growth 0.00042 0.00093
Sector 0.00075 0.0023

Figure 2. One-month predictive distributions of residuals for the etror components
(SetA /CAPM)

This figure presents the one-month ahead predictive distribution functions of residuals for
all groups of the mutual funds. The predictions have been performed for the error
components model given CAPM and raw return as a basis of performance measure.

--- represents Other Aggressive Growth funds, -.- Growth funds, 000 Growth & Income
funds, ce= Income funds, ... Maximum Capital Gains funds, - Small Company Growth
funds, and 114 Sector funds.

The table below the graph shows the mean and the standard deviation of the distribution
for each of the objective group plotted,
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distribution
Other Aggressive Growth -0.00017 0.00073
Growth 0.00069 (0.00042
Growth & Income -0.00042 0.00027
Income -0.00091 0.00029
Maximum Capital Gains 0.0014 0.00048
Small Company Growth -0.0009 0.00059
Sector -0.00042 0.0021

Figure 3. One-month predictive distributions of residuals for the correlated random
effects (SetB /CAPM)

This figure presents the one-month ahead predictive distribution functions of residuals foc
all groups of the mutual funds. The predictions have been performed for the correlated
random effects model given CAPM and “alpha” as a basis of performance measure.

--- represents Other Aggressive Growth funds, -.- Growth funds, 000 Growth & Income
funds, eee Income funds, ... Maximum Capital Gains funds, - Small Company Growth
funds, and 1as Sector funds.

The table below the graph shows the mean and the standard deviation of the distribution
tor each of the objective group plotted.
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Objective of the fund Mean value of the distribution Standard deviation of the
distribution
Other Aggressive Growth 0.00082 0.0009
Growth 0.00097 0.00058
Growth & Income -0.00063 0.00034
Income -0.0025 0.00031
Maximum Capital Gains 0.0013 0.00061
Small Company Growth -0.0022 0.00091
Sector -0.0013 0.0024

Figure 4. One-month predictive distributions of residuals for the error components
(SetB /CAPM) '

This figure presents the one-month ahead predictive distribution functions of residuals for
all groups of the mutual funds. The predictions have been performed for the error
components model given CAPM and *alpha” as a basis of performance measure.

--- represents Other Aggressive Growth funds, -.- Growth funds, 000 Growth & Income
funds, eec Income funds, ... Maximum Capital Gains funds, - Small Company Growth

funds, and aax Sector funds.,

The table below the graph shows the mean and the standard deviation of the distribution
for each of the objective group plotted.
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Figure 5. Predictive Quantiles - Correlated Random Effects Model

This figure presents the predictive .1, .25, .5, .75, and .9 quantiles for the correlated random effects model. The quantiles have
been obtained for the CAPM model given that the performance is measured using the raw returns, The plots include all groups
of the mutual funds and the predictions are calculated up to 12 months ahead.
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Figure 6. Predictive quantiles for the error components model.

This figure presents the predictive .1, .25, .5, .75, and .9 quantiles for the error components model. The quantiles have
been obtained tor the CAPM madel given that the performance is measured using the raw returns. The plots include all
groups of the mutual funds and the predictions are calculated up to 12 months ahead.
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Figure 7, Predictive quantiles for the correlated random effects model,

This figure presents the predictive .1, .25, .5, .75, and .9 quantiles for the correlated random effects model. The quantiles
have been obtained for the CAPM model given that the performance is measured by “alpha”. The plots include all groups
of the mutual funds and the predictions are calculated up to 12 months ahead.
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Figure 8. Predictive quantiles for the error components model.

This figure presents the predictive . 1, .25,

.5..75, and .9 quantiles for the error components madel. The quantiles have
been obtained for the CAPM model given that the performance is measured by “alpha"

mutual funds and the predictions are calculated up to 12 months zhead.
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Table I

The distribution of the samples by
investment objective and horizon of the analysis

This table presents the classification of the sample of equity funds according to the investment objectives by Wiesenberger, [CDIL and Strategic Insight
as teported by CRSP. We classify funds hased on the horteon of the analysis: 10, 15 and 20 years buck from 1998 respectively for the data derived
lom the pute seturns /Panel A/, and 10 years for the data derived fiom the performance measure alpha /Panel BY. We include only the funds which
ssnvi\ed until the end of 1998, Multiple share classes for the sume fund are excluded. The sample constructed for the raw returns is further denoted as

Ser A whereas the sample constsucted for the performance measure afpha as Set B.

A. The distribution of funds based on the raw returns (Set A)

Investment objective Horizon of the analysis
10 years 15 years 20 years

Small-company growth 37 3 0
Other aggressive growth 20 K 0
Growth . 162 86 64
Growth and income 102 44 36
Income 47 19 17
Maximum capital gains 43 37 32
Sector funds 36 6 i
ALL FUNDS 447 198 152

B. The distribution of funds based on the performance measure alpha (Set B)

Investment objective Horizon of the analysis
) years

Small-company growth 17

Other uggressive growth 14

Growth 16

Growth and income 71

fncome RS
Maximum capitul gains 39

Sector funds as

ALL FUNDS 320
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