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Abstract

In this paper, we attempt to characterize the stochastic behavior of expected
returns on common stock. We assume market efficiency, and postulate an
autoregressive process for conditional expected returns. We use weekly
returns on ten-sized based portfolios over the 1962-1985 period, and employ
signal extraction methodology to extract the expected returns. Our major
findings are: (1) the behavior of expected returns are better characterized
by a stationary (as opposed to non-stationary) process, (2) the relative time-
variation in expected returns has a monotonic (inverse) relation with size:
the smallest portfolio exhibits the maximum variation, and (3) the degree of
variation in expected returns also changes systematically over time across
most portfolios.
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1. Introduction

Tests of market efficiency have invariably been associated with a
particular model of capital market equilibrium, however naive. [For a
detailed discussion, see Fama (1976), ch. 5.] Nevertheless, in the
implementation of most éests of market efficiency and/or a particular
equilibrium model, expected returns are assumed to remain constant over some
period of time.1

On the other hand, theoretical models of asset pricing have put few, if
any, restrictions on the behavior of expected returns over time. In the
development of the CAPM, expected returns on risky securities (given risk
aversion) are simply presumed to contain positive risk premiums. More recent
models of market equilibrium [e.g., Breeden (1979), Cox, Ingersoll and Ross
(1985), and Merton (1973)] imply that market efficiency imposes no obvious
restrictions on expected return movements. In fact, these models do not rule
out even negative expected returns,

Given the disparity between the equilibrium models and their empirical
implementation, we are left with the puzzle of whether to accept/reject the
pricing model, the joint assumption of market efficiency, or the other
assumptions used to test the model, in particular, stationarity. There are
two approaches in resolving this problem. The first is to devise tests of
pricing models which do not require assumptions of stationarity. Gibbons and

Ferson (1985) take this approach. They design a test which specifically

relaxes the assumption of constant risk premiums (although they do assume

1 For example, see Black, Jensen and Scholes (1972), Fama and Macbeth (1973),
and Gibbons (1982). In addition, most event studies also assume stationarity
over some time interval. Constant expected returns are not necessarily
inconsistent with capital market equilibrium--however, the motivation for this
assumption has largely arisen due to empirical (rather than theoretical)
considerations.



returns on ten size-based portfolios. Based on the findings of recent
empirical papers, we hypothesize that expected returns follow an
autoregressive process. We consider two special cases of this process. We -
first constrain the first order autoregressive parameter to be equal to 1.0
and all higher order pa;ameters to be equal to zero, which implies a (non-
stationary) random walk process for expected returns. This, in turn, implies
that realized returns follow a random walk plus noise process--a model used to
characterize many economic time series. We then relax the constraint and
consider a (stationary) first order autoregressive process for expected
returns in which the parameter is allowed to vary across portfolios.,

We use weekly security returns on the ten size-based portfolios over the
1962-1985 period, and attempt to eliminate market micro-structure biases
through careful sample selection., We find that the autocorrelation structure
of the realized portfolio returns appears to be consistent with a slowly
moving expected return component. We use a Kalman filter technique proposed
by Ansley (1980) to extract expected returns and find that constancy is
strongly rejected for all but the largest portfolios. Moreover, there is a
monotonic relation between the size-ranking of the portfolios and the relative
time-variation in expected returns: the smallest portfolio exhibits the
maximum variation. The significant time-variation, and its relation to size,
is found during each of the five-year sub-periods, even when we separately
allow for a January dummy. Hence, movements in expected returns are not
simply a January phenomenon. In the sub-period analysis, there is also str&ng
evidence that the relative variation in expected returns changes
systematically over time, across portfolios. Specifically, the magnitude of
the relative variation is much larger during the seventies, while the eighties

have parameters similar to the sixties.



time. Fama and French (1987) find that the dividend/price ratio has
significant predictive ability for long-horizon returns. Elsewhere, Fama
(1981) and Fama and Gibbons (1982) show that stock returns vary systematically
with ex ante estimates of expected inflation and expected real returns on T-
bills, Campbell (1987)Lfinds that various measures of the term structure can
be used to predict stock returns. Keim and Stambaugh (1985) find evidence of
predictability of stock and bond returns based on past price variables, and
various other predictive measures have been used in the literature [see, e.g.,
Ferson (1986), Ferson, Kandel and Stambaugh (1987), Gibbons and Ferson (1985),
and Huizinga and Mishkin (1984, 1985)]. Perhaps the most striking evidence of
time-varying expected returns may be the well-known phenomenon of seasonals in
returns, particularly the "January effect™.

Note that if one assumes rationality, then predictability is not
necessarily an anomaly but simply evidence that expected returns are
conditional on all information (including whether it is January or not). As
Gibbons and Ferson (1985) note, "...by assuming efficiency, statistical
association of returns with a predetermined variable is evidence that expected

returns are changing...". (p. 225).

2.2 Autocorrelation

More evidence consistent with time-varying expectations may be found in
the literature analyzing autocorrelations in returns. Fama (1965) finds
autocorrelations in daily returns on 30 large stocks which are predominantly
of the same sign. He indicates that these patterns could be caused by
autocorrelation in market returns and by the contemporaneous correlation

between the returns on each stock and the market portfolio.



expected returns process. This approach also enables us to decompose realized
returns into an expected return component and a serially uncorrelated 'noise!'
term at each point in time., We model the expected returns as a first order

autoregressive process.2 Specifically,

Rt = Et-1(Rt) +ey (1)
Et-1(Rt) = ¢Et_2(Rt_1) + U (2)
where Rt = realized return on a particular security over period t-1

to ¢,

= expected return for a security over period t-j to t-j+1
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as of period t-j,
e, = iid N (0,02,
u o~ iid N (0,0§),

and b < 1.

Recent empirical evidence suggests that the autoregressive parameter, o,

may be close to one. A majority of the predetermined variables which have

been found to have significant correlations with realized stock returns can
themselves be characterized by slowly wandering (highly autocorrelated)
behavior. For example, Fama (1981) and Fama and Gibbons (1982) find a strong
negative relation between stock returns and expected inflation [see also Kaul
(1987)1, and a strong positive relation between stock returns and expected
real returns on treasury bills, 1In these papers, both expected inflation and

expected real returns are modeled as random walks - a model which appears to

We could specify a higher order autoregressive process for expected returns,
but a parsimonious model is more desirable if it adequately characterizes the
"true" process. Our results, discussed later, indicate that an AR(1) process
appears to be well-specified.

Ohlson and Rosenberg (1982) employ such an approach in estimating the

stochastic behavior of the systematic risk of the equal-weighted common stock
index.



Therefore, realized returns can be written as:)4

Rt = Rt-1 +ag - Sat_1 (6)

which implies that in the inverted form:

2
Et-1(Rt) = (1-6)Rt)_1 + 6(1—6)Rt_2 + B (1—8)Rt_3 + ees (7
and in the random shock form:
Et-1(Rt) = (1-6)at_1 + (1-6)at_2 + (1-6)at_3... (8)

Hence, expected returns can be represented as an exponentially weighted
sum of past returns [equation (7)], where the weights add up to 1.0 [see
Nelson (1973), ch. 4]. Conversely, expected returns can be written as an
equal-weighted sum of all past shocks [equation (8)], where the weights are
equal to (1-6),

We estimate the constrained model for three specific reasons. First, as
mentioned above, the predetermined variables which have been found to have
significant correlations with realized returns can themselves be characterized
by highly autocorrelated behavior, Second, the constrained model has a very
appealing interpretation. Following Muth (1960), we can think of the shock to
security returns at time t-1, ay_q as being composed of two parts, a
permanent and a temporary one. We can interpret (1-—9)at_1 as the permanent
contribution of a shock to realized returns in the sense that it affects all

future expected returns by this amount. Correspondingly, fa can be viewed

t-1
as the temporary contribution, Hence, estimates of 6 alone can give us a good
idea of the degree of relative variation in expected returns across

portfolios, Finally, the constrained model is robust to alternative

specifications [see Monte Carlo experiments of Cooley and Prescott (1973)].

4 Cooley and Prescott (1973, 1976) were the first to study the estimation of
such a time-varying model. Note that realized returns follow a non-stationary
process with undefined moments. However, changes in returns can be written as
a stationary MA(1) process.
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In this case expected returns are an exponentially weighted sum of past
returns, where the weights add up to less than 1.0 [equation (14)].
Conversely, expected returns can be expressed as a weighted sum of all past
shocks, but (unlike the random walk model) the weights given to past shocks
decline exponentially [équation (15)]. In other words, if expected returns
are stationary a shock at t-1, ag_q has a progressively smaller effect on
future expected returns (unlike the random walk in which all future expected
returns are affected by the same amount).s’6

The autocorrelations in realized returns implied by an autoregressive
expected return component may also be consistent with other explanations.
Specifically, market micro-structure biases caused by nonsynchronous trading
and bid-ask spreads (for example) could also lead to such autocorrelations.
Fisher (1966) shows that nonsynchronous trading can induce negative
autocorrelations in individual security returns and positive autocorrelations

in portfolio returns. [See also Scholes and Williams (1977) and Cohen et al.

(1983).]1 However, our sample selection procedure, described later, minimizes

5 Rosenberg (1973) first developed such a convergent parameter model, as
opposed to the random walk model in which expected returns have no tendency to
converge. We can rewrite our model in the following form:

Rt = Et—1(Rt) + Et

E,_,(R) = (1-6)R + SE (R

g-1) * Up_y

where § is the covergence parameter, and R is the population "norm" towards
which the expected return process converges.

t-2

We can then rewrite realized returns as:

g1 * S = 85y +u

which is an ARMA (1,1) process.

Rt = (1-6) R + SR a1

6 The two models for expected returns have different implications for the
realized and expected return processes. However, the autocorrelation
structure for realized returns implied by both cases could be similar,
depending upon the values of the autoregressive and moving average parameters
[see Box and Jenkins (1970), ch. 4].
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holding period returns for each security are then constructed by compounding
daily returns. The security returns in each portfolio are equally-weighted to
form ten series of portfolio returns, and we also construct an equal-weighted

8

"market portfolio" return using all our sample securities.  Hence, we have a
total of 1226 weekly returns across ten size-based portfolios and one market

portfolio from July 1962 to December 1985.

4,2, Autocorrelations
Table 1 shows the summary statistics for the weekly returns for the 1962-
1985 period. The first order autocorrelations are significant and decline

slowly at higher order lags.9

The returns on the equal-weighted market
portfolio, EWMR, exhibit similar persistence in autocorrelations. [We
replicate all our results using excess returns, i.e., returns in excess of the
weekly risk-free return. The results are virtually identical.]

An interesting aspect of the autocorrelation structures across portfolios
is the consistent pattern observed as we go from the smallest portfolio (R1)
to the largest (R10): the persistence and magnitude of higher order
autocorrelations decline monotonically. However, higher order
autocorrelations remain significant for all but the largest portfolio (which

exhibits only first order autocorrelation).10

8 Our method of computing weekly holding period returns minimizes the bias in
earlier studies which use arithmetic averages of returns within the review
period [see Roll (1983)]. We construct our own market portfolio because
compounding the daily market returns in the CRSP files would also lead to
bias.

9 Wichern's (1973) simulation evidence shows that sample autocorrelations for
non-stationary series could emanate from a (first order) value considerably
less than one.

10 Nelson and Schwert (1977) show that the first order autocorrelation in
realized returns, for example, depends on the first order autocorrelation
coefficient of expected returns and the ratio of the variance of unexpected
returns to the variance of expected returns. If the latter ratio is large it
could lead to low autocorrelation in realized returns even though expected

returns are highly correlated.
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concentrate mainly on the first order autocorrelation, Thus there exists an
inconsistency between the characteristics of the short- and long-run holding
period returns which needs to be resolved. Such a resolution, however, is
beyond the scope of this paper.
4,3 The model estimates
4,3.1 Case I

The restricted version (¢ = 1 v portfolios) is estimated for each of the
ten portfolios. Following Ansley (1980), we extract the expected return,
Et-1(Rt)’ using a two-step procedure. First, we utilize the faet that
differences in returns can be written as an MA(1) process. For convenience we

rewrite equations (1) - (3):

AR = A -
R, = BE,_,(R) + €, -€ (3)
= U1t fp T B 4
= -0
=3 - T (5)
where u,_, are the steps of the random walk process followed by expected

returns, We use the Marquardt maximum likelihood procedure to estimate the
parameters of the model.
The second step is to develop a time series of expected returns. Using

the identifying restriction that U and Et are independent, the Kalman

filter technique is used to extract a time series of estimates of ut_1 from

estimates of a, = in (5). We then simply cumulate the estimates of u

9
£ 8 t=1

to obtain a time series of the smoothed expected return, E

The filtering technique generates an estimate of the ratio () of the
variances of the random walk step of expected returns (ut) and the disturbance
term (et). If A is significantly different from zero, we can reject the

hypothesis that the expected returns are constant. We also present

corresponding estimates of 6, the MA(1) parameter in (5).
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This result is consistent with the evidence reported in other recent
papers. For example, Fama and French (1986a) find that autocorrelations in 3-
to 5= year returns explain almost twice the proportion of return variance for
small firms as for large firms. Keim and Stambaugh (1985) find that various
predetermined variables;also explain a (relatively) significantly larger
proportion of the return variance of small firms. In fact, in almost all
empirical work relating to movements in ex ante expected returns, the
proportion of return variance explained by ex ante information decreases
monotonically as the market value (size) of the portfolio increases. Hence,
not only is the variance of realized returns for small firms systematically
higher than for large firms (see Table 1), but the relative variance of
expected returns as well. This, in turn, enables the signal extraction
technique to detect significant variation in the expected returns of
(especially) the smaller firms.

Next, we re-estimate the model with a dummy variable for the first week
of January15; the results are shown in Table 2, The dummy variable is
significant for the smallest five market value portfolios. This, in turn,
implies that: (i) the seasonality is apparently not just a small firm
phenomenon, and (ii) to the extent that there is a discrete jump in expected
returns in the first week of January, our Kalman filter (smoothing) technique
will not pick it up.

Table 2 also shows the first order residual autocorrelations. There is
significant residual autocorrelation, especially for the large portfolios.
[Higher order residual autocorrelations are generally close to zero.] One

possible reason for this is the (potential) time-variation in the parameters

15 Keim (1983) reports that the January premium is attributable to large
abnormal returns during the first week of trading in the year.
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4.,3,2 Case II

We use the maximum likelihood technique to estimate the model in which ¢,
the first order autoregressive parameter, is allowed to vary across
portfolios.17 The results are reported in Table 3. The evidence again
indicates a monotonic rélation between the estimates of ¢ and size: the
magnitude of 6 declines as we go from the smallest to the largest portfolio.
This pattern remains even when we introduce a dummy for the first week of
January, which is significant for all but the largest portfolio.

The stationary autoregressive process for expected returns appears to
be well-specified. The estimates of ¢ are significantly different from
1.0 for all portfolios, and the residuals behave like white noise., This
evidence is consistent with the results in a recent paper by Fama and French
(1987), who find positive autocorrelations in expected returns which are
documented in their regressions of long-horizon returns on dividend/price
ratios. The pattern in the coefficients of these regressions for different
holding periods are suggestive of a mean-reverting expected return process.
However, the autocorrelations in long-horizon realized returns are negative.
As Fama and French point out, time-varying expected returns do not necessarily
imply negatively autocorrelated returns., In their dividend valuation model,
if shocks to expected returns are positively correlated with shocks to

expected dividends (ut and € _, respectively, in our model), then positively

t

autocorrelated expected returns would imply positive autocorrelation in

returns.

17 We obtain similar estimates of ¢ when we use the nonlinear least squares
technique [see Box and Jenkins (1970), ch. 7] to fit an ARMA (1,1) model to
realized returns.



21

These results give further support to the hypothesis that even though
expected returns could be moving slowly over time, their stochastic behavior

is better characterized by a stationary autoregressive process.

4,5 The information content of the extracted expected returns
We now consider the information content of the extracted expected returns

from the stationary model, ERAR s With respect to other relevant ex ante

t-1
information. It is by no means necessary that the expected returns
conditioned solely on each portfolio's past returns should also incorporate
other information. However, we can get an idea of the economic content of the
forecasts by testing whether the information in other relevant ex ante
variables is already impounded in them.

The choice of the predetermined variables is largely dictated by the
findings in other papers, and data availability considerations. Among other
variables, we consider the nominal risk-free rate19 {Fama and Schwert (1977)
and Ferson (1986)] and the lagged return on the equal-weighted market
portfolio [Gibbons and Ferson (1985)]. We also include a dummy variable for
the first week of January in all regressions since our filtering process
cannot pick up this (apparently) discrete jump in expected returns.

Table 5 shows the regression estimates for the overall period. The risk-
free rate, RFt-1’ is significantly negatively related to the returns of all

portfolios [see regressions (i)]. There is residual autocorrelation in all

the regressions, which implies that the standard errors are biased. However,

19 Since new treasury bills are introduced every Thursday in the Wall Street
Journal quotations, the risk-free rate series is consistently for an 8-day
instrument. 1In calculating the returns we adjust for the skip-day settlement,
and continuously compound assuming 365 days in a year. The price used to
calculate the return is an average of the bid and ask prices derived from the
quoted bid/ask discount rates.
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Finally, the results in Table 5 confirm our earlier finding that a
monotonic (inverse) relation exists between the relative variation in expected
returns and size (see Table 2)., The coefficient of determination [ in
regression (iii)] for the smallest portfolio is about 23%, and its magnitude

drops consistently to about 0.8% for the largest portf‘olio.‘21

5. Summary and conclusions

In this paper, we attempt to characterize the stochastic behavior of
expected returns on common stock. We assume market efficiency, and postulate
an autoregressive process for conditional expected returns. Recent empirical
evidence on the predictability of stock returns suggests that expected
returns change slowly over time. Accordingly, we consider two specific cases
of the autoregressive process for expected returns: (1) we first constrain
the first order autoregressive parameter to be equal to 1.0 and all higher
order parameters to be equal to zero, which implies a random walk process for
expected returns, (2) we then relax the constraint and consider a (stationary)
first order autoregressive process in which the parameter is allowed to vary
across portfolios.,

We use weekly returns on ten size-based portfolios over the 1962-1985
period, and extract expected returns for all portfolios. In implementing our
signal extraction methodology, we attempt to eliminate market micro-structure
biases through careful sample selection., Our major findings are: (1) there
is significant variation in expected returns across portfolios and it has a

monotonic (inverse) relation with size: the smallest portfolio exhibits the

21 Of course, absolute values of R-squares should be interpreted with caution

because of potential misspecifications caused by heteroskedasticity, non-
normality, and/or bias from correlation of residuals with lagged regressors
[Stambaugh (1986)]. Nevertheless, their relative magnitudes are suggestive of
a distinct pattern.
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Table 1

Summary Statistics of Weekly Returns of Ten Equal-Weighted Portfolios of New York and
American Stock Exchange Common Stocks, Formed by Decile Rankings of Market Value of
Equity Outstanding at the End of the Previous Year, 1962-1985 (1226 weeks).(a)

Variable(x) 81 52 83 84 35 86 87 68 z(b) s(x)(b)
R1(Smallest) 0.41 0.24 0.17 0.11 0.03 0.03 =-0.02 =-0.03  0.1797 2.650
ar1(e) -0.36 -0.07 -0.01 0.02 =-0.08 0.05 =-0.04 =-0.03  0.0014 2.887
R2 0.36 0.20 0.14 0.10 0.02 0.03 =-0.04 =-0.04  0.1495 2.481
AR2 -0.38 -0.06 -0.03 0.04 =0.07 0.06 =-0.05 =0.05 =-0.0006 2.815
R3 0.31 0.17 0.12 0.08 0.01 0.03 =-0.01 -0.04  0.1595 2.431
AR3 -0.40 -0.07 =0.01 0.02 =-0.07 0.05 =-0.01 =-0.06 =-0.0018 2.854
R4 0.30 0.15 0.09 0.06 0.01 0.0l =-0.01 =-0.04  0.1632 2.407
ARG -0.39 -0.07 -0.01 0.00 =0.03 0.02 -0.00 =-0.06 ~-0.0014 2.854
RS 0.29 0.14 0.08 0.05 0.00 0.01 0.00 =-0.03  0.1474 2,401
AR5 -0.39 -0.07 -0.02 0.01 =-0.04 0.0l 0.02 =-0.04 =0.0021 2.851
R6 0.27 0.13 0.08 0.05 -0.00 -0.00 0.01 =-0.04  0.1630 2.327
ARG -0.40 -0.06 -0.01 0.01 =-0.03 =-0.01 0.04 =-0.06 =0.0015 2.812
R7 0.24 0.11 0.07 0.04 =-0.00 -0.00 0.00 -0.03  0.1651 2.214
AR7 -0.41 -0.06 -0.01 0.01 =-0.03 =-0.00 0.03 =-0.04 =0.0014 2.722
RS 0.22 0.10 0.07 0.04 0.00 =0.01 0.01 =-0.03  0.1547 2.133
ARS8 -0.42 =0.07 0.00 0.00 =-0.01 =-0.02 0.04 =-0.05 =0.0004 2.657
R9 0.18 0.07 0.06 0.02 -0.02 =-0.03 0.01 =-0.04  0.1585 2.050
AR9 -0.43 =-0.06 0.02 0.00 =-0.02 =-0.03 0.06 =-0.07 =0.0007 2.620
R10(Largest) 0.09 -0.00 0.05 0.0l =-0.02 =-0.03 0.05 =-0.04  0.1363 1.965
AR10 -0.45 -0.08 0.05 -0.01 =-0.00 -0.05 0.10 -0.08 =-0.0003 2.652
EWMR(d) 0.29 0.14 0.10 0.06 0.00 0.01 =-0.00 -0.04  0.1583 2.194
AEWMR -0.40 -0.07 -0.01 0.01 =-0.04 0.01 0.02 -0.06 ~-0.0009 2.618
Notes:

(a) R1-R10 are the continuously compounded weekly returns on ten size-based
portfolios in ascending order from smallest-largest. X and s(x) are the sample
mean and standard of the deviation variable, and B is the sample autocorrela-
tion at lag t. Under the hypothesis that the true autocorrelations are zero,
standard errors of the estimated autocorrelations are about 0.03.

(b) The returns are rates of return per week, in decimal fraction units x 10_2.

(¢) The operator A denotes first differences.

(d) EWMR is the equal-weighted market portfolio return.



Table 3

Weekly Estimates of the Parameters of the Model in which
Expected Returns follow a Stationary AR(1) process.(8)

Re = E¢-1(Re) + e (1)
Et-1(Re) = ¢Er-2(Re-1) + ueop  (2)
where ¢ < 1.
Overall Period: July 1962 - December 1985, n = 1226
Portfolio Without January Dummy With January Dummy (D)
$ (b) | g(e)(e) al(d) $ §(e) 8(e) 51
1 0.611 0.02410| -0.003 0.690 0.0476 | 0.02307 | 0.006
(Smallest)|(0.052)(f) (0.037) | (0.004)
2 0.585 0.02310{ -0.003 0.656 0.0361 | 0.02249 | 0.007
(0.060) (0.045) | (0.004)
3 0.565 0.02304| -0.003 0.629 0.0307 | 0.02260 | 0.007
(0.069) (0.054) | (0.004)
4 0.499 0.02295| -0.006 0.593 0.0254 | 0.02267 | 0.007
(0.078) (0.062) | (0.004)
5 0.452 0.02292| -0.007 0.544 0.0218 | 0.02273 | 0.003
(0.082) (0.069) | (0.005)
6 0.461 0.02238| -0.007 0.543 0.0171 | 0.02227 | 0.003
(0.088) (0.076) | (0.004)
7 0.462 0.02145( -0.007 0.544 0.0157 | 0.02134 | 0.002
(0.096) (0.081) | (0.004)
8 0.429 0.02077| -0.006 0.506 0.0113 | 0.02072 | 0.001
(0.107) (0.095) | (0.004)
9 0.338 0.02015| -0.010 0.462 0.0097 | 0.02011 |-0.003
(0.137) (0.117) | (0.004)
10 0.094 0.01958| -0.003 0.093 0.0048 | 0.01957 |-0.004
(Largest) |(0.028) (0.028) | (0.004)
Notes:
(a) Rt = continuously compounded realized return for week t;

(b)
()
(d)

(e)

()

Et—j(Rt—j+1) = expected return over week t-j to t-j+l1 as of week t- j;
€¢ ~ N(0,08); ur ~ N(0,04).
$ = the estimated autoregressive parameter in equation (2).
s(e) = residual standard error.
61 = residual autocorrelation at lag 1. Under the hypothesis that the
true autocorrelations are zero, the standard errors of the residual
autocorrelations are about 0.03.
3 = estimated coefficient on the dummy varible (D)
where D = 1 for first week in January
= 0 ¥ other weeks.
The numbers in parentheses below the estimated coefficients are standard

errors.
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(b) (c) __(d) (e) ~ (f)
Portfolio | Constant [ERRW ERAR R2 s(n) p
t-1 t-1 1
7 (1)] 0.00110 0.305 0.001 | 0.02212 0.24
(0.00098) [(0.301)
(11)| 0.00113 0.979 0.06 0.02144 -0.002
(0.00064) (0.148)
(111)] 0.00142 |-0.176 1.004 0.06 0.02144 -0.004
(0.00094) |(0.150) | (0.301)
8 (1)| 0.00138 0.094 0.000 | 0.02134 0.22
(0.00111) | (0.437)
(i1)] o.00111 0.979 0.05 0.02077 -0.002
(0.00062) (0.155)
(111)| 0.00169 |[-0.366 1.002 0.05 0.02077 -0.003
(0.00108) 1(0.156) | (0.431)
9 (1)] 0.00221 |-0.366 0.000 | 0.02050 0.19
(0.00115) [(0.432)
(11)] 0.00123 0.971 0.03 0.02015 -0.005
(0.00059) (0.184)
(111)| 0.00247 |-0.705 0.999 0.04 0.02014 -0.006
(0.00114) |(0.184) | (0.429)
10 (1)| 0.00198 |-0.389 0.000 | 0.01966 0.09
(Largest) |[(0.00101) |(0.391)
(11)| 0.00123 0.954 0.007 | 0.01959 0.001
(0.00057) (0.392)
(111)] 0.00203  |-0.495 0.978 0.007 | 0.01958 0.001
(0.00101) 1(0.391) | (0.388)

Notes:

(a)

(b)
(e)
(d)

(e)
()

(g)

Ry = continuously compounded realized returns for week t; Ey_j(Ry) =
expected return for week t-1 to t as of week t-1; n, random disturbaace
term.
ERRW¢.] = estimated expected return from the model in which expected
returns follow a (non-stationary) random walk process.
ERAR¢.] = estimated expected return from the model in which expected
returns follow a (stationary) first order autoregressive process.
R2 = (adjusted) coefficient of determination.
8(n) = residual standard error.

| = residual autocorrelation at lag 1. Under the hypothesis that
the true autocorrelations are zero, the standard errors of the residual
autocorrelations are about 0.03.
The numbers in parentheses below the estimated regression coefficients
are standard errors based on White's (1980) consistent heteroskedasticity
correction.
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R N - . R _(b) (e)f ~ (d)
Portfolio a 8 By 8, 84 R2 s(n) o)
7 (1)] 0.0045 0.013 |-2.916 0.010{ 0.02203| 0.23
(0.0013) |(0.004){(1.183)
(i1)| o.0010 0.013 0.239 0.062| 0.02144|-0.01

10 (1)| 0.0037 0.004 |-2.219 0.002{ 0.01963]| 0.08
(Largest) [(0.0012) [(0.003)|(1.125)
(11)| 0.0012 0.004 0.072 0.006{ 0.01960{ 0.02
(0.0006) |[(0.003) (0.032)

(0.0006) }(0.004) (0.038)

(111)| 0.0028 0.012 |-1.791 |-0.035 | 1.084 | 0.067| 0.02138}-0.00
(0.0013) [(0.004)|(1.153)|(0.135)|(0.523)

8 (1)| 0.0043 0.009 [-2.776 0.006| 0.02126| 0.22
(0.0012) {(0.003){(1.145)
(11)| 0.0010 0.009 0.201 0.045| 0.02085{ 0.01
(0.0006) |(0.003) (0.037)

(111)| 0.0028 0.008 {-1.725 |-0.163 | 1.646 | 0.056{ 0.02073| 0.01
(0.0013) ](0.003){(1.125)|(0.123)|(0.525)

9 (1)| 0.0039 0,007 |-2.345 0.004| 0.02045| 0.18
(0.0012) {(0.003)|(1.120)
(11)| 0.0012 0.007 04147 0.026} 0.02023{ 0.03
(0.0006) |(0.003) (0.034)

(111)| 0.0028 0.007 |-1.665 |-0.164 | 1.810 | 0.039| 0.02010{-0.00
(0.0012) |(0.003){(1.100){(0.097){(0.517)

(111)| 0.0033 0.003 |-1.944 | 0.004 | 0.857 | 0.008| 0.01958| 0.00
(0.0012) [(0.003){(1.118)](0.065)](0.797)

Notes:

(a)

(b)
(c)
(d)

(e)

Ry = continuously compounded realized returns for week t; D¢ = dummy
variable (= 1 for first week of January, = 0 ¥ other weeks); RFp-| =
the risk-free rate calculated as the continuously compounded return on
a one-week treasury bill; EWMR..} = continuously compounded return on
the equal-weighted market portfolio for week t-l; ERARy.) = estimated
expected return extracted from the model in which expected returns
follow an AR(1) process; ny = random disturbance term.
RZ = (adjusted) coefficient of determination.
8(n) = residual standard error.

| = residual autocorrelation at lag 1. Under the hypothesis that
the true autocorrelations are zero, the standard errors of the residual
autocorrelations are about 0.03.
The numbers in parentheses below the estimated regression coefficients
are standard errors based on White's (1980) consistent heterskedasticity
correction.




