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ABSTRACT

This study is concerned with the experimental and theoretical
investigation of ion heating via the generation of a large, low-frequency
RF electric field in a plasma by a modulated electron beam.

The beam-generated plasma is approximately 60 cm in length and 6 mm
in diameter. An electron beam with LOO to 1000 V energy and 2 to 3> mA of
current is used. Either hydrogen, deuterium, neon or argon gas is used
with pressures in the range of 10 * to 10 2 Torr. The plasma has a
density in the range of 5 x 10% to 5 x lOe/cms and a typical electron
temperature of 6 eV. The ratio of plasma density to beam density is
approximately 25, and an axial magnetic field of 300 to LO0 ¢ is usea.

The RF field in the plasma is observed with an RF Langmuir probe.
and energetic ions are detected by a retarding potential energy anzalyzer.
Two or three resonances which lie just above the ion-plasma frequency
(i.e., in the range of 2 to 25 MHz) are typically observed in the probe
responses. The two lowest resonances are found to be half- and full-
wavelength resonances of axisymmetric modes. The retarding potential
energy analyzer curves indicate that the largest ion energy spread occurs
when the beam is modulated at a resonant frequency.

The beam-plasma system is analyzed as a finite-length, boundary
value problem with a specified driving current. The cold-plasma,
quasi-static dispersion equation for the axial propagation constant kz

includes the effect of finite beam and plasma radii, electron-beam space
charge, uniform axial magnetic field and plasma electron-neutral collisicns.
The dispersion equation is solved for the lowest-order radial, axisymmetric
mode.

The quasi-static potential, beam-modulation current and btezam-
modulation velocity are expressed as superpositions of four normal modes
of the beam-plasma waveguide. The appropriate boundary conditions are
applied at the two ends of the system. The phases and amplitudes oI the
total electric field, beam current and beam velocity at an arbitrary
position are calculated as functions of frequency.

The results of the normal-mode analysis are in good agreement with
the experiment and can be used to predict the values of the resonant
frequencies and their variations with plasma density, beam voltage, icn
mass and magnetic field.

The ion heating process suggested by the analysis and experiment
is that the electron beam excites resonant modes of the plasma-cavity
resonator, and that at these resonances a large radial electric field is
created in the plasma which excites ion oscillations. The generation c7
this large RF field at low frequencies results in the observed ion heatiIng.
The importance of this result is that the electron beam can transfer
energy directly to the plasma ions at frequencies other than those =2t
which there is a strong beam-plasma instability.
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CHAPTER I. INTRODUCTION

One of the important problems of thermonuclear research is to
heat an initially cold plasma to very high temperatures necessary for
controlled thermonuclear reactions to occur. This investigation is
concerned with the generation of a large low-frequency radial RF electric
field in a plasma for the purpose of ion heating. The main task is to
understand the basic mechanism of excitation of the RF electric field
and its propagation characteristics. Only small-signal behavior is
studied and no efforts are directed toward achieving a very energetic
plasma.

In the present investigation, experimental and theoretical evidence
is presented which shows that a modulated electron beam excites resonances
in a beam-geﬁerated plasma, and that at the resonant frequencies a
relatively large radial RF electric field is excited in the plasma which
produces the observed ion heating. The excitation frequency is near the
electron-ion lower-hybrid frequency and is of particular interest because
at this frequency the ions oscillate with an average kinetic energy equal
to or greater than that of the electrons in the presence of an RF electric

field.

1.1 General Theoretical Background

In this section some basic plasma physics is discussed which is
of general interest in the present study. Section 1.1.1 gives a generzl
definition of a plasma and introduces a few characteristic quantities

such as plasma frequency, cyclotron frequency, Debye length, etc.



Section 1.1.2 contains a list of a few of the important engineering
applications of plasmas and briefly describes the controlled fusion
program which promises a potentially great future source of energy.
Section 1.1.3 presents briefly a classification of different waves that
exist in an infinite plasma. It is noted in this section that many
types of plasma waves can propagate in a plasma depending on the model.
Dispersion characteristics for waves in longitudinally magnetized plasma
waveguides have been given for different cases as these are of utmost
importance in the present investigation. Section 1.1.% describes the
electron beam-plasma systems and their use in generation and amplification
of microwaves and plasma heating.

1.1.1 General Description of Plasmas. The term plasma is in

general used to describe a large class of essentially neutral mixtures
containing some charged particles. However, the definition of a plasna
in its strict éense must include additional characteristics that are
described here. The most notable feature which distinguishes plasmas from
ordinary solids, liquids or gases is that the charged particles in a
plasma interact with each other in accordance with Coulomb's law. The
coulomb force falls off very slowly with distance as compared with most
of the other interparticle forces. Hence in a plasma every charged
particle interacts simultaneously with many of its neighbors, giving the
plasma a cohesiveness which is often compared to that of a meld or jelly.
The charged particles in a plasma tend to rearrange themselves in
such a way as to effectively shield any electrostatic fields that are

due either to a charge within the plasma or to a surface (for examprle.

a probe) at some nonzero potential. The distance in which this



rearrangement of charged particles cancels out any electrostatic fields

is known as the Debye length and is given by

22 = e, (1.1)

where k is the Boltzmann constant, T is the temperature in °K characterising
the motion of the particles, € is the permittivity of free space, n

is the particle density in particles/m8 and g is the charge of the
particles. The obvious requirement for shielding to occur in a plasma

is that the physical dimension of the system be much larger than a Debye
length. In addition, there must be enough charged particles within =a
distance XD to produce this shielding. Thus the number of charged

particles N, in a Debye sphere of radius AD must be much greater than

D

unity. Therefore

N. = —\3n > 1 . (1.2)

Equation 1.2 implies that the average distance between the charged

-1/3

particles d = n must be small in comparison with the Debye length.

The average potential energy of the charged particles is given by

- q2n1/3

~ 3 = 3)
<FE> = hre d hye (1.3
0 0

and the average kinetic energy of the particles is kT. Therefore



o

i S S 1
<PE> q2nl/3/hneo nq?
Using Eg. 1.1 gives
<KE> hor2n2/3
I - R
and from Eg. 1.2,
<KE> - (36:{)1/8 N2/3 >SS 1 (l ‘;)
<PE> D ’ i

Thus for a gas to remain ionized the average kinetic energy of the
particles should be greater than the average potential energy of the
particles.

In conclusion, plasmas may include all media which have scme
charged particles provided they satisfy the shielding criteria, ND >1
and xD less than the smallest linear dimension of the plasma.

In most plasmas a charged particle is in constant interaction with
the surrounding space charge via the coulomb forces. However, in a
quiescent plasma the microscopic space-charge fields cancel each other
and no net sﬁace charge exists over macroscopic distances. Plasmas
thus do not support large potential variations and have a tendency to
maintain macroscopic space-charge neutrality. This tendency leads to a
characteristic oscillation of the plasma which was first observed by

1

Tonks and Langmuir~ in a plasma of electrons and positive ions. The



characteristic oscillation frequency of electrons about their mean
position in a cold plasma in the presence of a neutralizing stationary
ion background was derived by Tonks and Langmuir in 1929. The method
employed for this purpose was analogous to that used for deriving the
frequency of oscillation of an ordinary pendulum under the action of

a restoring force. The characteristic frequency generally known as the

"electron-plasma frequency" or simply "plasma frequency" is given by
W’ = 2= (1.0)

where dbe is the electron-plasma frequency and e and m are the charge
and mass of the electron, respectively. These space-charge oscillations
remain localized and do not propagate away from the point of disturbance.
If the ion motion were included in deriving Eq. 1.6, the oscillation
frequency would be somewhat higher because the electron mass m would

have to be replaced by the reduced mass

1
1,1 -
Ho= <E+ﬁ> ’ a.7m)

where M is the ion mass. The plasma frequency with the reduced mass

is written without a subscript as

2
ne 1,1 2 2 (
= 2& [ =z 4= = + .
D € m M > “e T %pi (1.8)

and 0o is known as the '"ion-plasma frequency."



Another characteristic frequency for particles situated in a
steady magnetic field is now introduced. It is the cyclotron frequency

of gyration of particles about the magnetic field lines and is given by

where qk and mk are the charge and mass of the particle and Bo is the
steady magnetic field.

1.1.2 Application of Plasma Physics and Controlled Fusion. The

history of plasma research and the development of plasma devices can be
divided into two periods separated by World War II. In the first period
researchers produced such devices as mercury-arc rectifiers, gas-filled
diodes and triodes and ordinary fluorescent tubes for illumination and
signs. In the second period rather sophisticated research areas were
uncovered which dealt with magnetohydrodynamic generators, thermionic
converters, microwave plasma amplifiers, gas lasers, arc jets, plasma
propulsion systems and, perhaps potentially most important of all, the
idea of a new source of energy through controlled thermonuclear fusicn.
The objective of the controlled thermonuclear fusion research is
to provide a new source of energy. The requirements for achieving useful
power from controlled thermonuclear reactions are: (1) to heat a plasmz

of fusion fuel (for example, isotopes of hydrogen) to temperatures of

th

(B

hundreds of millions of degrees, (2) to contain it without contact w

H

material walls and without contamination by impurities long enough for =z

F

significant fraction of fuel to react and (3) to extract the fusion energy

released and convert it to a useful form.



Nuclear fusion reactions occur when two light nuclei such as
deuterium (D), tritium (T) or helium (He®) collide and react to rearrange
themselves so as to form two other nuclei of smaller mass with a
consequent release of energy. The reactions of primary interest in
controlled fusion research are given in Table 1.1.2 The energy of the
fusion reaction is carried away by the reaction products. In some cases
energy is carried away by the released neutrons and in others, by charged
particles. When the energy is carried by charged particles, a unique
direct conversion of their energy to electricity is possible. This has

a potential for very high efficiency and hence low thermal pollution.

Table 1.1

Some Nuclear Reactions for Controlled Fusion

Energy Required Fusion Reaction Energy Released
~ 10 keV . D+T oH?* +n 17.6 MeV
3
o -~ He® +n 3.3 MeV
)0 kev DD Seyp k.0 MeV
~ 100 keV D + He® »He* +p 18.3 MeV
~ 200 keV p + Li® — He® + Het 4.0 Mev

Confining the plasma long enough so that a significant number of
reactions can take place and sustain the process has presented serious
problems. Several confinement schemes are available but almost all of
them are unstable in one way or another. This problem of instability is
of a fundamental nature and is likely to arise in any confinement scheme.
However, under certain conditions the rate of growth of the instabilities

can be reduced to a point such that the confinement time is long enough
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for a practical fusion device to operate. According to the Lawson
criterion® for a self-sustained D-T reactor device, a requirement on

the density-containment time product is

nt > 10%° s/m3 for an ion temperature Ti ~ 10 keV .

Several configurations for plasma confinement such as magnetic
mirror and toroidal geometry are being pursued. At the present time,
Tokamak devices utilizing toroidal geometry are believed to be close to
achieving sustained fusion.

l.1.3 Wave Propagation Through Plasmas. A number of plasma waves

have been described in the literature. These waves or modes are often
identified by the name of their discoverer or by a descriptive title, but
more often they are identified by their dispersion relations. The
dispersion relations are complicated for the general case and are thus
derived for special cases to obtain various modes. The relationship
between different modes is usually not very clear. However, the Clemmow-
Mullaly-Allis (CMA) diagram4 leads to one of the ways to identify and
relate various plasma modes.

If a dimensionless vector n is introduced which has the direction
of the propagation vector k and has the magnitude of the refractive index,
then

. (1.10)

S
i
Slrg'l

The wave-normal surface is the locus of the tip of the vector

l — —
n = n/ha and ll/n| = vp/c, where vp is the phase velocity of the wave



and ¢ is the velocity of light. For certain values of plasma parameters,
n® goes to zero or to infinity. The former is termed a "cutoff" and the
latter a "resonance."

In the CMA diagram the quantities uﬁeaéi/&? and (wp/w)z are
chosen as the ordinate and abscissa, respectively. For a two-component
temperate collisionless plasma the two-dimensional coordinate space, which
is called the "parameter space,'" is sufficient to describe the modes.
The parameter space is divided into thirteen regions by boundary lines
that represent the cutoff and resonances. The general shape of the
wave-normal surface remains the same in a given region and changes its
shape only on crossing the boundary lines in the parameter space. Thu
a particular mode is identified by its wave-normal surface in a given
region in parameter space.

A general description of the wave-normal surfaces and their
relation to a number of specific modes of a cold uniform plasma is given
by Allis et al.* and Stix.° Ranking them by ascending frequency, they
are the Alf¢en-Rstrom hydromagnetic waves, the ion-cyclotron waves. the
lower-hybrid mode, the electromagnetic plasma wave, the Langmuir-Tonks
plasma oscillations, the whistler mode, the electron-cyclotron waves and
the upper-hybrid mode. For the first two modes, the frequency is
relatively low and the electrons may be considered as & uniform massless
fluid. The lower-hybrid mode occurs at an intermediate frequency and both
electron and ion motion must be considered. For the remaining modes the
frequency is relatively high and the ions are considered as a uniform

fluid of infinite mass. There are two waves which occur only in hoz
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plasmas and do not have their counterparts in cold plasmas. These waves
are the ion-acoustic wave and the electrostatic ion-cyclotron wave.

It was pointed out in Section 1l.1l.1 that the space-charge
fluctuations in a cold, stationary, infinite, isotropic plasma are
nonpropagating. This is evident from their dispersion equation which

was derived by Langmuir and Tonks:?!
o
l - —E = O . (loll\
o

Oscillations can occur only at wp and a disturbance does not proragate
away from its original location. However, these fluctuations can
propagate and transfer wave energy away from the source under the
following conditions: (1) the electron temperature is finite, (2) the
plasma electrons have a drift velocity and (3) the plasma is finite.

When the electron temperature is taken into account the dispersion

relation for the longitudinal plasma oscillations is given by6’7

o Bkzvi
1--2 (1+: >=o, (1.12°
(D2 (1)2

where Vo is the mean square longitudinal thermal velocity and kK is

the propagation constant. . The oscillations now propagate with a
definite phase velocity w/k, whereas in the cold plasma they were
essentially stationary. Equation 1.12 is the correction of Bohm znd

Gross®’”7

to the Langmuir-Tonks formula given in Eq. 1l.11.
If the plasma electrons are given a drift velocity Vs the plasma

oscillations will be convected along at the drift velocity. Two space-charge
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waves would exist, one having a phase velocity slightly higher and the
other slightly lower  than the drift velocity. These are called rast und
slow space-charge waves.® The propagation constantsfor the two waves ror

a one-dimensional system are given by

I

(=]
)l
—

k, = (o t a)pe)/vo s (a.
where z is taken as the direction of propagation.

Trivelpiece and Gould®’® showed that a finite electron temperature
or an average drift velocity is not essential to the propagation of
space-charge disturbances and that finite size also leads to propagation.
Assuming that the first-order quantities vary with z and t as
exp[j(wt - kzz)] and neglecting the ion motion, they found the dispersiocn
equation for the E-mode (transverse magnetic) of a plasma-filled, metzllic.
cylindrical waveguide under the influence of an infinite magnetic Tield

to be

ko= Kk 'iz—z ) (1.1
- ab/w
where ko =(b«ﬁ;;;; is the free-space wave number, T = pmn/d, d is the
waveguide radius and Pon is the nth root of mth order Bessel function
of the first kind. From Eg. 1.14 it is found that the cutoff frequency

is given by

(D2 - T2C2 + wa . (l l_':\
co P



The quantity Tc is the cutoff frequency for an empty waveguide. Thus,
the cutoff frequency for a plasma-filled waveguide is higher than that
of an empty waveguide. In addition, the presence of plasma allows the

1

propagation constant to take on positive real values for 0 < o < @, thu

tes
Ui

giving rise to propagating waves in this frequency range. Figure 1.1
shows the dispersion diagram for such a case.

An interesting feature of the plasma waveguide modes is that the
resonant frequency is independent of the waveguide dimensions zanld lerenls
only on the plasma frequency. Moreover, within the passband (0 <@ <«
all the higher-order modes (n > 0, m > 1) will propagate simulianecusly
if they are excited. This is in contrast with the empty waveguide case
in which the number of propagating modes continues to increase witi:
frequency.

The plasma waveguide modes are electromechaniczl in nature ir thsa:

(o7}

the role played by the magnetic field in electromagnetic propzgaticn hsz
been taken over by the mass velocity of the plasma electrons. The
presence of the metallic conductor around the plasma is not essentizl to
the propagation of waves. A plasma column in free space would have the
same qualitative propagation characteristics as the filled vlasmz
waveguide. |

In contrast to the infinite magnetic field case, the plusma-rilled
waveguide in a finite magnetic field has an additional passband above
either the electron-plasma frequency or the electron-cyclotron frequency.
depending on which is higher. The phase characteristic of the zdaditionzl
passband is that of a backward wave. For a backward wave, the greur

velocity and phase velocity have opposite signs. The dispersic

¥

for such a case is shown in Fig. 1.2.



-13-

JALNOIAVM AT ILI-VWSVId V NL &

AT VAL

TATALL O LLANDVN IVIXY eLLAN LeINL HLIM

MAVM 10 SOILSTMELIOWVHVIL NOLSHELSIA [0 DLIVWMIDS T°1

m

dm

*DLa

3dOW
JAINO3IAVM

3JAYM
VNSV d

s e — — — — — — — — — — | — — — — — — ——— — —— ——




.Q.‘HMH—W OH.H_MPZ:/\_Z \,:/\”_—L,M" n..r_..ﬁ:h.; ( Z_

MUINDIAVM QETILA=VWOV A Voo S0 LLSTHELOVEVHO NOTSHUMAOTA O DTLVWANDG ST "DId

m
4 LY
2" *2% ._.\( 9dpm

_ |

_ _

| _

_ |

| |

| |

| |

_ |

_ _

.% “ _
|

_

_ _

“ “

300N
30IN9IAVM “ “ <zwomB

_ _

_ JAUM |

“ ayvYMM@OVE "

_
_ _ _
| i |




-15-

If the magnetic field is reduced to zero, propagation is no
longer possible in the plasma-filled waveguide. However, if the plasma
only partially fills the waveguide, a surface wave mode of propagation
exists. Let d > a where d and a are the waveguide and plasma radii and
let € be the dielectric constant of a homogeneous isotropic dielectric
in a region between the waveguide and the plasma. 'For this system
(aEe/dbe= 0), a passband from @ = 0 to w = ab/‘Ji_:_Z7Z; exists and the
wave energy is carried by surface rippling of the plasma. When
wbe/Qpe >> 1, most of the wave energy is carried by charge accunulation
within the plasma column with little surface rippling. These waves zre
"pody waves" and have a passband for 0 < w < mb similar to one-dimensionzal
space-charge waves (wce/ape = w). The backward wave characteristic is
not influenced by the geometry and it has a passband characteristic
similar to that in the case of the plasma-filled waveguide.

Until now ions in the plasma were assumed to be stationary. IT
the ion motion is also taken into account, the propagation characteristics
change significantly for the finite magnetic field case. First considex
the plasma-filled waveguide. In this case a propagating plasma wave
appears which has a passband from w = O to w = W, 4 and a resonance at
W= W4, where ®us is the ion-cyclotron frequency. The plasma wave is
cut off from Wo g to aIH’ where wLH is the lower-hybrid frequency which

will be defined in detail in Section 2.1.2 and is given by

1 . 1 + 1 . (1,160
w. W . R
af ceci ., + of,
H pi ci
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A plasma wave again propagates from Wy b to ®,, or abe’ whichever is
smaller. The situation above @, OF Qpe is the same as that for
stationary ions. The dispersion curve for this case is shown in Fig. 1.Z.
If the plasma only partially fills the waveguide and the regicn
between the plasma and the waveguide is surrounded by an isotrepic
homogeneous dielectric of dielectric constant e, then body waves as well

as surface waves exist. Again two cases are considered: (1) SR >
c &

[¢7])

and (2) w <w . Forw >w , a surface wave exists which has =2
ce pe ce pe

passband from w = 0 to w = w , where w is given byl
1 1

1/2

‘mm =

4
' (1 + (Qpe/wcg ]

-~

€
I
ju g
|__l
]
=18

1+ wieﬂ%;?]

and is the resonant frequency of the surface wave. Above G g the
dispersion is qualitatively the same as for the plasma-filled wavesuide

and & > w_ .
ce pe

For Dog < wpe’ two surface waves exist. The first one is the
same as for the first case from w = 0 to w = w « The second surface
1

wave has a passband from ® = &y, to w = w and @ is given by
2

-]

N
s
—

b

_ B z
@ Jka%e + wpe)/é .

The dispersion characteristics above dbe are qualitatively the sanme
as in the plasma-filled waveguide when wpe > S The dispersion
diagrems for the two cases of a partially filled waveguide are shown

in Fig. 1.4.
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Since all the plasma modes in the preceding discussion were slow
waves, the quasi-static assumption (vp/c << 1) was used here. In other
words, the ac magnetic field of the wave in Faraday's law was neglected and
curl E = 0 was assumed. However, at certain frequencies (for example.
the cutoff frequencies) the phase velocity of the waves becomes very
large and thus the quasi-static assumption may not be valid near
cutoff. Several workers*s1272° have dealt with the guided-wave probien
without using the quasi-static assumption but generally have resorted to
other simplifications. When the ac magnetic field of the wave is taken
into account, the dispersion equation for a bounded plasma in a finize,
steady magnetic field becomes very complicated. The modes become hybria
modes (E-H modes) instead of pure E-modes. For certain parameters, the
backward wave having a passband between abe and Vage + a%e may become
a forward wave. Likuski®® has compared dispersion curves for quasi-static
and nonquasi-static cases. A steady finite magnetic field was included
in his model but ion motions were neglected. He found that the gquasi-static
assumption is good for a waveguide of radius d such that (dab/c) <1
and for any guide radius if k; >> kg.

1.1.4 Electron Beam-Plasma Systems. The interaction of an

electron beam traversing a plasma column in a waveguide has been oT
considerable interest not only as a system for amplifying microwave
power but also as a method for heating a plasma. There is considerable
similarity between the slow space-charge waves propagating along an
axially magnetized, plasma-filled waveguide and the electromegnetic waves
supported by a metallic slow-wave structure of the type used in

21

traveling-wave amplifiers and backward oscillators. In the beam-vlasma



-20-

system the upper limit of frequency would not be set by the difficulties
of producing small mechanical slow-wave structures but by the magmetic
fields and plasma densities attainable. This will allow generation
and amplification in the millimeter and submillimeter frequency ranges.
The interpenetration of the beam and plasma ensures very strong couprling
between them, thus leading to very high gains per unit length compared
with those of conventional microwave tubes. However, due to several
shortcomings'such as difficulties in coupling microwave power at the
input and output ports, strong nonthermal noise excitation and reduced
gun cathode life due to ion bombardment, no competitive beam-plasma
amplifier has been achieved. There has been a reduction of interest
in recent years for attaining the potential of such a device.22

The study of the beam-plasma mechanism still continues due <o
its relevance to plasma heating for controlled fusion. A heating
scheme of considerable interest was proposed by Smullin and Getty=S
and Kharchenko et al.2%*’2% This scheme is based on the utilization of
the instabilities which occur when an electron beam interacts with a
plasma. The instabilities are able to convert the ordered energy of
the beam into large-amplitude plasma oscillations which, given sufficient
time, should heat the plasma.

It is clear that thermonuclear plasma must have hot ions. The
energy transfer between the plasma electrons and the plasma ions is
a relatively inefficient process, thus it is necessary to seek conditions
under which ions are heated directly. The work reported here utilizes
an interaction frequency range near the lower-hybrid resonant frecuency

where the ions and electrons are excited to roughly equal energetic levels.



=21 -

1.2 Review of the Literature

This section contains a review of the work done by other authors
in the area of wave propagation and ion heating near the lower-hybrid
frequency. Section 1.2.1 briefly identifies the different approaches
taken to study waves near the lower-hybrid frequency. Section 1.2.2
describes the work done by several workers by studying the propagation
of plane waves in a source-free region. In Section 1.2.3, a second
approach taken by several other workers is described. It is the study of
driven waves in the far field in an infinite plasma. The bounded,
guided-wave approach is described in Section 1l.2.4, 1In this section
the transverse reactive-medium instability and the slow-cyclotron veam-
wave interaction with plasma near the lower-hybrid frequency are describtad.

Most of the beam-plasma interaction work near the lower-hytrid
frequency has been done under the approximation of a cold plasmz or a
very hot plasma. The effects of inhomogeneity, collisions and finite
temperature have rarely been taken into account in most of the work done
so far. Some of the work done at high frequencies (near wpe) which has
included these effects, is described in Section 1.2.4. The results of
this work will aid at least empirically in predicting the effects o
inhomogeneity, collisions and finite temperature on the low-frequency
beam-plasma interaction. Section 1.2.5 describes the study of ion
interactions in a beam-plasma discharge. The two special cases orf cold
electrons and very hot electrons have been separated. Einally, in
Section 1.2.6 finite-length system models for electron-beam and beam-

plasma systems are described.
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This review is not exhaustive because many articles have not been
included due to the unavailability of their English translations.

1.2.1 BStudy of Waves near the Lower-Hybrid Resonant Frequency.

The waves near the lower-hybrid resonant frequency are imvcrtant tecsuse
appreciable RF oscillations near this frequency involve significant Icn
oscillations. For a wave propagating perpendicularly to the magnetic
field, the lower-hybrid resonant frequency in the high-density 1limiz
<w§e >> aﬁe) becomes the geometric mean frequency (wIH = N @, and in
the low-density limit (a%e < aﬁe) it reduces to the ion-rlasma Zrecuency
(aiH = a%i).* Some authors have worked in the high-density regime and
others, in the low-density regime.

After reviewing the literature on the work at the electron-ion
hybrid resonance, three distinct approaches to the problem have teen
found: (1) plane waves in a source-free region, (2) driven waves in
the far field in an infinite plasma and (3) bounded guided waves.

Work on the first approach has been done mainly by Oakes and
Schluter,®® Frank-Kamenetskii?? and Haas et al.®® Theoretical work has

also been done by Korjper29 and Auer et al.3° The second aprrcach has

been considered by Seshadri, 3! Kuehl, 3 Demidov, 3% Mikhailovskii and

35

Al
aa 3

Pashitskii®* and Aleksin and Stepanov. Kino and Gerchberg™  and
Vermeer et al.®” took the third approach.

1.2.2 Experimental and Theoretical Study of Plane Waves in a

Source-Free Region. Schluter et al.38 %1 observed experimentally ihe

lower-hybrid (LH) resonance in a steady-state RF discharge. The lcading

* The lower-hybrid resonant frequency is derived for different limi-ing
cases in Section 2.1.2.



-2%.-

of an RF oscillator vs. magnetic field was plotted. The maxima of the
loading was interpreted as a resonance. However, there were small
deviations between the theoretical and observed LH resonance
frequency. In order to explain the above deviations, Oakes et al.*2
considered partial propagation along the magnetic field using the two-
fluid model including collisions. They showed that with the partial
propagation along the field BO, the resonant frequency departs

a
o

considerably from the geometric mean frequency (also see Reshotko,4

45).

-~
o
o O

Frank-Kamenetskii®** and Yakimenko Later Oakes and Schluter
included temperature effects using the three-fluid model (ions, electruvns
and neutrals). It was shown that collisions of electrons and ions with
neutrals increase the damping near the LH frequency and dominate The
temperature effects.
Frank-Kamenetskii®”»*® has been active in the investigation of
<

'* . )
waves for w = @ 5 which he has termed "magnetic sound." As in the case

of Oakes and Schluter®® he considered these waves in a three-component,

Apparently for the following reason: For cold collisionless plasma,
the phase velocity of the wave propagating perpendicular to magnetic

field for a plasma in the high-density limit, i.e., «

B2 - 1/2
A 220 <l—w—> s
1Y “opm uiH

= i i L] ( ¢ = ‘:’ RB 2 ~
where p, = m is the mass density. For o << @ g7 vp \2_0/ Koo

> 2, is
ae’

Lo \V]

which is analogous to the velocity of ordinary sound supported by

magnetic pressure.
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infinite plasma using hydrodynamic equations. Neglecting temperature
effects and assuming negligible kz component, he investigated the effect
of neutral particles. He also pointed out that the collision cross
section for charge exchange between ions and neutrals is the highest.

He showed that the resonant frequency becomes

= w_ . W <l— N v 2 .10
%H cice N+ni ;2_*_ 2 ? R

w

where v is the charge-exchange collision frequency, N is the neutral
density and n, is the ion density. Clearly, if w >>';, Gy T M
but for w << ;; & i is reduced by a factor of Vni;(N + nij' Moreover,

the damping of the wave is proportional to v* where

* Qéiabe
v = Vi + VeN + :7——————-viN . (1.20°
v 2+ of

v ., v and v, are the electron-ion, electron-neutral and ion-neutral
el eN iN

collision frequencies, respectively. It is noted that the rescnant
frequency does not depend on the coulomb collisions and electron-neutral
collision frequency (w >> ;) but the damping depends on them. Denidov
et al.*” considered a fully ionized, hot, magnetized plasma with
coulomb collisions. Deriving the dispersion equation for perpendicwlar
propagation, they showed that the damping of the wave due to coulomb

collisions is small for all temperature ranges.

When the above two groups are summarized, it is noted tha:

{

Frank-Kamenetskii considered the effects of neutral particles incliudin:

(

charge-exchange collisions but neglected temperature effects, and in =
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second paper he considered a hot plasma but did not include the
effects of neutrals. Schluter and his co-workers considered a hot plasma
with coulomb collisions, electron-neutral and ion-neutral collisions all
in one treatment but did not consider the charge-exchange process.

Shvets et al.*® have performed an experiment on the excitzation
of waves at the lower-hybrid frequency in a plasma located in =z corkscrew
magnetic field. A high-frequency (130 to 150 MHz) large radial electric
field is used both for generation of the plasma and excitation of the
waves. The axial component of the ac magnetic field was measured by
a magnetic probe. The ac magnetic field has a peak at the lower-hybrid
frequency. Hiroe and Ikegami49 have reported the observation of
oscillations at the lower-hybrid frequency which are parametrically

1/2
excited by microwaves at the upper-hybrid frequency mUH = (w? + &) .

T Tce

Haas et al.28759 of the third group previously mentioned, have
reported an experiment concerning ion heating using a modulated electron
beam. Ton energy was measured by a gas stripping cell and analyzing
system which detected charge-exchange neutrals from the plasma. They
observed that the ion current is maximum at o = @pi in the low-density
regime (ag < a%e) of a beam-generated plasma in mirror geometrv. As wzas
mentioned in Section 1.2.1, wLH = ubi for perpendiculzar propzgstion in the
low-density limit. As an extension of their work Haas and Eisner-+
recently reported that in their experiment the resonant frequency is
independent of ion mass. They attempted to explain this result by
stating that the lower-hybrid frequency is independent of ion mass in
the low-density regime for propagation close to 90 degrees. As vointed

out by Bhatnagar and Getty,52 they were led to this incorrect conclusicn



-26-

due to an error in their approximate equation. The error was

corrected and an alternative explanation was given.>2

Without going into detail, it is mentioned here that large-

signal ion heating experiments have been done by Kovan and Spektor,s3

1.54 1.55

Bartov et a and Akhmartov et a at s @ gy Coupling of RF
energy is done with a coil around the middle portion of the
discharge.

1.2.3 Driven Waves in the Far-Field in an Infinite Flasma.

Several authors have considered the wave propagation problerm in plasma
using the antenna approach under varying approximations.

Seshadri®! and Kuehl®2 calculated the radiated fields by a thin
cylindrical wire fed by specified currents and immersed in a plasma.

Kuehl derived the expressions for the fields using Green's function and
neglecting the ion motion. Demidov®3 considered the excitation of a
uniform, infinite waveguide filled with cold, lossless plasma in 2
longitudinal magnetic field. The exciting system consists of conductors
located in the plasma in which specified currents flow. Mikhailovskii and
Pashitski®*2°%s°7 have analyzed the excitation of different characteristic
plasma waves at low frequencies by an inhomogeneous electron beam.

Aleksin and Stepanov35 have used kinetic theory to analyze the
excitation of electromagnetic waves in an unbounded magnetoactive plasma
by azimuthal and axial currents. They have derived general expressions
for electromagnetic field and energy losses. However, expressions zre
solved only for special cases such as that of a cold plasma or a

collisionless plasma under the hydrodynamic approximation.
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Vodyanitiski and Kondratenko®° have derived the expression for
energy loss of a modulated axial current in a bounded magnetoactive
plasma.

The method of solving for the driven electric field in 2 rlasma
can be used for an appropriate external current as well as a charge source

that represents a modulated electron beam. A simplified anzlysis i

(/7]

presented in Section 2.2 to investigate the excitation of waves in a
temperate plasma near the lower-hybrid frequency by a line charge and
a current source produced by an appropriately modulated electircon Tteam.

1.2.4 Bounded Guided Waves. Kino and Gerchberg86 have predicted

(for a cold collisionless plasma) that an electron beam transversely
modulated through a pair of plates at the entrance to a plasma has a
maximum growth rate at the LH frequency. The interaction is nonaxisymrezric
and is between the space-charge waves of the beam and the plasma. The
plasma has a negative dielectric constant in this frequency range and the
instability is known as the transverse reactive-medium instability.
Vermeer et al.3755% have reported the observation of an instability
near the ion-plasma frequency. The dispersion diagram for a cold,
homogeneous beam-plasma system in which the beam and plasma fill a
hypothetical metal waveguide was used to investigate the interaction.
The measured axial wavelengths were of the order of the cyclotron
wavelength Vo/fce' This shows that the instability is caused oy z:ze
interaction of a beam slow-cyclotron wave and plasma. As zan extension

60

of their work, Vermeer and Kistemaker~- reported the observation of

multiple modes of an interaction peak. These multiple modes 2t the
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same frequency are explained in terms of the interaction with
axisymmetric as well as nonaxisymmetric modes in a beam-plasma systom,

A tremendous amount of work has been done on the interaction or
an electron beam and plasma at high frequencies around the electron-
plasma frequency. Several authors have used idealized models for the
beam and plasma but others have attempted to include in their meodels
finite temperature and inhomogeneities in the beam and plasma. Here
mention is made of only a few results which deal with finite temperazurs
and inhomogeneity.

In the study of the interaction between a cold beam and a warm vlasts
Crawford®! pointed out that the boundary conditidn at the beam and plasmz
edge would be different from that due to Han®2 which is generally
applied in the cold case. Hahn's method is to calculate the charge
perturbation at the surface of the plasma column caused by the radial
motion of the electrons and ions aﬁd to make the normal conmponent of
the electric field discontinuous by the amount of the surface charge
density associated with the perturbation. In the warm plasma, if the
Debye length is long compared to the transverse RF excursions of the
beam electrons, then the surface charge effects in the plasma may be
neglected. If the contrary is true, then Hahn's approximation is
appropriate for both the beam and plasma.

Shoucri®® and Seid1®* have also studied the effects of finite
temperature on the interaction of an electron beam and plasma. The
interaction was studied near &be and ion motions were neglected. It

was found that when the plasma is warm, a stopband below(wce(“\e >~ o)

C e

try

disappears. Finite temperature of the plasma decreases the growth rates
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but does not change the excited frequency much in the axisymmetric case.
However, for the nonaxisymmetric interaction, the excited frequency
becomes a multivalued function of the plasma density and growth rates
at the cylotron frequency are reduced.

The propagation of slow waves in a waveguide containing a vlasma
with a nonuniform electron density has been investigated by Rogashkova
and Tseitlin.®® They found that if the density decreases along the plasmz
column, the gain of the beam-plasma interaction increases. On the other
hand, an inérease in the density along the column leads to a reduction in
the gain. The frequency band is increased rather insignificantly in
both cases (= 5 percent). It was shown that the phase velocity of the
wave decreases in the direction of propagation for a decreasing plasma
density. It is known from the nonlinear theory of traveling-wave tutes
that a decrease in the phase velocity in the direction of propagaticn
can lead to an increase in the efficiency of the device as a conseguence

of continued synchronism of the beam and wave.

1.2.5 JIon Interactions in a Beam-Plasma Discharge.

1.2.5a Cold Electrons. When an electron beam is injected

into a cold electron-ion plasma, a wide variety of interactions are
possible.®® Several of these interactions are ion interactions and they
occur for frequencies below or near the lower-hybrid frequency. <{ne of

the

O

the interactions is at the ion-cyclotron frequency which is due T
synchronism between the beam slow-cyclotron wave and a propagating
plasma wave. However, the maximum growth rate of this synchronous
interaction is found to be very small and is of little importance for

physically reasonable beam-plasma systems.
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For a relatively dense plasma and large plasma diameter such
that wpe/T > Vs where T is the transverse propagation constant,
synchronism between the beam slow-éyclotron wave or the beam space-charge
wave does not occur in the low-frequency range but is close to abe

(w

e >w ). For a relatively tenuous plasma (wpe/T < vo) the space-

pe
charge wave synchronism shifts down to a frequency just above the lower-
hybrid frequency. In this interaction as well, it turns out that the
growth rates are small.

Since the beam flows through a medium which has a dielectric
constant quite different from that for free space, the reactive-
medium amplification is expected in regions where the plasma dielectric
constant is negative. Intuitively, when a bunched electron beam passes
through a medium with a negative dielectric constant, the electrons in
a bunch attract rather than repel. each other and hence the bunching is
further enhanced. Reactive-medium amplification occurs in a low-frequency
band from @y s to approximately Wy 1y and maximum amplification occurs

near (,L\LH.

The interaction of a thin electron beam with a cold plasma that
fills a metal waveguide has been studied®® under the filamentary-beam
approximation. This approximation considerably simplifies the dispersion
equation. Physically, the approximation requires that the fields te
relatively constant over the cross section of the beam. Under this
assumption, it has been shown®’ that the effect of small beam radius

was to reduce the maximum amplification rates obtained at synchronous

frequencies and to increase the reactive-medium amplification rates.
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In fact, the reactive-medium amplification rate tends toward infinity
near the lower-hybrid frequency. However, the filamentary-beam
assumption is not applicable near the lower-hybrid frequency. Near the
lower-hybrid frequency, the transverse wavelength in the plasma tends
to zero, and a wave will be heavily damped by finite Debye length and
Larmor radii effects. Nevertheless, by neglecting the effects of finite
Debye length and Larmor radii, calculations of the growth rates made
under the filamentary-beam approximation represent the upper bound on
the amplification rate.

In conclusion, the synchronous interactions at low frequencies
in a cold plasma are not strong ion interactions. The reactive-medium
amplification may possibly be strong enough but an exact calculatior
is required that accounts for the finite diameter of the beam in a
self-consistent manner.

1.2.5b Hot Electrons. In this section the interaction of

an electron beam with a hot-electron plasma that fills a waveguide is
reviewed. A dispersion diagram for a waveguide filled with plasma with
very hot electrons is shown in Fig. 1.5. It has resonances at the
ion-cyclotron frequency and at the ion-plasma frequency. In addition,

it has a cutoff frequency W, which for a reasonable temperature of
plasma electrons lies between @3 and Qpi' The plasma supports a
forward wave between W and abi' For small beam densities it is
expected that the interaction between the beam space-charge waves and
the propagating plasma wave should give rise to a convective instability.
Briggs66 discovered that a nonconvective instabili:y is also present

Just below wpi providad that the plasma frequency of “he beam electrons
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FIG. 1.5 SCHEMATIC DISPERSION DIAGRAM FOR A VERY HOT ELECTRON PLASMA
FILLING A WAVEGUIDE. THE DASHED LINES SHOW PURELY IMAGINARY
ROOTS. FINITE STEADY MAGNETIC FIELD AND ION MOTION ARE

INCLUDED. ROOTS FOR HIGH FREQUENCIES ARE NOT SHOWN. (BRIGGS®®)
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exceeds the plasma frequency of the ions.and that the electron thermal

velocity is much greater than the phase velocity of beam and plasma

waves. Puri®® and Wallace®® have extended this analysis of the beam-

plasma ion interaction to a system of finite transverse dimensions and

to lower plasma-electron thermal velocities. Neglecting Landau damping,

they found that the absolute instability can be obtained for values

of electron thermal velocity approximately equal to the beam velocity.

However, the necessary beam density is increased correspondingly.

Lieberman®’ extended this analysis by including the effect of Landau

damping. In this case, the threshold conditions were observed to be

more restrictive than the previous analysis neglecting Landau damping.
Chou’® has applied a rigid-beam model” to the interaction of

an electron beam and a hot-electron plasma near the ion—piasma frequency.

The effect of a contaminant of cold electrons was also considered.

Landau damping was not included in his treatment. A nonconvective

instability was predicted for the synchronous beam-plasma wave interaction

under certain conditions similar to the analysis of Briggs,66 Puri®®

and Wallace.®®

1.2.6 Finite-Length System Models.

1.2.6a Finite-Length Electron-Beam Models. The simplest

case in which an electron beam excites oscillations in a spatially

uniform, time-varying electric field in a finite-length system is the

¥ In this model the displacement g(z,t) of the beam is assumed to be a

function of z only and it is independent of the position in a
transverse plane. The '"rigid-beam" model allows a great simplification
of the analysis.
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diode oscillator. Benham’! and Llewellyn and Bowen’? gave the first
small -signal explanation of this device in which a negative-conductance
model was used to indicate how the electron beam can give up energy to
the RF oscillations. Marcum’® extended their analysis to the case of
arbitrary strength RF electric fields restricted only by the condition
that the total velocity of any electron in the diode region never
reverses direction. He found that the negative conductance was maximum
for certain transit angles. Jepsen74 included the effect of a spatially
varying electric field but for transit times small compared to the
period of oscillation. Jepsen's results have been numerically extended
by Bartsch’® to arbitrary transit angles. The general relation between
the small-signal beam current and an externally applied standing-wave
electric field has been determined by Wesselberg76 for arbitrary transit
angles. It was found that in the cne-dimensional analysis, negative
conductance was maximum at different transit angles for different axial
modes. In particular, for a half-wave axial mode pattern, negative
conductance was maximum for a transit angle of approximately n rad. The
effect of the beam on the fields was neglected in this treatment.

1.2.6b Self-Consistent, Finite-Length, Two-Stream Model.

Frey and Birdsall’” have examined instabilities in a finite-length,
neutralized electron beam in a drift tube. Boundary conditions were
applied at the ends and system walls. The beam was unmodulated at the
injection plane in their model. A set of homogeneous equations was
solved to obtain complex eigenfrequencies. The value of Im(w) thus gives

the time rate of growth or decay of oscillations starting at t = Q.
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Gerwin and Nelson'®

applied a self-consistent solution to the two-stream
instability problem in a finite-length system in which the beams were
assumed to enter the system unmodulated. The results of the self-
consistent solutions indicated that the dispersion relation for the
infinitely long system could be directly used to predict the starting

79

length for oscillations. Ketterer’” used a self-consistent solution tc

treat electromechanical streaming interactions in a finite-length system.

1.3 Statement of the Problem

From the review of the literature in Section 1.2, it is found that
only a few experiments have been done on the heating of ions by an electrcn
beam in a plasma near the lower-hybrid frequency. Some of the experiments
performed lack sound theoretical explanations. Moreover, observations
usually have been made on the heating of ions only and very little attempt
has been devoted to bring out the basic physics involved by measuring the
dispersion characteristics of the involved waves.

In this investigation both experimental and theoretical efforts
are concentrated on understanding the basic mechanism which causes ion
heating in a modulated electron beam-plasma system near the lower-hybrid
frequency. For such a task, it is profitable to initially confine the
study to the small-signal regime. Therefore, in the present work only
linear theory is carried out.

In the experiment, an electron beam is passed through a beam-
generated plasma. The length and diameter of the plasma column are finite.
The electron-beam current is modulated near the lower-hybrid frequency

by a grid in the electron gun. The small-signal response of the system
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as a function of frequency and radial and axial distance is measured
by RF Langmuir probes. Low-level ion heating is observed by a gridded
probe. No efforts are directed to observe very hot ions by driving
the electron beam with large signals.

A theoretical model of such a beam-plasma system has to include
the finite radial and axial boundaries. First the dispersion
characteristics [D(a»kz) = 0] of a beam-plasma system of finite transverse
dimension but of infinite axial extent is analyzed. This determines
the different waves that exist in such a system. The boundary conditions
are then applied at the two ends of the system to determine the
amplitude of each excited wave. Total fields are then obtained by
carrying out a summation of all the amplitudes of the different waves.
Thus the theoretical and experimental responses as a function of

frequency and axial and radial distance can then be compared.

1.4 outline of the Present Investigation

The basic purpose of this study is to investigate ion heating
by a modulated electron beam in a finite-sized plasma. To achieve
this end experimental and theoretical studies of the excitation o7
large, low-frequency (near the lower-hybrid resonant frequency) radial
RF electric fields in a plasma are performed. The resultant production
of energetic ions is experimentally observed with the help of a gridded
probe velocity analyzer. 1In order to understand the basic mechanism
of the excitation of RF electric fields, only small-signal behavior is
studied.

Theoretical analyses of the lower-hybrid resonance and the

dispersion characteristics of beam-plasma waveguide systems are given
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in Chapter II. The basic features of the lower-hybrid resonance
are investigated with the help of a plane-wave analysis in a cold
anisotropic plasma. Expressions for the lower-hybrid resonant
frequency and particle kinetic energies for arbitrary angle of
propagation are obtained. A simplified analysis is given which
predicts a peak in the radial RF electric field at the lower-hybrid
frequency for 90-degree propagation. The dispersion equations for
three beam-plasma configurations (including the experimental configuration)
are given. These equations are solved by a computer. The roots orf
the dispersion equations are required for the normal-mode analysis
given in Chapter IV.

Chapter III describes the experimental studies which have been
performed in a bounded beam-plasma system. A description of the
experimental arrangement is given. Plasma densities deduced from
Langmuir probe data and microwave cavity measurements are compared.

The gridded probe observations on the presence of energetic ions are
given. The frequency response and spatial distribution of the RF
electric field which are measured by a Langmuir probe are presented.
The variations of the resonant frequencies as a function of beam and
plasma parameters are also given.

In Chapter IV a theoretical model based on the experimental
arrangement is established and analyzed. Expressions for the electric
field in a bounded beam-plasma system in terms of beam-modulation current
are obtained by a normal-mode summation. The normal-mode field eguaticns
are solved with the help of a computer. The frequency response and
spatial digtribution of the RF electric field are computed for parameters
which were used in the experiment. The variations of the resonant

frequencies as functions of the beam and plasma parameters are also
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predicted. The normal-mode field calculations are extended to a
frequency range near the lower-hybrid frequency. A possible mechanism
of energy transfer from the beam to the plasma ions is also described.
The experimental and theoretical results are compared in Chapter V.
The resonant frequencies, their relative RF amplitudes and their
dependence on beam and plasma parameters are compared. It is found
that the agreement between the experiment and theory is gcod.
A summary of the work and conclusions are given in Chapter VI.

Suggestions for further study are also made in Chapter VI.



CHAPTER II. THEORETICAL ANALYSIS OF THE LOWER-HYBRID RESONANCE AND

DISPERSION CHARACTERISTICS OF BEAM-PLASMA WAVEGUIDES

2.1 Plane-Wave Analysis of the Lower-Hybrid Resonance

In order to discuss the basic theoretical features of the electron-
ion lower-hybrid resonance, the propagation of plane waves in a uniform,
cold, anisotropic plasma will be investigated. Auer et al.,30 Stix,5
Allis et al.,4 Buchsbaum,80 Yakimenko®® and Reshotko*3 have given good
accounts of the lower-hybrid resonance in the cold, collisionless,
infinite plasma approximation. In most of the previous work, it has been
customary to examine primarily the lower-hybrid resonance of the
extraordinary wave propagatiné perpendicularly to the magnetic field. 1In
a finite-sized laboratory plasma, the propagation vector of an excited
wave will have a small but.finite longitudinal component. Thus the
propagation vector will not be exactly at 90 degrees to the magnetic field
direction.

In this section, the dispersion relation for plane-wave propagation
in a cold plasma will be derived and a resonance condition will be
obtained from the dispersion relation. The expressions for the lower-
hybrid resonant frequency in different density regimes will be obtained
for the extraordinary wave propagating at 90 degrees.

For a better understanding of the physical nature of the lower-
hybrid resonance, an investigation of the particle orbits, velocities
and resultant current densities will be made. Moreover, the relation
between the direction of the propagation vector and the electric field

will be pointed out.
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The effect of the direction of propagation on the nature of the
lower-hybrid resonance will be studied in some detail. In particular,
the sensitivity of the lower-hybrid resonant frequency on the direction
of propagation will be examined. It will be shown that the lower-hybrid
resonant frequency is of importance in the present study because at this
resonant fréquency the ratio of the average kinetic energies of ions and
electrons is equal to or greater than unity.

A resonance is defined to occur when the index of refraction n
(the ratio c/vp, where c¢ is the velocity of light and vp is the phase
velocity) becomes infinite. In a laboratory plasma, it will not be truly
infinite but may be sufficiently large such that vp/c << 1. For a wave
propagating perpendicular to the steady magnetic field, the lower-hybrid
resonant frequency is designated by wLH and for an arbitrary angle of
propagation 6, it is represented by diHe'

2.1.1 Dispersion Relation for the Propagation of Plane Waves. The

dispersion relation for a plasma is generally obtained from the condition
for a nontrivial solution of a homogeneous set of field equations. For
substitution into Maxwell's equations, it is necessary to express the
current density J in terms of the electric field E using a conductivity
tensor ; for a magnetized plasma. Alternatively, it is permissible to
think of a plasma as a charge-free dielectric medium with an equivalent
frequency-dependent dielectric. The dielectric tensor E is dimensionless
and will be used for the description of a plasma in the present study.
Consider the propagation of plane waves in an infinite, cold,

uniform plasma of electrons and ions of one species only. A steady,

uniform magnetic field is impressed along the z-axis of a rectangular
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coordinate system. Only a small-signal analysis is considered and the
first-order quantities are assumed to vary as expljlwt - k - r)], where

k is the propagation vector.

Maxwell's equations are

V.E = p/e0 s (2.1)
VB = 0 , (2.2)
VXE = - %% (2.3)
and
VxB = u03+i—2%§- | (2.4)

in which the plasma appears through the space-charge density p and the
conduction current density J. By taking the divergence of Eq. 2.4
together with the time derivative of Eq. 2.1, the following equation of

continuity is obtained:

ved+s =0 (2.5)

The total electric displacement density D includes the vacuum displacement

density plus the plasma polarization density 3/3& according to the relation

()
1

m

=i

=
1]

eoﬁ + J/jo (2.6)

where K is the dielectric tensor.
The plasma current density J is given in terms of macroscopic

particle velocities ;k by the relation
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J = }: nkaekegk 5 k =e,i , (2.7)
k
where n, is the number density of the particles with a charge of magnitude
Zke. The positive or negative sign of the charge is given by € = 1.

The velocities ;k are obtained from the equation of motion

av
My EEE = zpee (B+ vy xB) - mvp ¥y (2.8)

where Vi is the collision frequency for momentum transfer between the
kth charged particle and the neutrals and is assumed to be independent
of the particle velocities. The ratio of the magnetic force due to the

. In the

ac magnetic field of the wave to the electric force is |§k/c
nonrelativistic case, therefore, the ac magnetic field of the wave can
be neglected. By solving for the components of velocities for a species

it is found that for e‘m)t time wvariation

B ) B -, W a0 )
v, 2-3& . zk ck2 0 Ex
2 t - 1 -
@ Lk @ Cek
Z., e€ €. W . 1
v, , _ kmkk kck - Jw 0 Ev , (2.9
> 12 _ 2 12 _ 2 d
w w5y w Wy
vk Z 0 0 'i;l EZ
L 77 _ J J L J
. o — L - 3
where w , is defined as a,, = ZkeBo/mk and o' = (1l Jka/w).

Substitution of Gk from Eq. 2.9 into Eq. 2.7 gives

3 = g . E ) (2010\
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where ¢ is the conductivity tensor and is given by

” 7
cl -ox 0
o = o o, 0 s (2.11)
LO 0 G”J
where
2 s 2
o = -je < e " Vo) + “pi®
1 s 2 _ 2 2 _ 2 ’
(w JveN) wy W af
2 W0 .
. = - < pe ce pici > ,
X . 2 _ .2 2 _ .2
(w JVel\I) aée @ aE1
of of.
o = -Je <' pe + 22 > (2.12)
o w = Jv w

in which only Ve is assumed to be nonzero. From Eq. 2.6 the following

is obtained:

D = € <G -J < )} E = ¢K-E s (2.13)

where U is the unity tensor,
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a8 =
Kl —Kx 0
K = K K, 0 s (2.14)
0 0 K”
- J
2 - = 2
_ Qbe(w dVeN)/w “pi
S (w = jv )& = of ] @ - o®,
J eN ce ci
2 2 .
K = j <’ peahe/w abiaﬁi/h)>
X . . 2 _ 2 2 _ 2 ’
(@ JVeN) e @ Qi
a?e a?i af
K“ = l - —L’ - "‘P— = l - _ﬁ . (2-15\
of af of

Maxwell's equations are now solved for plane-wave propagation in
terms of the dielectric tensor K. Using Fourier analysis in time and

space and combining Egs. 2.3 and 2.4 gives

- - - (D2= -
Ex Gxd) -LE.%8 = 0 . (2.16)
02

The dimensionless vector n is now introduced which has the

direction of the propagation vector k and the magnitude of the refractive

index n such that
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Thus Eq. 2.16 can be written as

nx nxE -K-E = 0 . (2.18)

Without loss of generality, the propagation vector k and hence n sre
taken to lie in the x-z plane. Let 6 be the angle between the dc

- A -
magnetic field BO = zBO and n. In the notation of Allis et al.,4

Eg. 2.18 can be written as

K, - n° cos? 8 -X n® sin 6 cos 6 (E
1 X X
K K, -n® 0 E | = 0. (2.1
X 1 y
an sin 6 cos 6 0 K - n® sin® 6 E
z
J L J

The condition for the nontrivial solution is that the determinant of the
square matrix be zero. This condition gives the dispersion relation

which can be written as

An* - m2 +Cc = 0 , (2.20)
where
A = K sin® 6 + K cos® 6
B = (Ki + Ki) sin® 6 + K”Ki(l + cos® 6) ,
C = (Ki + Ki)K“ . (2.21)

The dispersion relation can be put into another form as was done by

Rstrom:8?
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Ky (n® - Kr)(n2 - X

tan® 6 = - y 2.22)
2 _ 2 _
(n® - X)) (K;n® - KK,)
where
2 2
abe/w abi/w
Ky = 1-3= T ’
eN ce ci
2 2
abeﬁw abi/w
Kr = 1 W=3v.=-0_  ©+o ’
J eN ce cl
K£ * Kr Kl B Kr
. = ———— = i —— . . :‘\
K_l_ 2 ) KX J ( 2 > (2 21/
The dispersion equation for 6 = 90 degrees i1s then quickly obtained
as

which represents an extraordinary wave and
1’12 = K”

which represents an ordinary wave.

2.1.2 Expressions for the Lower-Hybrid Resonant Frequency for

Perpendicular Propagation. 1In this section the expressions for the

lower-hybrid resonant frequency for 6 = 90 degrees will be obtained and
its dependence on the ratio of mbe/qbe will be investigated. The derendence
of this resonant frequency cn the angle of propagation will be studied
later in Section 2.1.L.
A resonance occurs when the index of refraction becomes infinite

(n2 - ®). For a wave propagating at an angle 8, the resonance condition
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from Eq. 2.20 is A = O or

tan29 = -K”/K_I_ . (2.2)4)
For a wave propagating at 6 = 90 degrees, it can be seen from

Eq. 2.2l that resonance occurs when

w a?i
K, o= 1- pe 2D = 0 (2.25)
aof - o o® - of
ce ci
and v .. = O has been assumed. Assuming M/m >> 1, Eq. 2.25 can be factored
eN
such that
2 _ 2 2 _ 2 - / \
(0 - ofp) (0 - ap) o , (2.2¢
where
<,a£eaél aie
e = 27)
“ry ceci \ 2 2 ) (2.2
o+ w
pe ce
and
2 o~ 2 2 (2.28)
wUH abe aEe \ N

Equation 2.27 can be put into an alternative approximate form that is

well known in the literature:?’®

L = 1 + L . (2.29)
2 w W . o 2 o
o, + of
“ru cect Pi ci

In the high-density limit (wge >> aﬁe) Eq. 2.27 reduces to

R

\/ /D
Sy = Pee \=e

w .
Cl

il
)
-
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which is the 'geometric mean" frequency. In the low-density limit
2 2
(“be >> W >> wbe&bi) Eq. 2.27 reduces to

(,Li,H = (,opi . (2.31)

In the very low density limit such that a%e < D, L4 2 the lower-hybrid

frequency approaches Wi

The lower-hybrid resonant frequency for 6.= 90 degrees is plotted
in Fig. 2.1 for different values of abe/aﬁe' It is clearly seen that
for very high densities the lower-hybrid frequency becomes the geometric
mean frequency and for very low densities it approaches the ion-cyclotron
frequency. In the intermediate range it is near the ion-plasma frequency.

2.1.3 Motion of Charged Particles near Resonance for Perpendicular

Propagation. In order to describe the physical nature of the lower-hytrid

resonance, the motion of electrons and ions near the resonant frequency

will be investigated. The investigation will be restricted to a frequency
region such that the resonance occurs well above the ion-cyclotron

frequency and well below the electron-cyclotron frequency(wii << of < aie\.
It is assumed that the wave electric field is in the x-direction and the

de magnetic.field is in the z-direction. This assumption is valid at

the hybrid resonance for a wave propagating in the x-direction (perpendiculsar
propagation)Q From Eq. 2.9 the equations of the orbits of ions and

electrons can be written as®

2 2
o C%i M2w® (0 - iﬁz

and
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Ix |2 [y [® 2 E2
e = = - ; (2.33)
w o 2 (af - o )2
ce ce

where X, and Y, (k = e,i) are the x- and y-displacements of the particles.
It is clear that the ion motion thus will be principally in the xfdirection,
oscillating back and forth in almost a straight line unaffected by the
magnetic field. The electrons will move predominantly in the y—direction_
with an E x B drift.

The major diameter of the ion elliptical trajectory (along the

x-axis) is given by

2a = 242 D S (2.5)4\,
1 M 2 2
w - D

and the minor diameter of the electron elliptical trajectory (along the

x-axis) is given by

E
2o = 2\/35 X (2.35)
(1.52 - (1)2

The major diameter of the ion trajectory and the minor diameter
of the electron trajectory are equal when the resonance is at the
geometric mean frequency w = vQ;;;E;; The electron and ion orbits
are shown schematically in Fig. 2.2 for resonance at the geometric mean
frequency (high-density limit) and at W (low-density limit). From
Fig. 2.2a it is noted that the x-displacement of the electrons is in
phase with and equal to the x-displacement of the ions at the geometric

mean frequency. In the low-density l1imit the transverse electron

displacement is small compared to that of the ions, as shown by Fig. 2.2b.
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(a) w=/weawgj ae/bj=M/m, bg/bj=vM/m

de

(b) w=wpj, ag/b;= (M/m)-(wp&/wed), aj/b;=vag/b; ,
be /bj= IM/M) - (wpe /wee)>
FIG. 2.2 SCHEMATIC DﬁAWING OF THE ELECTRON AND ION ORBITS AT O 3y IN

THE HIGH- AND LOW-DENSITY LIMITS. [ak AND bk (k = e,i) ARE

THE MAJOR AND MINOR RADII OF THE ELLIPSES]
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To explain the implication of the preceding result in regard to

the lower-hybrid resonance at w = ‘J“%eabi’ Eq. 2.5 is written for plane
waves as
o = kT . (2.36)
w ;

The bound charge p is due to the relative displacement of the ions and
- A
electrons. From Eq. 2.10 with k = kxx (90-degree propagation) the

following is obtained (ve = 0)

N
of of.
k-J = -je, ( De + Pl ) k E_ . (2.27)
S0 - o W@ - o, X
ce ci
Equation 2.37 can be written as
2/ 2
L o (0 - w_ w )
B3 = -je [ D St } k E_ . (2.38)
(@ - af )(® - of;)

In the high-density limit where @y = JZ%;Z;;, Eq. 2.38 gives k + J = 0
and therefore from Eq. 2.36 p = O. Thus at resonance in the high-density
limit no space charge is developed. This is a direct consequence of the
identical displacement of the electrons and ions in the x-direction as
shown in Fig. 2.2a. Since in this limit the electrons are not highly
magnetized (a% >>»a§e), the finite x-displacement of the electrons allows
the space charge to vanish (space-charge neutralization) at the lower-
hybrid resonance. The neutralization of the space charge in the

high-density limit is of importance since otherwise the wave field may

be shielded by unneutralized space charge. This physical aspect of the
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lower=hybrid resonance has been emphasized by Auer et al.30 angd Stix.>
However, in the low-density limit there is no space-charge neutralization.

For an arbitrary angle of propagation Egs. 2.1 and 2.13 give

VeD = 0 (2.39)

or

|

(]}
1}
ot

-(eE+‘T— = 0 . (2.40)
e Jo

The net conduction current always cancels the displacement current in

the longitudinal direction, i.e.,
- = - joe E- A
Ig E (2.41)

where JE and EE represent the conduction current and electric field,
respectively, in the direction of propagation. The transverse current
at an arbitrary angle of propagation is derived in Appendix A for a

frequency range such that a%i K of K a%e and is given by

Jt J an%e
- = - . ¢ 0)4
JR sin 6 (2.542)
o -0 o . (i + N cot? é)
L ce ci \ m J

It can be shown from Eq. 2.42 that the ratio of the transverse and
longitudinal current is very large at the lower-hybrid resonant frequency
for an arbitrary angle of propagation (defined in Section 2.1.4).

For 90-degree propagation, the transverse current is given by

= —j _-_.__C_e_—._. (2.1‘_1"2\

w -

ot |

w .
ce Cc1l
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and Eq. 2.41 gives
J = -jd)e E . (2.}4')4-\

In the low-density limit (a)ie >> (D;e >> a)cea)ci) the electrons are highly
magnetized and have almost no displacement in the x-direction whereas
the ions are nearly unmagnetized and move freely as shown in Fig. 2.2b.
The space charge is thus not neutralized and the resonance is at abi'
The conduction current and the displacement current cancel in the x-directic
but the transverse current is still much larger than the longitudinal
current.

In the very low density limit, significant space charge does not
exist (abe — 0) and the resonance occurs at the ion-cyclotron frequency.
The transverse and longitudinal currents have the same magnitude in this
limit.

2.1.4 Lower-Hybrid Resonant Frequency for Oblique Propagation.

For a wave propagating at an arbitrary angle, the resonance condition is

given by Eq. 2.24 which can be written as

2 4V,2 _ (.2 2 2 2 2 V(@ _ .2
[(1L + cot® 8)us (abe + wpi)cot 6] (u aéi)(a ace)

e 2l 4 42 2 _ = . (2.45)
a)(ube abi)(w uEeaEi) 0 (2.45)

This equation has three possible solutions of «f for a given angle €.
The solution which lies in the frequency range @ g <w< W,q OT @ is

pe

designated as the lower-hybrid resonant frequency for oblique
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propagation (QLHB)- For a frequency of operation such that the inequality
aﬁe > of >> a%i is satisfied, Eq. 2.45 gives the lower-hybrid resonant

frequency for oblique propagation

+ of cot® 9

w .
~ ce Cl1 ce -
fre ¥ 2 . (2.5
=< l+cot29>+l
2 \ ,
&be

This approximation reduces to the high-density limit Vd%eaéi and the
low=~-density limit abi for 6 = 90 degrees, but does not give the very low
density limit w ..
ci
In the high-density limit (a%e >> aie) and for angles of
propagation close to 90 degrees, the expression for the lower-hybrid

resonance is given by

uiHB = Pee®ei <i * % cot® ?) (2.7

which reduces to Eq. 2.30 for 6 = 90 degrees.

In the low-density limit (o o . << o << of ), the expression
ce ci pe ce

for the lower-hybrid resonance is given by

2 = B 1 + M/m cot® 6 ' (2.43)

“Lre PLoq 4 cot2 6

Using this equation, the lower-hybrid resonant frequency is plotted as
a function of angle of propagation for wce/abe =5 in Fig. 2.3. It shows
that at angles close to 90 degrees the lower-hybrid frequency decrezses

with increasing ion mass. However, if the angle of propagation moves
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sufficiently away from 90 degrees, the resonant frequency tends to

become independent of ion mass. The condition for independence of ion
1/2

mass is cot 6 >> (m/M) .

The effect of finite axial and transverse plasma boundaries is to

establish the value of the angle 6 and thus the resonant frequency.

Tt will be shown in Section 2.3.2a that the quasi-static dispersion

relation for a cylindrical longitudinally magnetized plasma waveguide

is given by

)

™ = k2 = (2.4

where kz and T are the axial and transverse propagation constants,
respectively, and are related by tan® 6 = Tz/ki. When Egs. 2.49 and

2.24 are compared, it can be seen that in the quasi-static approximation

(V x E ~ 0) the wave propagates at the resonant cone angle at any

frequency. The propagation constant kzis large but finite. The propagation
of waves in a finite diameter plasma column can therefore be considered

as the superposition of plane waves in an infinite plasma at an angle ares,
where eres is the resonant cone angle given by Eq. 2.2k, The importance
of this equivalence is that the angle eres can be theoretically computed
using the quasi-static dispersion equation for a finite-sized leborator;
plasma that partially or completely fills a cylindrical waveguide. This
angle of propagation can then be used in the theory of plane waves to
obtain other quantities of interest such as average particle kinetic

energies, resonant frequencies, etc., near the lower-hybrid frequency.
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2.1.5 Particle Kinetic Fnergies. 1In this section the small-signal

electron and ion oscillation energies for oscillations occurring near the
lower-hybrid resonance are investigated. The oscillation energies are
independent of the particular mechanism which drives the oscillations of
a cold electron-ion plasma.

In the absence of a dc magnetic field, oscillations of charged
particles in a cold isotropic plasma are mainly electronic for any

frequency w and the ratio of ion to electron kinetic energies is given oy

Ui m
U—' = ﬁ . (2.50\
e
U.l and Ue are defined as
1 ~, )
U. = = n.Mv3 (2.51)
i 2 i i
and
_ 1 ~ > 500
U = o e Vi ? (2.22

where gf and ;g are the mean square macroscopic ac velocities of ions and
electrons, respectively.

The effect of a finite dc magnetic field is to make Ui/Ue freguency
dependent. Using the equation of motion and describing the propagation

in terms of a plane wave propagating at an arbitrary angle in the x-z plane

gives®”
i
1 + o« tan® © <
U. o - o, )?
——1; = -Ip- . ( Cl) RN
U M aF + of ‘ L=
€ 1 + o tan® @ ce
(0 - of )2

ce
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For operation in a frequency range such that aie > of >>-a§i, Eq. 2.52

reduces to

i _.m ltcot®6 (2.54)
U, M(D2 o
-;— + cot2 6
d%e

For investigation near a resonant frequency in this range, w = &LHe is

substituted from Eq. 2.46 into Eq. 2.54 yielding

u, M [ oy B A
—= + cot? 6
Cee
cot® 6 +
1+ =5 (1 + cot? 9)
o2 J
pe
For angles of propagation near 90 degrees (cot2 6 < 1),
o
1+ ==
2
Ei _ “pe . (2.5¢)
Ve y of N
l+—cot26(2+—>
m 2
(D /
pe

For propagation perpendicular to the magnetic field (6 = 90 degrees),

U. wf
1 _ 1 + ce . (2':—\
6— - P
e d?
pe

Thus in the high-density limit (a%e >> aie) electrons and ions oscillate
with equal kinetic energies at the lower-hybrid frequency. In the low-
density limit (a%e << a%e), the ion oscillation energy is greater +han

that of the electrons at the lower-hybrid frequency.
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For propagation at an arbitrary angle in the high-density limit,

= = - (2.58)
e 1 + 2 — cot® 6
m
and in the low-density limit,
=
ce
2
Ei _ &be (2.5°
U = - 0
e af
1 +M. 28 o2 0
m 2
w
pe

Thus it is clear that the particle kinetic energies are quite sensitive
to the angle of propagation and the ratio of ion to electron energies
decreases as the angle of propagation moves away from 90 degrees.
Equations 2.58 and 2.59 show that the ratio of ion energy to electron
energy is greater in the low-density limit as compared to the high-density
limit.

Tn Section 2.1 it has been shown that'the lower-hybrid resonant
frequency (&LH) for 90-degree propagation reduces to 'JZZ;Z;;, abi and
Wy 4 in the high-, low- and very low density ranges, respectively. For
90-degree propagation it was found that the space charge is neutralized
in the high-density limit. The lower-hybrid frequency for oblique
propagation (QLHE) departs considerably (even for small angles away from
90 degrees) from W g Moreover, the angle of propagation can be
determined from the guasi-static dispersion relation for a finite-sized
plasma column. At O g the ratio of ion to electron kinetic energies in

the high-density limit is unity and in the low-density limit it is greater
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than unity. However, as the angle of propagation departs from 90 degrees,
this ratio goes down rapidly.

In a cylindrical configuration at resonance, the wave propagation
and the electric field are in the radial direction. The radial current
will be negligible but the azimuthal current J@ may be large. The
azimuthal current J@ can be thought of as a Hall current due to Er in
the presence of a steady magnetic field in the z-direction. Conversely,
it appears that if the wave propagation is purely in the radial direction,
an azimuthal current may strongly excite the resonance.

In the next section the excitation of the resonance by azimuthal
currents is shown from another point of view, i.e., the excitation of the

extraordinary wave by external current and charge sources.

2.2 JSimplified Theoretical Analysis Using a Sinusoidally Varying Line

Charge

To excite significant ion oscillations in a plasma by an external
source (e.g., by a modulated electron beam), it is interesting to
investigate the driven RF electric field in the low-frequency region
(near the lower-hybrid resonance) and to determine the frequencies at which
the RF field has a maximum. As mentioned in Section 1.2.3, several
authors31?32,35 have studied the problem of driven RF field by an
external current or a charge source in an infinite plasma. In this
section a simplified analysis is presented to show that in a plasms
the RF electric field excited by an infinitely long sinusoidally varying
line charge (used to represent a modulated electron beam) has a maxima

at the lower-hybrid resonant frequency.
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Consider a cold electron-ion cylindrical plasma column in a dc
magnetic field Eo along the z-axis. The plasma is described by the
temperate plasma dielectric tensor E. A source current density ﬁé and
a source charge density Pg at the axis of the plasma column is included.
A source current density, a charge density or a combination of both may

be used to represent the electron beam.

Joot

The pertinent equations for e time variations are:

VxE = "J.UJJ'OH P) (2.60)
VxH = J + jax—:ok"" . E (2.61)
V.H = 0 (2.62)
and
R = . - - /- ./:\
V.K-.E o e, - (2.€

From Egs. 2.61 and 2.63 the charge conservation equation for the source

current and charge is obtained as follows:

V+J +Jwp. = O . (2.64)

It is known that in a plasma waveguide where the propagation along the
-jk_z

axis is assumed to be as e Z , the fields at cutoff (kz = 0) split

into transverse electric (TE) and transverse magnetic (TM) modes.® The

TE mode is characterized by



H = 0 (2.66)
and |

3/dz = O (k. =0) , (2.67)

where EZ is the axial component of the electric field E and ﬁt is the
perpendicular component of the magnetic field H. The TE mode is the
extraordinary wave propagating in the radial direction and it will have
a resonance at the lower-hybrid frequency. The field solutions for the
T™ mode are the same as the fields of an ordinary wave.

In the present analysis, the extraordinary wave is of interest
and the solutions of the field equations (Egs. 2.60 through 2.63) are
desired subject to the assumptions of Egs. 2.65 through 2.67. From

Egs. 2.60 and 2.61 the following is obtained:

. 1 OE
= — - ""‘ 2. 5\
2 "Lwo[rS'“E) = (8.c
K, [ OH K, aH
T JweoKer 55 l ar sP
K, aHZ Ke /1 BHZ
= - | = - LT7)
By Joe KK [ S "0 XK <-r ) Js%) } (2.72)
or ! 1
and
OH
= (1L z _
b, = o\ T 0 JS;) ? (2.71)
where K K, = K2 + X and K, and K, are the components of the dielectric

L7 ple 1

r
tensor K and have been defined in Egq. 2.15.

From Eq. 2.6l and using ﬁt =0 and E, =0,

J_ = 0 . (2.72)
Sz
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This is an important result and it implies that a z-directed source
current does not couple to the extraordinary wave for the case when
d/dz = O.

By substituting the values of E_ and Ecp into Eq. 2.68, after some

manipulation, the following is obtained

K
2 2 - e X AT = o 721
VEH, + PpH, Jo X, P, ma, " VXJ. , (2.72
where
KrKZ
pi = kg % (2.7
1
and
ki = u?uoeo . (2.75)

The ﬁelmholtz equation (Eg. 2.73) for HZ contains two source terms on
the right-hand side. The first term is proportional to the source
charge density (the charge density can be eliminated in favor of
the source current density using Eq. 2.64) and is the source term of
interest for the purpose of electron-beam excitation. The modulated
electron beam produces a net ac charge density and therefore excites the
extraordinary wave, whereas it appears from Eq. 2.72 that a neutralized
axial current flow, as in a wire, will not.

The second term on the right-hand side of Eg. 2.73 is proportional
to the z-component of ¥V x 35. If it is assumed that there is no
¢p-variation of the source current, then this term can arise from an

azimuthal current with a radial variation such as would be produced by
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a solenoid around the plasma. However, it is easy to find source currents
for which this term vanishes, and only the charge source term need be
used.

For simplicity, the source is assumed to bevsingular at the axis
of the cylindrical coordinate system and zero elsewhere. The source
current distribution is assumed to have a zero curl, i.e., V x 3§ = .
Therefore only the ps term of Eq. 2.73 is required. The source will
thus be a line charge of density o1, C/m. The line charge is the ac
perturbation charge of the electron beam.

The fields are found from the homogeneous equation for Hz and then
the proper limit at r = O is required to match the source amplitude.

The expressions for Hz’ Ecp and Er for an m = 0 mode are

owp K
. L x (2) "
o K k2
. L x o .(2) ~
E = - - = 2.77)
® dJ [ieo K_L ph Hl (phr) ( {1
and
o K2 %2
- . X o (2) 783
EI‘ = =j )_1—6; 2 B H (phr) . (2.73)
1
Equation 2.78 can be written as
0.k K 1/2
. L X 2
Bos ke (X)) g (2.79)
o1 1 X
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Near Kl = O it becomes
k K ( ) 5
E = =3 Lox 2.00
- J Me /2 1 (Phr) ( )

and the amplitude of the radial RF electric field tends to infinity as

Kl tends to zero. As is known from Egq. 2.25, Kl = O has roots at the
lower-hybrid and upper-hybrid frequency. Thus the radial electric field
excited by a line charge on the axis of a plasma column tends to infinity
at the lower-hybrid frequency. However, the presence of electron-neutral
collision limits the amplitude of the radial RF field to finite values.

The excitation of this large field may result in significant ion oscillation

and thus ion heating.

2.3 Beam-Plasma System Models and Solutions of Their Dispersion Relations

To study the excitation of large RF electric fields in a plasma
by an electron beam, the electron beam and plasma must be taken into
account in a self-consistent manner. The potential and field solutions
must be obtained by solving the differential equation for such a system.
This involves the study of the dispersion characteristics of waves that
exist in such a system. However, merely obtaining the formal solutions
of the differential equation does not constitute the complete answer,
it is also necessary to determine the amplitude of the various waves by
fitting thé boundary conditions in a particular physical problem.

The dispersion relations studied in this section are for radially
bounded but axially infinite beam-plasma systems. The frequency range

studied is near the ion-plasma frequency. The roots of the dispersion
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equations obtained in this section will be used invChapter IV in carrying
out the normal mode field calculations for an axially bounded system.
Investigations of beam-plasma system models and their solutions
that account for finite dimensions in a direction transverse to the beam
velocity usually deal with a cold collisionless plasma. Most of the
previous work reported in the literature was done near the electron-plasma
frequency and ion motion and electron collisions were neglected. However,
in the present investigation the ion motion is of prime importance since
the frequency of interest is in the low-frequency region. Moreover, the
electron-neutral collision frequency is comparable to the frequency of
operation and is thus included in the present work. The effect of the
finite axial magnetic field has been included, but the resultant complexity
of the problem is reduced with the aid of the quasi-static assumption.
If the quasi-static assumption is not used, the dispersion equation becones
quite complex and is very difficult to solve. Section 2.35.1 defines
different geometrical configurations of a cylindrical beam-plasma waveguide.
In Section 2.3.2, the derivation of the dispersion relations for the
different geometrical configurations is presented. The computer solutions
of the dispersion relation for different cases are then presented in
Section 2.3.3.

2.3.1 Geometrical Configurations. The geometrical configurations

of a cylindrical beam-plasma waveguide are defined in this section.

One of these configurations is used hereafter when referring to a beanm-
plasma waveguide. Physically, these configurations are limiting cases
of the general case given in Section 2.3.la but differences exist in the

mathematical solutions since the radial boundary condition is different
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for each case. The beam-plasma waveguide is immersed in a dc magnetic
field parallel to the axis of the waveguide.

2.%.la Coaxial Beam-Plasma Waveguide. The 'coaxial" beam-plasm:

waveguide is essentially the same as an ordinary coaxial waveguide except
that the inner metal conductor is replaced by a longitudinally magnetized
plasma of diameter 2a and a beam of diameter 2b (b S a). The region
between the central plasma column and the outer metal conductor of
diameter 24 (4 2 a 2 b) can contain any dielectric without changing the
analysis but vacuum is generally assumed when performing the numericsal
analysis. The general configuration of a beam-plasma system is shown in
Fig. 2.h.

2.%5.1b Beam-Plasma Filled Waveguide. The beam-plasma ''filled"

wavegulide consists of the beam and plasma of the same diameter that fill
the waveguide (d = a = b). This configuratién is of interest since it
is much simpler to analyze than the coaxial beam-plasma waveguide, yet
it contains most of the propagation features of the coaxial system.

2.3.1lc Unfilled-Beam, Filled-Plasma Waveguide. The unfilled-

beam, filled-plasma waveguide is obtained from the coaxial beam-plasma
wavegulde when the vacuum region is completely filled by plasma. In this
case the diameters of the beam, plasma and waveguide are such that

b < a =d. Experimentally, this configuration is obtained when a thin
electron beam streams through a plasma whichis separately generated and
fills a waveguide.

2.3.1d Open Beam-Plasma Waveguide. The '"open' beam-plasma

waveguide configuration consists of a beam and plasma column of equsl

diameter surrounded by an infinite isotropic dielectric or a vacuun.
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This geometry is physically identical to the coaxial beam-plasma waveguide
except that the radius of the metal waveguide goes to infinity (b = a,

d » ). Experimentally, this situation exists when the plasma is
generated by the beam itself (in the quiescent modese) in a relatively
large-diameter waveguide.

2.3.2 Dispersion Relations for the Beam-Plasma System Models. The

various dispersion relations presented in this section for the waves which
exist in a beam-plasma system of the type shown in Fig. 2.4 are obtained
by matching the various radial boundary conditions. An electron beam
traverses the cylindrical plasma column along the z-axis with velocity vo.
The plasma is assumed to be stationary, uniform and cold. Only electron-
neutral collisions of plasma electrons are included in the analysis. The
wave in such a system can propagate at frequencies below the waveguide
cutoff frequencies and at phase velocities which are much less than the
velocity of light. A considerable simplification results in this case,
since the electric fields can be assumed to be quasi-static and can be
derived from a scalar potential. Throughout this discussion, the small-
signal approximation is assumed to be valid and first-order perturbations
are taken to vary as exp[j(wt - kzz)] where kz is the propagation constant
along the z-axis.

When electron and ion thermal velocities are neglected, the
properties of the plasma can be described by a dielectric tensor E as
given in Eq. 2.14. In a region where both the beam and plasma are

present, the elements of dielectric tensor are modified and are given oy



(o) u@b
- — Do
K” = K” = ’ (2'81)
(w - kv )2
o a?b
K = K - D (2.82)
(w - kv )2 =aof
Z 0
and
W, “Fb
K = K+ j _Ck . P , (2.8%)
X X W Vo (@ - kv )2 - of
Z 0 ce

where Ky » Kl and K.X are given by Eq. 2.15 for the plasma alone and the
superscript "o" in Egs. 2.81 through 2.8% signifies that both the beam and

plasma are present. ., is the plasma frequency for the beam electrons

Pb

and is given by

@B = =2 (2.84)

where n, is the density of the beam electrons.

Under the quasi-static approximation, the electric field vector

can be written as the gradient of a scalar potential ®:

=
]

-0 . (2.8%)

There is no free charge when using the equivalent dielectric

tensor; therefore from Maxwell's equation,

09)

VeD = V. (eK+E) = 0 (2.

~)
<

which leads to a modified Laplace's equation for an anisotropic medium:
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VK.V = 0 . (2.87)

In the cylindrical coordinate system, Eq. 2.87 can be written explicitly

for a cold beam-plasma system as

0 o
25 K 320 “
%%@gga)ﬁ_ Fo, 0 (2,88
QP Kl dz2

To solve this partial differential equation, assume solutions for tne

potential of the form
¢ = R(r) + expl-j(mp + kZZ)]

R (2.69)

where m is an integer. Substituting Eq. 2.89 into Eq. 2.88 yields the

linear differential equation in the radial variable:

Kn o
T dr | R = 0 . (2o

Substituting

into Eq. 2.90 yields Bessel's equation for the radial variable R:

d_(r
ar \

in a region where both beam and plasma are present.

s

- — (2.92)
2

==
\/
f\
=2
e
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The solution of Bessel's equation inside the beam and plasma

region is given by
= AJ + BN (T r 2.93
R(I‘) m( lr) m( 1 ) ) ( .‘3)

}where Jm and Nm are the ordinary Bessel functions of the first and
:second kind. Since the fields on the axis must be finite, B = 0
' because Nm is infinite at r = O.

The complete time-dependent potential and field components in the

beam and plasma region are:

\
@(r,cp,z,t) = AJm(T r)
1
E (r,9,2z,t) = -AT J'(T r)
r 1My
explj(at - mp -k z)] ,  (2.94)
Eq)(r,CP,Z,t) = j%@(r,({),z,t)
E,(m02,8) = Jk0(r,02,t) |

where A is an arbitrary constant.
For a region filled with plasma only, the partial differential
equation is identical to Eq. 2.88 except that K| and Ki are replaced

by K and K., respectively. Again, substituting

1
K|
T2 = k2 — 2.05\
2 Z K.L

into Eq. 2.90 permits the solution of the Bessel equation. The soluticn

can be written as a combination of the modified Bessel function of the
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first and second kind. However, the combination must be such that the
radial boundary conditions are satisfied.

For a vacuum region, K” and Ki become unity and Tz is equal to
ki from Eq. 2.95. The solution is again a combination of the modified
Bessel functions.

The dispersion relations will now be obtained for three of the
four configurations described in Section 2.3%.1. For the coaxial beam-
plasma waveguide, there are radial boundaries at the beam edge and at
the plasma edge where the solutions must be matched. The dispersion
relation for such a case includes two transcendental equations which
must be solved simultaneously. Although the dispersion relation can be
written in a reasonably simple form, its solution is very involved and
is beyond the scope of this work. The experimental beam-plasma geometry
encountered in this work is adequately described by simpler configurstions,
and therefore the coaxial configuration will not be considered in detail.

2.3.2a Dispersion Relation for the Beam-Plasma Filled

Waveguide. As mentioned in Section 2.3.1b this configuration is zhe
simplest to analyze. 1In this case the dispersion relation reduces to
an algebraic equation. The configuration for this case is shown in
Fig. 2.5a and has one region which includes both the beam and plasma. The
solutions given by Eq. 2.94 are applicable to this case.

Since the potential must vanish at the metallic cylindrical

waveguide boundary (r = b), set

= (2,a0)
Jm(le) 0 (2,90

or

To= p /o (2.07)
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METAL WAVEGUIDE

REGION I
(BEAM AND PLASMA)

(a) BEAM-PLASMA FILLED WAVEGUIDE

REGION I
(BEAM AND PLASMA)

REGION II
(VACUUM) (d —~ @)

REGION I
(PLASMA)

(c) UNFILLED-BEAM, FILLED-PLASMA WAVEGUIDE

FIG. 2.5 CROSS SECTION OF THE BEAM-PLASMA WAVEGUIDES.



-76-

where pmn is the nth zero of the mth order Bessel function of the

first kind.

The dispersion relation for the beam-plasma filled waveguide is

given by

Pun 2 K(|)|
—-—-—> = -k2 — . (2.‘38\

For the lowest mode P = 2.405. Equation 2.98 is a sextic algebraic
equation in kZ and is solved numerically in Section 2.3.3. The
potential and field components are given by Eq. 2.9k.

2.3.2b Dispersion Relation for the Unfilled-Ream, Filled-

Plasma Waveguide. A cross section of this configuration is shown in

Fig. 2.5c. 1In Region I, both the beam and plasma are present and

Region II consists of the plasma alone. As discussed in Section 2.3.2

the potential function solution for Region I is proportional to the

Bessel function of the first kind and the solution for Region II is
proportional to a combination of the modified Bessel functions of the

first and second kind. The potential function in both regions must satisfy
the following radial boundary conditions:

1. At the waveguide boundary (r = a) the potential must vanish
1T

1l

(® 0). Therefore o™ is written as

IT

(S
1

C <Im(T2r)Km(T2a) - Im(Taa)Km(Tar)> , b<r<a , (2,001

where C is an arbitrary constant and Im and Km are the mth order rodified

Bessel functions of the first and second kind.
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2. At the beam edge (r = b) the potential must be continuous

(@I = QII). Therefore ®land o1l are written as
oI - 4 Jm(Tlr)
B JmZleS
and
I Im(TZr)Km(TZa) - Im(TZa)Km(Tzr)

0] = A . s
Im(sz)Km(Tza) - Im(Tza)Km(Tgb)

where A is an arbitrary constant.

3., At the beam edge (r = b) the normal displacement must be

continuous, i.e.,

I.0 oI II IT
+ = +
ErKi KXEcp Er Kl KXECp
or
' 2
K°T b - Jn(le) s 0. Cee ) wpb
1 Jnilej b= kv, (- kv )2 -of
zZ 0 ce
(T b - K (T b
Cwro ( Im(T2 )Km(Tza) Im(Tza)Km( N )
- ’
172"\ Im(TZb)Km(TZa) Im(Tza)Km(TZb)
where °
R 5 K
T = -k —
1 ZKO ’
1
2 2 K
T = k% —
2 z Kl

(2.100)

(2.101)

f)

23

(2.1

(2.10%)

(2.105)

and the prime indicates the differentiation with respect to the argument.

Equations 2.103 through 2.105 constitute the dispersion relation for the
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unfilled-beam, filled-plasma waveguide. It is a transcendental
equation which has six roots of kz at a given frequency for a particular
radial and azimuthal mode. The arguments of the Bessel functions may,
in general, be complex. This equation is solved numerically with the

~ help of a computer in Section 2.3.3. The complete space and time-dependent
potential and field components in this case are as follows.

< <
Region I (0 =r =b):

I J (T r)
o (r,p,z,t) = A 5, = exp[j(wt - mp - kzz)] , (2.12¢)
I Jé(Tlr)
- - . - - 2. O»\
Er(r,@,z,t) ATl 3;75237 exp[j(wt - mo kzz)] s (2.1
I . m T ~
EQ(T;@:Z:t) = J T o (r,p,z,t) , (2.109)
I S .
EZ(TJ@)Z:t) = sz(I> (r,9,z,t) . (2.109)
<
mII (b=r=a):

I (T r)K (T a) -1 (T a)K (T r)

IT _ 2 2 \ ]
o7 (s %z,t) = A g (T ij (T a) - 1 (T a)K (T_b) exp(jlat - mp - kz' ),
(2.110)
1 I (T, r)K (T a) - I (T a)K (T r)
= - M - v\’
EI' (I‘)CP,Z,t) -AT o I (T bTK (T a) -1 (T a)K (T b) eXp[J(th ms 1\:.< 1,
(2.111)
IT . IT
E@ (r;Qy2z,t) = % ¢ (r,9,2,t) , (2.112)
IT . IT N =
EZ (r,9,2,t) = sz® (r;P,2,t) (2.113
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2.3.2c Dispersion Relation for the Open Beam-Plasma Waveguide.

‘A cross section for this configuration is shown in Fig. 2.5b. In Region I,
both beam and plasma are present and Region II consists of a vacuun of
permittivity € that extends to infinity. Again the potential function
;in Regions I and IT must satisfy the boundary conditions:

1. As r —» o the potential in the region must tend tcward zero. To
'satisfy this condition, the potential in Region II is written as

IT _ [0 17 )
o = CKm(T2r) s (2.11

where C is an arbitrary constant.
2. At the beam edge (r = b) the potential must be continuous.

Therefore ®I and @II are written as

I Jm(Tlr)
= 2.11%)
o} A W ( 11¢
and
K (T r)

II m .
o} = —?—a—y (2.110)

A Km sz J \

where A is an arbitrary constant.
3. At the beam-plasma edge (r = b) the normal component of

displacement must be continuous. Therefore

J'(T b) @ o K! (T b)

0 m' 3 m ce Db A qq-
Tb + = = (2,117
T ER) T ook 5y L2 e K@e) 0 SH
m' "y zo (w- kzvo) - af, m 2

where Tl is given by Eq. 2.10k. Again, this transcendental equation has

six roots of kz at a given frequency and for a particular radial and
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azimuthal mode. It is also solved numerically in Section 2.3.3. The
potential and field components in Region I are the same as those given

in Section 2.3%.2b, and for Region II they are given by

T Km(T r)
" (r,9,2,1t) A ('Ly P (2.113
Km Tgb
K'(T r)
IT - m 9)
E, (ry0,z,t) = AT2 K sz) , (2.11
IT . m IT 5 1A
ECP (I‘,(P,Z,t) = J T o (I‘,CP,Z,t) (2.12>°
and
1T . II )
EZ (I‘,C,D,Z,t) = JkZQP (I‘,(P,Z,t) P) (2'121\'

where A 1s an arbitrary constant.

2.3.5 Numerical Solutions of the Dispersion Relations. The

dispersion relations derived in Section 2.3.2 for the three configurations
are given by Egs. 2.98, 2.103% and 2.117. There are six roots for each
mode and because of the transcendental nature of the Bessel functions
there are an infinite number of radial modes for each of the azimuthal
modes which are denoted by m = 0,1,2,.... Therefore, to determine all
six roots at a given frequency, each root must be identified with a
particular branch for a particular mode.

S was used to trace the roots (whicih

A Fortran IV computer program®
may be complex) of the dispersion relations. The computer progra::
requires an initial guess for a root on a particular btranch. Given =z

starting point, the computer program checks the accuracy of this peint

and corrects any error to a desired accuracy. The correction precedure
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is that of "Newton's method" applied to a function of complex variables.
If the starting point is fairly accurate, the desired accuracy is quickly
obtained in two or three corrections. If the starting point is inaccurate
the convergence may be very slow and, if the dispersion relation is very
complicated, the error may not decrease or the root may jump to another
branch of the dispersion relation. Therefore, the prediction of each
new point should be as accurate as possible. Points on a particular branch
are corrected by using the slope of that branch in predicting the new
point.

A four-point predictor formula®* has been used to predict the new
point accurately. After correcting the starting point, the slope =zt
that point is used to make a linear extrapolation to the next point.
After correcting the second point, the first point and the slope at the
second point are used to predict the position of the third point. The
fourth point is then found by using the first point and the slopes at the
first and third point. Thereafter the four-point predictor formula is
used. The accuracy of the four-point formula is such that only one or
two applications of the corrector are required. If the accuracy zfter
the first application of the corrector is an order of magnitude more than
the required accuracy, the step size is doubled to increase the speed of
computation. If the number of steps required to correct the predicted
point to a desired accuracy is more than a predetermined number M (usually
M =3 or 4), the step size is halved for the next point.

In some cases it may not be possible to trace the entire branch o

making a constant increment in o (for example if 8¢/5k is very smzall).
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" Thus w or k is chosen as the independent variable depending on which
variable is the most rapidly varying one.

The computer program requires a subroutine called FUNCT. This
subroutine contains the dispersion function D(w,k) = O and its derivative
with respect to w and k. To solve a new dispersion equation, only the
subroutine FUNCT is changed. A listing and the description of the
subroutine FUNCT for each dispersion equation solved is given in Appendix 3.

| An approximate schematic plot of the dispersion diagram for a
beam-plasma filled waveguide is shown in Fig. 2.6. For a particular mode,
the dispersion equation has six roots for a given frequency. Two roots
represent the plasma waves and the other four represent the bteam waves.

Two of these four roots are beam slow and fast space-charge waves. The
remaining two are the beam slow and fast cyclotron waves. In the dispersion
diagram (Fig. 2.6), collisions between particles and the coupling of bean
and plasma waves are not included. The roots in the cutoff region are
purely imaginary and are not shown. The fast waveguide modes have also
been excluded.

Experimental data presented in Chapter III reveal that only
axisymmetric modes (m = 0) of large axial wavelength are of interest.
Therefore in computing the dispersion diagrams, the two branches which
represent the beam slow and fast cyclotron waves are not traced. Inly
the axisymmetric (m = 0) mode is studied. Since the experiments were
carried out in the low-density regime (aﬁe >>-w:e >> wcémci), the dispersion
diagram for this case only is computed. The region of interest for the

Present investigation has been marked by a circle in Fig. 2.¢.
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FIG. 2.6 SCHEMATIC DISPERSION DIAGRAM FOR A BEAM-PLASMA FILLED
WAVEGUIDE. COUPLING OF THE BEAM AND PLASMA WAVES IS NOT

SHOWN .
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The detailed dispersion diagram of the beam slow and fast space-charge
waves in a finite-diameter beam in an infinite-diameter waveguide (the
open waveguide case) is shown in Fig. 2.7. For the m = O mode, each beam
slow and fast space-charge wave has an infinite number of radial modes
packed into a small region. Each pair may interact with the plasma modes,
but only the lowest-order (n = 1) mode is included in the computations.

Figure 2.8 shows the various radial modes which are present in a
finite-diameter plasma and infinite-diameter waveguide (open waveguide) for
an axisymmetric (m = O) mode. Once again an infinite number of radial
modes exists for each azimuthal mode (m = 0,1,2,...). A propagating surface
wave appears in the low-frequency region, which is a cutoff region in a
filled-plasma waveguide.

Thus it is noted that for the lowest azimuthal mode in a freaquency
range Wy 3 S w < abe’ there is an infinite number of beam radial modes
and an infinite number of plasma radial modes which would couple. However,
usually the lowest-order modes give the principal part of the solution,
and therefore in the present study only the lowest-order azimuthal and
radial modes will be considered.

2.3.3a Normalization of Parameters for Computer Solution of

the Dispersion Equation. In the present investigation the frequency of

operation is near the ion-plasma frequency, and therefore all the
characteristic frequencies have been normalized with respect to the ion-
plasma frequency. Moreover, since the wavelength of interest is of the
order of a beam wavelength, the propagation constant has been normalized

by‘abi/vo, where v, is the beam velocity.
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The normalized parameters are:
W = wﬁgpi , (2.122)

= 2.123)
K kzvo/cbpi , (2.123°

WCE = 2.12%)
E aﬁe/abi P) ( 1
= 2.12%)
WCI abi”@pi ’ (2.12
= 2.12¢)
NU VeN/abi ( C
and
= o Jof. . 2.127)
R Qmﬁ%i (2.127

The fatio of the beam density to the plasma density is given by

= 2.123)
Pon/Pop = R/G (2.1
where G is the ion-to-electron mass ratio (M/m). The normalized electron-
beam radius b is represented by the symbol
vV = bwpi/vo . (2.120)

The electron-beam perveance is defined as

S = 10° - I/VS/Z (micropervs) , (2,172

where I is the beam current in amperes and V is the beam voltage in velts.

The beam radius can be found in terms of S and R since
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— 2
I = =nb pobvO (2.131)
and
2.
v.o= e v . (2.132)
o) m

Substituting for I from Egq. 2.130, Pob from Eq. 2.128 and A from Eq. 2.172

into Eg. 2.131 yields

Y
b = 0.173 = Js/r (2.13%)
or
eV = 0.173 JS/R . (2.13-)

As a result of the present nbrmalization, the normalized value of
X = kzvo/dbi can be quickly plotted as a function of the normalized
frequency W = w/Qpi to obtain the dispersion diagram. However, to bring
out the dependence of certain parameters such as ion mass; beam voltage;
etc., for a fixed beam-plasma diameter, the dispersion diagram will bte
plotted in an alternative way. i.e., kzb vs. W The normalized propagation

constant kZb is easily obtained as
kb = K- CV , (2.13%)

where K and CV have been previously defined.
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2.3.5b Dispersion Diagram for a Beam-Plasmu Filled Waveguide.

The dispersion relation for the beam-plasma filled waveguide for the

lowest-order mode is obtained from Eq. 2.98 and is given by

2 2 2
- ube i 4@1 ) abb

> o of (0 - kzvo)2 .
< -)+OS> = -kj . . (20156\

2 2 2

b L abe ubi ) akm

2 _ 2 2 _ 2 o 2 _ 2
@ aﬁe @ @ (m kzvo) aﬁe

Using the normalization procedure given in Section 2.3.3a yields

Ki +(0.16 - K - CV)2 K, = O (2.137)
where
Ki = K - R ) (2.123)
(W - X)2 - WCE?
Kﬁ = K - — R , (2.170)
W - K)?
K o= 1 G( - ju) - L (2.1-0)
Wl(W - jNU)2 - WCE®] W° - WCI®
and
K” = l-G+l . \:l—-l\
we

The complex K roots of the dispersion equation (Eq. 2.131) are

obtained for real W with the computer. The resulting dispersion diagram
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for the beam-plasma filled waveguide is shown in Fig. 2.9 in which the
normalized propagation constant kzb is plotted as a function of normaliced
frequency W = w/wpi. The frequency range covered is near W = 1 and
particle collisions have been neglected. The dispersion diagram shows

the two plasma waves (which appear for W >W__ =~ 0.95 W), one of which

LH
propagates in the positive z-direction and the other in the negative
z-direction. There are two beam waves, one is the slow space-charge wave
and the other is the fast space-charge wave.

The coupling of the plasma wave and the beam space-charge waves

is shown in the figure near and below W = . At synchronism (where the

R
phase velocity of the plasma wave is equal to the phase velocity of the
beam waves) the coupling of the waves produces complex conjugate roots
(without collisions). In the region W < WLH’ there is no propagating plasma
wave and the beam waves result in the reactive-medium type of instsbiliz. .
The roots in this region are complex conjugate and represent reaciive-
medium amplification. However the growth rates are very small in this
frequency range.

When the effect of electron-neutral collisions is taken into zccount,
the resulting dispersion diagram is as shown in Fig. 2.10. The roots of the
beam and plasma waves in the region W > WLH become complex and acquire
small imaginary parts. The propagating plasma wave roots (real part)
penetrate into the cutoff region with increasing imaginary parts. The growth
rate corresponding to the positive imaginary part which represents the
amplifying wave is slightly reduced. The negative imaginary pvart, which

is an evanescent wave, is slightly increased.
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In conclusion, the collisions have little effect on the real
part of the roots and they reduce the amplification rate near W = WLH'

The small positive imaginary part that appears for W > W

LH represents

amplification resulting from the interaction of the beam slow space-charge
wave with the resistive plasma medium. This is analogous to the
resistive-wall amplification in microwave tube theory.85

2.3.5c Dispersion Diagram for the Unfilled-Beam, Filled-

Plasma Waveguide. The dispersion relation for the lowest azimuthal

mode (m = 0) for the unfilled-beam, filled-plasma waveguide is obtained

from Eq. 2.103 as

J (T b) (’ (T b)K (T a) + I (T a)K (T b) \
= KT

KlTbﬂT_bj' I<Tb7K(Ta)-I(Ta)K(Tb)/ |

(2.12)

Equation 2.1%6 can be written as

J (T b) I (T b)X (T a) + I (T a)X (T v) «

Hﬁ{ﬁ'w B! <1(Tb3K(Ta§-I(Ta)K<Tb /

{(2.1-3)
The negative and positive signs on the left-hand side of the equation give
the positive Re(k ) and negative Re(kz), respectively, for ay, < < e
This distinction must be made when tracing the roots in order to obtain
all of the branches. The dispersion diagram for the coaxial unfilled-
beam, filled-plasma waveguide is similar to the one for the beam-plasma

filled waveguide and is shown in Fig. 2.11.
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2.5.3d4 Dispersion Diagram for an Open Beam-Plasma Wavepuide.

Thé dispersion relation for the lowest-order azimuthal mode (m = Q) for

an open beam-plasma waveguide is obtained from Eq. 2.117 and is given by

o Jl(le) K (Tab)
= . 2. """"\
K TP 5,00 © T KT | (2.1

Equation 2.144 can be written as

J T
LRI J<:1:) - il(*.kzz) : (2.145)
01 o~z
Again, the negative and positive signs on the left-hand side
give positive Re(kz) and negative Re(kz), respectively, for Oy <aw< abe'
Moreover, in this case the positive and negative sign in the arguments
of Kl and K are to be taken according as Re(kz) 20 to keep the potentizl
and field finite for large values of r.2® |
The dispersion diagram for an open beam-plasma waveguide is shown
in Fig. 2.12. 1In this case, for the given parameters the beam and plasma
are synchronous over a relatively large frequency range and therefore
complex roots'due to the coupling of the plasma wave and the beam slow
space-charge wave are obtained over a wide frequency range. If the electron-
neutral collisions are not included, complex conjugate roots are octzined
from W= 1 to W= 5. However, the collisions reduce the magnitude of
the positive imaginary part and increase the magnitude of the negzti-e
imaginary part. Moreover, the complex roots are now obtained even ror

W > 5 and represent the resistive-medium interaction. Again, the real

parts of the complex roots are not changed significantly except for the
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real parts of the complex conjugate roots. The real part in this case
actually splits into two different real parts which merge into the plasma
wave and the slow space-charge wave.

Below W < WLH an interaction between the propagating plasma surface
wave and the beam space-charge waves is found. The effect of electron-
neutral collisions on this interaction was not studied.

In conclusion, the dispersion diagrams for the three cases are
basically of the same form. However, in the open beam-plasma waveguide
for w< WLH’ a surface-wave interaction is obtained. In all three cases
the axisymmetric mode (m = O) is considered and only the lowest-order
radial mode is shown. The dispersion diagrams have been computed only
in the low-density regime and the interaction of the beam-cyclotron waves
with the plasma waves is not shown.

The growth rates for reactive-medium amplification, space-charge
wave amplification and surface-wave amplification are quite small in
the frequency range studied. As is discussed in Chapter IV, the fact that
a weak amplifying wave exists in the frequency range under consideration is
not of prime importance in the present investigation. However, the

complex roots will be used in Chapter IV for the normal-mode field

calculations of plasma-cavity resonances.



CHAPTER III. EXPERIMENTAL STUDIES

3.1 Description of the Experimental Setup

A schematic diagram of the experimental setup is shown in Fig. 3.1.
The essential components of the apparatus are (1) a vacuum system, (2) a
plasma source, (3) an electron gun and associated modulation circuit,
(4) an electron-beam collector and associated biasing circuit, (%) an
Einzel lens, (6) a solenoid and (7) diagnostic apparatus.

%.1.1 Vacuum System. The vacuum system consists of a central vacuum

chamber where the plasma column is located, a pumping system to evacuate it
to a desired base pressure and a leak valve to introduce a gas for plasms
production.

The vacuum chamber consists of a cylindrical stainless steel tube
of L4-inch diameter and approximately one meter in length, as shown in the
schematic drawing of Fig. %.l. Several ports are provided along the length
of the tube for inserting the radial diagnostic probes and for observing the
plasma through the glass windows. One end of the tube is connected to the
pumping system through a metal cross and a bellows. The other end of the
tube is blocked by a metal end plate and sealed through an O-ring seal.

An electron gun is connected to one end of the cross and a plexiglass
window is placed on the top end for viewing purposes. The third end is
joined to the cylindrical tube and the bottom end is connected to the upper
end of the bellows which leads to the pumping system; The use of the
bellows allowed the tube to be moved slightly under vacuum for the purpose

of aligning the axis of the tube with the steady magnetic field.

-98-
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An oil diffusion pump backed up by a mechanical forepump was used
to evacuate the central vacuum chamber. A molecular-sieve trap was provided
to prevent the diffusion pump oil from backstreaming into the central vacuunm
chamber. A gate valve is connected between the bellows and the *trap. When
exposing the vacuum chamber to atmospheric pressure, the gate valve is
closed so that the diffusion pump does not have to be shut down.

Base pressure of the order of 1 x 10°® Torr is maintained in the
central vacuum chamber. For plasma generation, hydrogen, deuterium, neon
or argon is continuously admitted through a needle valve provided at the end
away from the vacuum pump. The needle valve can be controlled to produce the
desired gas pressure. The main plasma region and the electron-gun region
are separated by a pumping constriction. The pressure in the gun region was
lower by a factor of 2.5 as compared to that in the plasma region. The
pressure in the two regions was measured by ionization gauges located
in each region. The vacuum chamber was baked to 100°C for several nours
each time it had been exposed to atmospheric pressure.

3.1.2- Plasma Source. Two methods of generating a plasma were

employed during the course of the present investigation. They were (1) hot-
cathode Penning discharge and (2) beam-generated plasma.

3.1.2a Penning Discharge. The hot cathode (a mercury reciifier,

oxide-coated, heavy-duty cathode) is located at one end of the tube =as
shown in Fig. 3.1l. Just in front of it is a hollow cylindrical metzl anodls
whose inner diameter of 0.8 inch determines the plasma diameter. At the
other end of the tube (gun end) there is a cylindrical hollow anode and =2

hollow aluminum cold cathode which is a part of the microwave cavity itself.

The microwave cavity is used for plasma density measurements and is
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described in Section 3.1.7a. A dc axial magnetic field is required for
the operation of the Penning discharge.

A typical range of parameters for the operation of the Penning
discharge is given in Table 3.1. No instability has been predicted for tinis
type of hot-gathode discharge in the frequency range of interest (2 to 70
MHZ).87 It was anticipated at the beginning of the experimental work that
the Penning discharge would be used considerably. It was found, however.
that the plasma generated by this means was somewhat noisy. Thus it was
harder to take RF measurements with the Penning discharge than with the
beam-generated plasma described in the next section. In the present
investigation, therefore, beam-generated plasma has been used almost

exclusively for the RF plasma-ion heating experiments.

Table 3.1

Typical Range of Parameters of the Penning Discharge

Discharge voltage 100 to 200 V

Discharge current 200 to 1000 mA

Hydrogen gas pressure 1x10 2 tolx 1074 Torr
Magnetic field 100 to 600 G

Discharge density 1 x 10° to 5 x 10*°/en®
Electron temperature 5 to 10 eV

Discharge diameter 0.8 to 1 inch

3.1.2b Beam-Generated Plasma. An electron beam passing through

a gas-filled region produces a beam-generated plasma as a result of ionizing
collisions of the beam electrons with the gas atoms. These ionizing

collisions yield both a positive ion and a slow plasma electron at =acl:
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encounter. The rate of production is determined by the beam current,
collision cross section and the gas pressure. The ultimate density is
established by a balance between the rate of production and the rate of
recombination at the walls and in the volume of the gas. In the presence
of a dc magnetic field along the beam, radial flow of slow plasma electrors
is inhibited and a long, thin plasma column is formed. For a weak rean,

a "'quiescent" plasma is generated and visual observation in this case

indicates that the beam and plasma have approximately the same diameter.

an instability is observed. This is characterized by increased RF noise
and the expansion of visible plasma diameter to several times that of the
beam diameter. This is the "beam-plasma discharge' mode. In the Ppresent
investigation the quiescent mode is used almost exclusively.

The typical plasma parameters for the beam-generated plasma in the

quiescent mode are given in Table 3%.2.

Table 3.2

Typical Plasma Parameters for a Beam-Generated Plasma in the Quiescent Mode

Dc beam voltage 400 to 1000 V

Average beam current 2 to 2.5 mA

Hydrogen gas pressure 8 x 10 ° to 8 x 10 * Torr
Plasma Density 5 x 10% to 5 x 10%/en®
Electron temperature 5 to 6 eV

Discharge diameter ~ 6 mm

Magnetic Field 300 to 400 @



-103-

%.1l.3 Electron Gun and Associated Modulation Circuit. The electron

gun is a Pierce type of traveling-wave tube gun with a grid located very
near the cathode. The perveance of the gun is 1.6 x 10 © A/Ve’/2 and the
effective amplification factor is approximately 60. The gun is capable

of giving 240_mA at an anode voltage of 3 kV with a grid voltage of 30 V

2]

and a grid current of 10 mA. However in the present experiment the gun w=2
operated at a relatively low voltage and low current with a negative grid
bias.

For current modulation any desired signal including CW-RF or AM-RF
can be applied at the grid electrode. The upper frequency limit is caused
by cathode lead inductance and is approximately 30 MHz. The modulation simmal
is applied to the grid through a coupling circuit that is shown in Fig. =.2za.
The output of a wideband signal generator is amplified by a wideband transformer
to obtain a maximum of approximately 10 V rms. The RF voltage is capacitively
coupled to the grid of the electron gun. The other capacitors were used <o
provide a shorted path for the RF current. The length of the leads of the
RF circuit were kept as short as possible.

3.1.4 Electron-Beam Collector. The electron beam produced by the

electron gun is collected by a collector. It is made of nonmagnetic stainless
steel and is shaped like a cup to trap the secondary electrons within it.

The electrical connection to the collector is through a rigid coaxial

cable from one of the end plates as shown in the schematic drawing of

Fig. 3.1. This collector can be moved axially as well as azimuthally with
the help of é double Wilson seal.

[ar
=3l

'

In order to monitor the RF current modulation on the beam, the

current is returned to ground from the collector through a 50-Q resiszor
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and monitored on a high-frequency oscilloscope. In the case of the
beam-generated plasma, the dc potential on the collector has a significant
effect on the plasma parameters. To bias the collector with an appropriate
dc potential, a circuit was used as shown in Fig. 3.2b. This circuilt was
required to prevent the RF current from going through the power supply
circuit and to minimize the effect of stray capacitances on the RF circuit.
The RF response of this circuit was flat over the frequency range of
interest (2 to 30 MHz).

3.1.5 Einzel Lens. In order to reduce the ion bombardment of the

cathode of the electron gun by the ions produced in the plasma located in
the central vacuum chamber, an "Einzel lens" was used. It acts as z mirror
for ions and does not affect the electrons when biased appropriately.

The Einzel lens®® con;ists of three equally spaced apertures, the
outer two of which are maintained at the ground potential while the middle
aperture may be at either a higher or a lower potential. 1In the present
case, for the Einzel lens to act as a mirror for ions, the inner electrode
is kept at a positive potential (22 V) with respect to the twe outer
electrodes. The focal characteristics of an Einzel lens are described in
Reference 88.

The effectiveness of the Einzel lens in improving the gun cathode
life was not determined. However, it seems that it will only be partiall;:
effective since it does not inhibit the ions produced in the region Ddetween

the cathode and the lens from impinging on the cathode.

3.1.6 Magnetic Field Solenoid. The magnetic field solenoid consists

of 8 coils which have an inside diameter of 10 inches. Two dc power suprlies
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rated at 550 A/BO V and 1050 A/lSO A are used to energize the coils. The
coils are used to produce either a uniform or magnetic mirror field of 200
to 600 G in the middle position. A mirror ratio of 2:1 is usually used.

An extra coil of T-inch inside diameter is used to adjust the magnetic field
in the gun region for maximum beam transmission from the gun to the collzc-or.

3.1.7 Diagnostic Apparatus.

5.1.7a Microwave Cavity. A microwave cavity is used for plasms

density measurements by observing the shift of the cavity resonant frequency
caused by the introduction of the plasma.

A cylindrical microwave cavity, 3.021 inches in diameter and 2 inches
in length, is constructed out of copper. It is designed to operate in the
TMOlo mode with an empty cavity resonant frequency of approximately > GHz.
Two cylinders of approximately 1 inch in diameter and 1.5 inches in length
are provided at the two ends of the cavity and they act as waveguides beyvond
cutoff for the frequency of operation. The TMOlo mode is used since its
electric field is parallel to the axis and thus the dc magnetic field should
have no effect on the resonant frequency. Coaxial coupling into and ocut of
the cavity is accomplished by using a loop for magnetic coupling which has
its plane oriented perpendicular to the cavity magnetic field at the loop
position. In thelpresent case two coaxial leads were inserted into two
holes in a flat end of the cavity with the individual loops protruding into
the cavity.

The frequency shift Au/ﬁ% caused by the presence of 2 plasmz has
been calculated by Buchsbaum et al.®® using a perturbation analysis and
neglecting the fringing fields due to the presence of the end holes in tie

cavity. It is given by



-107-

Mo _ i(fm) o "p °n d (5.1)
o 2\ ’ o
r

b d
2.4 r
kf; Jg < ] ,> r dr

where R and d are the plasma and cavity radii, respectively, n(r) is

the density profile,np is the peak density, wpo is the plasma frequency
at the peak and w, is the resonant frequency of the empty cavity. The
density profile can be obtained by other means such as by measuring the
saturation ion current drawn by a Langmuir probe. Usually, the density
profile is not a simple function of r and one must numerically evaluate the
integral in Eq. 3.1 as was done by Chen et al.%® Thus a theoretical curve
is obtained by plotting the resonant frequency (a}d/c) as a function of
plasma density (a%/hi) for a given value of R/d. The resulting curve is
a straight line as obtained by the perturbation analysis, which is valid
for values in the range of Qp/wr S 1.5. However, the perturbation and
exact analysis depart considerably for larger values of ab/wr. The cavitys
measurement 1s usually limited to ub/A} < 1 since otherwise the resonance
peak becomes very broad and is hard to distinguish from other spurious
resonances.

If the density is assumed to be uniform over the plasma diameter,

Eq. 3.1 can be written as®!
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where S 1s the slope of the theoretical curve and is given by

32(k R) + J5(k R)

J2(2.4)
1

(3.3)

s = 2.4(r/A)2 3

where ko = E.M/d. The plasma density is determined by measuring the
shift in the resonant frequency of the cavity which is due to the presence
of a plasma.

In certain cases the plasma may be nonuniform and the effect of the

91,92 mhomassen®' showed that neglecting the

end holes may be significant.
nonuniformity of the plasma and the fringing field due to the end holes
results in a smaller slope S and thus gives an underestimate of the plasma
density. This was also found by Chen et al.®© who estimated the effect of
fringing fields experimentally.

A schematic of the circuit diagram for the measurement of the shifzt
in resonant frequency of the microwave cavity is shown in Fig. 3.3. An
S-band (2 to 4 GHz) signal generator and a microwave leveler are used to
obtain a constant RF output at all frequencies when the frequency band
is swept electronically. A signalvproportional to the swept frequency is
fed to the horizontal deflection input terminals of the oscilloscope. The
RF signal is amplitude modulated by a 1000 Hz square-wave signal and the
modulated RF signal is fed to one of the two ports of the microwave cavit;.
The output of the microwave cavity is coupled through the second por:t to
a microwave frequency meter after which is is detected by a crystal detector.
The output of the crystal detector is fed to the vertical deflection inpucs
terminals of the oscilloscope. When the frequency is swept through the

resonant frequency of the cavity a resonance-type trace is obtained on the
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oscilloscope. The x-axis of the oscilloscope trace can be calibrated with
the help of the markers provided in the signal generator. The frequency
meter can also be used to spot-check the calibration. The peak frequency
is observed in the presence and in the absence of the plasma and a shift
in the frequency is noted. This shift in the frequency along with the
observation of plasma diameter can be used to determine the average plasmz
density. The plasma density measured by this means will be presented in
Section 3.2.3 and will be compared with that obtained from Langmuir probe
curves.

3.1.7Tb Langmuir Probes for Density Measurements. The Langmuir

probe is essentially a small metallic electrode, usually a wire, inserted
into a plasma. By observing the current flowing to the probe from the plasma
és the probé potential is varied, the plasma-electron temperature and density
can be determined. Under a wide range of conditions the disturbances caused
by the probe are localized and can usually be tolerated. 1In the presence
of a strong magnetic field, the disturbance is not localized and the plasma
density and electron temperature determination is tedious. However, a
Langmuir probe can make local measurements while most of the other technigues
such as microwave or spectroscopic measurements give information averaged
over a plasma volume.

The Langmuir probe used in the present work consists of a tungsten
wire of 0.005-inch diameter. The wire is bent at a 90-degree angle so
that its axis is parallel to the plasma axis and the length of the wire
along the plasma axis is 1.25 cm. The probe can be moved radially by a
motor-driven bellows. The probe data is obtained with the biasing circuiz

shown in Fig. 3.4. This circuit can smoothly drive the probe potential from
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30 to =150 V. A voltage proportional to the probe current (across a known
resistor) and the probe potential are fed to the y-axis and x-axis,
respectively, of an x-y recorder. The probe potential is varied manually
to obtain the x-y plot of the Langmuir probe.

A probe acts as a boundary to a plasma and the condition of quasi-
neutrality, which is true in the body of the plasma, is not valid near the
probe. A "sheath" is formed in which ion and electron densities differ and
significant electric field may exist in the sheath. Probe theory is
particularly simple if the plasma is not located in an external magnetic
field and the sheath is thin such that the ratio ap = rp/)\D >> 1, where
rp is the probe radius and KD is the Debye length. In this case the
classical Langmuir probe theory®® can be used. The electron current drawm
by the probe from the plasma is given by

-e(V_-V) /kT
I = AJ e P © s (.8

- er
where V is the probe potential, VP is the plasma potential, Te is the
electron temperature, A is the effective area of collection of the probe

and Jer is the random electron-current density and is given by

ne 8kT
e

myt

—N
AN
.
bl
—

for a Maxwellian electron-energy distribution. If the natural logarithm
of the electron current is plotted as a function of the probe voltzage.

the electron temperature is determined by the slope (e/kTe) of the line
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thus obtained. Knowing the electron temperature, the electron density can
be determined by the electron saturation current for V > Vp which is
limited by the random electron current.

Most laboratory plasmas of interest are produced in a magnetic field.
In such a case if the Larmor radii of the particles is much less thzan the
probe radius, the probe will drain the plasma from the lines of force
intercepting the probe and the plasma density will be greatly perturbed.
To avoid perturbing the plasma, the probe radius must be such that
rp << Tyt Ty where T e and Ty are the electron and ion Larmor radii. Due
to the limitation on the physical strength of the probe, the probe radius
cannot be made small enough to satisfy rp < rle for strong magnetic fields.
However, the probe radius may be such that rle < rp < rli' In this situation
the electron saturation currents are less than those obtained in the absence
of the magnetic field. However, since r£i> ;p’ the ion saturation current
for sufficiently negative voltage may not differ from that obtained in the
zero magnetic field case. Thus, it is a frequent practice to use the ion
saturation current to determine the plasma density.90

For large negative probe potentials the ion-current collection depends

essentially on the electron temperature and not on the ion temperature.

2]

e

®

This was shown by Bohm et al.9% Allen et al.®® and Garscadden and Palmer.

The ion current to the probe is given by

1/2

2kTe
I+ = AenO (' M > .

It expresses the fact that ions are accelerated into the sheath with an

~~

o
.
(92

e

energy of about (l/2)kTe which is picked up as the ions flow through the
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presheath. The electron temperature can still be determined by plotting
the natural logarithm of I_as a function of the probe potential. If
ap << 1 the sheath is very thick and all the particles entering the sheath

will not hit the probe. The current will be governed by the particle

'-J

orbital motions and the probe current may be independent of the relertis
distribution around the probe.®”?

For the density range (5 x 10% to 10%°/cm®) and the magnetic fields
(300 to 800 G) of interest for the present work, it is generally not possible

to satisfy ap > 1 and rp <X r,. simultaneously. In the present investigation

Li
the ratio ap is of the order of unity. In such a case the probe current will
depend on the potential distribution around the probe. Several accurate
theories®® °® for current collection by a probe immersed in a plasma have
been presented. These theories do not split the region around the probe
into a sheath region and a plasma region. The collisionless Boltzmann
equation and Poisson's equation are numerically solved for the current,
the charge density and the potential distribution. A recognizable sheath-like
region automatically emerges from these solutions.

Since the above theories utilize numerical solutions, the results
are usually given for only a limited range of parameters. Moreover, the
reduction of probe data to plasma density often requires an iterative
process. Therefore, these theories are cumbersome to use. A simple and
more convenient theory has been given by Scharfman'®® who showed that it
gave results with a maximum difference of 60 percent compared to the more
accurate theory of Laframboise.®®

In the present investigation Scharfman's method for deducing the

plasma density from the Langmuir probe data was used. In this method the
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Child-Langmuir relation for a space-charge-limited coaxial diode is used
to determine the sheath radius. The current collected through the sheath
is then analyzed in terms of ions randomly driftiﬁg across the sheath edge
at thermal velocities.

First, the electron temperature is determined by the plot of fn I
and the probe potential. The ratio of sheath radius to probe radius (a/rp)

is plotted in Fig. 3.5 as a function of the parameter*©°

/
a - ¢ [ Lo, e <i 4 2206 } , (3.7)
r I

T]1/2

where L is the probe length, rp is the probe radius, V is the probe to
plasma potential, I is the probe current, 71 is equal to eV/kTe and Te is

the electron temperature. Thus a/rP can be calculated for a given L/rp,

Te’ Vand T at a single point on the probe current-voltage characteristic.
When a/rp is found, the ratio (Ii) of current collected to the random current
density times the physical area of the probe (AJir) may be found®® from

the curves in Fig. 3.6. This quantity can be used to determine the charge

density. The random ion-current density is given by

8kT 1/2
J = 1 ne < S

ir I o nM

and

TI. = L (:.Q\

Again, Jir is a function of electron temperature since the ions are
accelerated into the sheath with an energy of about (l/2)kTe. From

Egs. 3.8 and 3.9 the following is obtained:
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)y 1/2

T M A

O = T.eA <8kT > (3.10)
1 e

Typical probe data is given in Section 3.2.3 and this method is illustrated.
The plasma density is calculated and compared with that obtained by using
the microwave cavity.

3.1.7c Langmuir Probe for RF Field Detection. Two Langmuir

probes with coaxial leads are used for RF field detection. The probe used
initially was a wire bent at a 90-degree angle so that its axis was
parallel to the plasma axis. Such a probe was sensitive to both the axial
and radial component of the electric field. Later, this probe was changed
so that it wags simply a straight wire perpendicular to the plasma-column
axis and then it detected only the radial RF electric field. This change
resulted in a better comparison between the theoretically calculated radial
electric field and that detected by the probe.

One of the probes is radially movable with the help of a bellows
and the other is axially movable with the help of a double Wilson seal.
The probes are usually biased at the floating potential. One of the circuisz
diagrams used for RF field detection by the Langmuir probe is shown in
Fig. 3.7a. The 1000-Hz modulated RF signal picked up by the probe is
amplitude detected and the resulting signal is amplified by a 1000-Hz
narrow-band amplifier and subsequently peak detected for dc recording. The
1000-Hz signal amplitude is proportional to the local RF amplitude and is
recorded. 1In certain cases the RF probe signal is fed to a matched
Preamplifier with Lo 4B of voltage gain and detected with the help of an
RF millivoltmeter.

The axially movable probe is used for interferometric measurements

of the axial wavelength. The schematic circuit diagram for interferometric
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measurements is shown in Fig. 3.7b. A double-balanced RF mixer whose dc

output is a function of the phase difference between the reference and the
detected RF probe signal is used to measure the axial wavelength. The probe
position is azimuthally adjustable and the probe is located outside the plasm:]
It is moved parallel to the axis of the plasma column and the output of the
double-balanced mixer is detected by a dc millivoltmeter. If a standing

wave 1s present, the dc output changes sign at a node. A similar arrangemen:

can be used with the radially movable probe.

3.1.7d Gridded Probe Velocity Analyzer. A schematic diagram

of the gridded probe is shown in Fig. 3.8. It is a retarding field electro-
static analyzer which is used to determine the distribution of velocities in
a flux of charged particles. The gridded probe is positioned at a distance

away from the axis of the plasma column such that it does not disturb the

-

plasma, and outside a magnetic mirror peak. The probe points in the axial
direction and is movable axially.

A flux of charged particles approaches the analyzer from the left-
hand side as shown in Fig. 3.8. After passing through a grounded aperture
plate which establishes a zero reference for potential, the particles reach
Grid 1 which may be biased to discriminate between and repel all charges of
either positive or negative sign. The discriminated particles then approach
Grid 2 which is biased to repel all the particles whose energy is less than
the corresponding potential on this grid. The particles of higher energy
than this potential pass through the negatively biased Grid 3 whose function
is to prevent secondary electrons from leaving the collector. The collector
can be grounded or given an appropriate potential to collect the charged
particles. Collector current vs. retarding voltage on Grid 2 gives the

velocity distribution curve.
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An analytic method for evaluating the resultant retarding potential
curves has been given by Roth and Clark.191,102 p computer program was
used by them to obtain an iterated best fit of the experimental curve to
an analytical expression which gives the kinetic temperature, floating
potential, etc. In the present investigation the size of the gridded prvre
was comparable to the size of the plasma and the probe was located off-axis
(outside the plasma) so that it did not disturb the plasma. Because of the
off-axis location, the probe intercepted mostly energetic ions. Consequently,
it did not give reliable ion temperature measurements but it was useful for
detecting the presence of energetic ions at various frequencies or retarding
voltages. The experimental measurements using the gridded probe are given

in Section 3%.3.

3.2 Initial Testing of the Apparatus

(J73

Some preliminary tests were performed on the apparatus before carryin
out the actual experiment. Section *».2.1 describes a calibration curve
which is required to maintain a constant current modulation of the electron
beam in the frequency range of interest. Using this calibration curve, a
frequency response of the RF field detector probe is taken and is described
in Section 3%.2.2. Two methods were used to measure the plasma density and
their results are compared in Section %.2.3.

3.2.1 Calibration Curve. In order to determine the frequency resvonse

of a system using a current-modulated electron beam, it is necessary to
maintain a constant current modulation over the desired frequency tand
(2 to 25 MHz). The beam-modulation current decreases as the frequency is
increased partly due to the transit-time effects and partly due to *he

cathode lead inductance in the electron gun.
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The variation of the current modulation due to the transit-time
effects is dﬁe to the presence of the space-charge waves which exist on the
electron beam and their effects can be easily calculated as shown in
Appendix C. The beam cuirent modulation is a fUnctiqn of cos BqL for an
assumed maxi@um current modulation at z = 0. L is the length of the system
and Bq = 7Oabb/v6, where % is the space-charge reduction factor for a thin
beam.?©®3 The first zero of the beam-current modulation occurs when
BqL = n/2. Numerically, the first zero occurs at a frequency, as given

in Appendix C, of

/4
%

1/2

LIb

f = 853

where Yy is the beam voltage in volts, Ibis the beam current in amperes,
L is the length of the system in meters and f is in Hz. For an assumed
v, = 500, L= 2mA and L =1 m, f acquires a value of 45 MHz. In =n
experi@ental check the current modulation as observed at the collector
was found to be minimum near 45 MHz.

In the initial phase of the experiment, itywas found that the long
lengths of the leads feeding the RF modulation signal to the electron-
gun grid caused the beam modulation to decrease significantly even at low
frequencies (1 to 2 MHz). To reduce the effect of the cathode and grid
lead inductances, special efforts were made in mounting the circuits and
gun. The electron gun was mounted such that cathode and grid connections
were accessible from outside the vacuum envelope and therefore the length

of leads could be made very short.
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It is necessary to adjust the grid drive voltage according to the
curve shown in Fig. 3.9 so that a constant current modulation can bLe
maintained. The modulation current is monitored by observing the RF beam
current directly at the beam collector with the help of an oscilloscope.
The calibration curve thus obtained is shown in Fig. 5.9 and is used when
observing the RF frequency response of the system and the energetic ion
current as a function of frequency.

3.2.2 Frequency Response of the Langmuir Probe in the Absence of a

Plasma. The RF field excited by the electron beam is observed as a function
of frequency by a Langmuir probe and the circuits of Fig. 3.7. It is
advantageous to know the frequency response of the probe itself in the
absence of a plasma. Figure 3.10 shows the output voltage of the probe
circuit as a function of frequency when a constant-current modulated elec:ron
beam passes near the tip of the probe. It is seen that the voltage induced
in the probe increases as a function of frequency.

To understand this behavior, consider a system in which a modulated
electron beam traverses a drift tube and is collected by a collector at the
downstream end. A metallic probe is positioned in the tube such that it
does not intercept the electron beam. In such a system, a charge is induced
on the probe surface and is proportional to the instantaneous potential
at the position of the probe.’®* The induced current which flows in the
external circuit is simply the time-rate-of-change of this charge. For

a sinusoidal steady state, the induced current I is proportional to

_ dag .
I = T (o4 an sin wt
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Thus the voltage across an external resistor through which this induced
current flows increases linearly with frequency. This was observed
experimentally as shown in Fig. 3.10. Therefore, to obtain a uniform
frequency response, i.e., output voltage with respect to RF field, a buffer
integrator stage is required to cancel the increase of induced voltage
with frequency. The output of an integrator falls off linearly as a
function of frequency. Thus, an integrator plug-in unit for the
oscilloscope was used as the buffer stage to obtain a uniform response as
shown in Fig. 5.10.

5.2.5 Comparison of Plasma Density as Measured by a Langmuir Probe

and a Microwave Cavity. The plasma density as measured by a Langmuir

probe is compared with that obtained by a microwave cavity. The comparison
was made only for the high range of densities and agreement between the
two was satisfactory. The experimental values of the plasma density
reported later in this investigation are deduced only from the Langmuir
probe data because the density was too low to measure by the cavity.

For comparison of the plasma density measurement by the two methods,
a plasma was produced by the PIG source. It was operated in the "glow"
mode which is characterized by a large-diaemeter (1 to 2 inches) uniform
plasma and a small (50 to 100 G) dc magnetic field. As mentioned in
Section 3.1,7b, the Langmuir probe curve is obtained by measuring the
current drawn by the probe as a function of the probe voltage. A typical
x-y recorder plot of the Langmuir probe éurve is shown in Fig. 3.11. From
Fig. 3.11 the ion current component extrapolated according to the method

S

of Sonin,°> as shown by the dashed line, is subtracted from the total

current to obtain the electron current component. To determine the electron
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temperature, electron current and probe voltage are plotted on a
semilogarithmic graph as shown in Fig. 3.12. A straight line is obtained
if the electron energy distribution is Maxwellian. The slope of this line
determines the electron temperature as discussed in Section 3.1l.7b. The
density of the ions is then calculated by using Scharfman's method as
discussed in Section 3.1.7b.

The values of the necessary parameters for calculating the plasma

density by the preceding method are tabulated in Table 3.3.

Table 3.3

Data for the Calculation of Plasma Density by a Langmuir Probe

V = 90V

I = 0.12 mA
kT/e = 3 eV

n = 20

D = 0.005 inch
L = 1.25 cm
L/rp = 198.5

A = 5x10°n?

In Table 3.3, n = eV/kTe, D is the probe wire diameter, L is the
active length of the probe, rp is the probe radius and A is the active
area of the probe for current collection. Using the values of the

above parameters from Table 3.5 gives

/
%— V32<1+2'66> = 2x10° .
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From Fig. 3.6, I; = 6.2 is obtained. Since by this method I, is always
underestimated, it is multiplied by a factor of 1.3 to reduce the error
in the density calculation.®® Therefore, Ii = 8.06. If the values of the

parameters from Table 3.3 are substituted into Eg. 3.10, it becomes

I
I T1/2
i"e

n =

3,24 x 102° em @,
0 .

where I is in amperes and Te is in electron volts. Thus in the present case

the density is found to be

n, = 2.8 x 10° cm' 3

For deduction of the plasma density with the help of a microwave
cavity, the setup shown in Fig. 3.3 is used. The shift in the cavity
resonant frequency due to the presence of the plasma is measured. The
various parameters introduced in Section 3,1.6 for the cavity measurement

are given in Table 3.L4.

Table 3.4
Parameters for Cavity Measurement
Af = 5.9 MHz
d = 1.51 inches

0.289

R/d

k R
o}

J6<ko

w -
Y R = 0.885

0.883

=J
S~—
1

Jl(koR) 0.326

Jf(z.u) 0.2
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Substitution of the values of the preceding parameters into Egq. 3.3
yields

S = 2.k x 0.1375 .

Thus Eq. 3.2 gives

2.7 x 108 Af em ®

=
1l

where Af is the frequency shift in MHz. The effect of the end holes can
be estimated by using the curves given in Reference 91. TFor the present
cavity parameters, the effect of the end holes is to reduce the slope
S by a factor of 0.92. Therefore

n, = 2.9 x 108 Af cem 2 .

The plasma density is obtained by substituting the value of Af

in the last equation and is found to be

no = 1.7 x 10° em 2 .

Thus the density obtained by the Langmuir probe data is approximately
60 percent higher as compared to that obtained by the microwave cavity

measurements.

5.3 Gridded Probe Measurements

The gridded probe described in Section 3.1.7d and shown in Fig. 2.3
is used to detect the presence of energetic ions. The first grid is used

to reflect electrons and it is biased at a potential of -100 V. The sscori
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grid is used to analyze ion energy and its bias is varied from zero to

25 V. The third grid is biased at -50 V to retard the secondary electrons
from the collector. With a 0.020-inch diameter pinhole in the gridded
probe, typical observed collector currents range from O to 100 nA.

3.%.1 Gridded Probe Retarding Potential Curves. It was found that

the presence of RF modulation and the frequency of that modulation have an
appreciable effect on the gridded probe retarding potential curve. Figure 3.17%
shows the retarding potential curves for the unmodulated case and for
modulation frequencies of 10, 1% and 18 MHz. The energy spread increases
considerably when the frequency of modulation is 18 MHz. The spread in ion
energies is over 20 V for the particular case shown here. Similar results
are found under all operating conditions but the frequency at which the
maximum effect occurs varies with operating conditions. The increase in
the ion-energy spread indicated by the gridded probe is also accompanied
by an increase in the visual diameter of the plasma. The two effects are
consistent since the increase in ion energy increases the ion Larmor radii
and hence the visual diameter of the plasma column. Thus it is concluded
that the energetic ions are produced when the beam is modulated at certain
frequencies.

3.3.2 Frequency Response of the Gridded Probe. The gridded probe

was located off-axis. Therefore, it can only "see'" ions which have large
Larmor radii or have had enough collisions to get out to the probe. The
frequency of the grid modulation signal is varied and the response of the
gridded probe ion current is observed. The amplitude of the modulation
voltage is adjusted at each frequency according to the calibration curve

discussed in Section 3.2.1 to keep the beam-modulation current constant.
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The gridded probe response as a function of frequency is shown by
the curves of Fig. 3.14 for various pressures. A set of these curves is
taken at several gridded probe retarding potentials (for ions) in the range
of O to 10 V. The curves shown here are for a retarding potential of 5 V.
As the pressure is increased the frequency of the peak in these curves
moves toward higher frequencies.

The variation of the peak frequency, or 'resonant" frequency with
pressure is interpreted as a variation with plasma density. The plasma
density was measured with the Langmuir probe and the ion-plasma frequency
was calculated. The results are shown in Fig. 3%.15 which is a plot of
the resonant frequency and the calculated ion-plasma frequency as a function
of pressure. The resonant frequency is always above the calculated
ion-plasma frequency. The error in the Langmuir probe density measurement
is expected to be always on the high side for the method used to interpret
the Langmuir probe curves.t©©

Figure 3.16 shows a similar set of gridded probe response curves
for another set of beam parameters and Fig. 3.17 shows the corresponding
comparison with the ion-plasma frequency calculated from density measurement.

From the frequency response of the gridded probe measurements it is
concluded that the resonant frequency lies just above the ion-plasma
frequency. In the present case (a%e > af D> w w .) the lower-hybrid

pe ce ci

frequency is approximately equal to the ion-plasma frequency.

3.4 RF Langmuir Probe Measurements

The Langmuir probes were used to detect the RF field just outside

the plasma as a function of frequency at a fixed position, or as a function
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of axial or radial position at a fixed frequency. The setups used for

RF field detection are those discussed in Section 3.1.7c. Again, the
beam-modulation current is kept constant by adjusting the grid modulation
signal.at each frequency according to the calibration curve. The
following measurements were carried out in a beam-generated plasma. The
plasma density and magnetic field were such that the operation was in the
low-density regime (aﬁe > wze >> wbeabi)'

B.h.l Frequency Response of the Radially Movable Probe. The

radially movable probe was located at a fixed axial position and was used
to detect the radial RF electric field as a function of frequency. The
probe tip was located approximately one plasma diameter away from the
plasma axis. The effect of the variation of plasma density, beam voltage,
ion mass and magnetic field was studied.

A typical probe response is shown in Fig. 3.18 in which the
amplitude of the radial RF electric field is plotted as a function of
beam-current modulation frequency. Two or three peaks or resonances are
typically observed in the probe response. at frequencies which are, in generated
not harmonically related. The third peak was observed but was not as
prominent as the first and second peaks. A set of these curves was taken
as the plasma density was varied by changing the hydrogen gas pressure.
Other parameters such as beam voltage, beam current and magnetic field
were held constant. As the density is increased the resonant frequencies
shift upward. The plasma density measured by a Langmuir probe indicates
that the first resonant frequency is just above the ion-plasma freguency.

Figure 3.19 shows a set of frequency response curves for differen:

beam voltages. The beam current was kept constant by adjusting the gria
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bias in each case. The plasma density was also kept constant by minor
changes in the gas pressure. It is found that both resonant frequencies
decrease as the beam voltage is increased. The change in the first
resonant frequency is smaller than the change in the second resonant
frequency for the same change in the beam voltage.

Figure 3.20 shows typical frequency response curves obtained for
neon gas. Similar response curves were obtained for argon and deuterium
gases and are shown in Figs. 3.2l and 3.22. Again, it is found that the
resonant frequencies increase with an increase in plasma density. By
comparing the resonant frequencies obtained in hydrogen and neon plasmas
for the same plasma density, it is found that the resonant frequencies for
neon and argon plasmas are slightly smaller than the corresponding resonant
frequencies for the hydrogen plasma. However, the changes in the resonant
frequencies are much smaller than the changes in the ion-plasma frequencies
in the two cases. Thus it is concluded that the resonant frequencies are
relatively independent of the ion mass in the present investigation. For
neon and argon plasmas two sets of frequency response curves for different
beam voltages are shown in Figs. 3.23 and 3,24k, These curves are similar
to those obtained for the hydrogen plasma shown in Fig. 3.19. For the
low-density regime (aie >> age >> wcewci) of investigation, it was found
that the resonant frequencies do not change significantly with the dc
magnetic field. A set of frequency response curves for a hydrogen plasma is
shown in Fig. 3.25 in which the dc magnetic field was different for each
curve. |

The variation of the RF electric field as a function of radial

position is shown in Fig. 3.26. In these data the RF signal picked up
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by the probe was amplitude detected, filtered and amplified by a
1000-Hz narrow-band amplifier. The 1000-Hz amplitude, which is
proportional to the local RF amplitude, was recorded as a function of
radius by an x-y recorder. The RF field outside the plasma falls off
monotonically as a function of radius. The peak or resonance effect is
also observed in these data. In the case shown in Fig. 3.26, the RF
electric-field amplitude at a fixed radius is maximum at 7 MHz.

Thus it is concluded that two or three peaks are typically observed
in the probe response. The peak frequencies lie above the ion-plasma
frequencies and are, in general, not harmonically related. The peak
frequencies decrease as the beam voltage is increased. The peak frequencies
are relatively independent of ion mass and external dc magnetic field.

3.4.2 Interferometric Measurements. For the measurement of axial

wavelength an axially movable Langmuir probe was used. The probe tip
was along the radial direction and thus it detected the radial RF electric
field. A double-balanced mixer was used as discussed in Section 3.1l.7c.
A typical measurement of the radial RF electric field as a function of
axial position is shown in Fig. 3.27 at the first and second resonant
frequencies. Since the probe could be moved a distance of only 10 inches
from the collector, the data points near the gun end could not be taken.
However, the data were sufficient to indicate that the first and second
resonances are half-wave and full-wave resonances. The wavelengths thus
found are much larger than the wavelength corresponding to the beam-cyclotron
waves.

The radially and axially movable probes were positioned diametrically

opposite just outside the plasma column. The RF signals from the two probes
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were amplified by two identical voltage amplifiers and fed to a double-beam
oscilloscope. Comparison of the phases showed that the RF fields are in
phase, suggesting that the mode is axisymmetric.

In summary, an experiment has been performed in a beam-generated
Plasma operating in the "quiescent" mode. The beam and plasma diameter
are approximately equal and the metal waveguide diameter was much larger
than the plasma diameter (about 15 times). The plasma was axially bounded
at one end by the grid of the electron gun and at the other end by the
collector. The plasma density and the magnetic field were such that the
operation was in the low-density regime (aﬁe >> wge >>'aEea%i)-

In such a system when the electron beam is current modulated, two
or three resonances are observed in the RF radial electric field frequency
response curve. The resonant frequencies are not harmonically related and
lie just above the ion-plasma frequency. At these resonant frequencies
energetic ions are observed with the help of a gridded probe velocity
analyzer.

The resonant frequencies are relatively independent of the external
dc magnetic field and ion mass. The resonant frequencies decrease slightly
with an increase in beam voltage and increase with increasing plasma density.
The first and second resonances are half- and full-wavelength resonances
of the axially bounded system, and the axial wavelength is much larger

than the cyclotron wavelength. The excited mode is axisymmetric.



CHAPTER IV. THEORETICAL MODEL OF THE EXPERIMENT AND ITS ANALYSIS

In Chapter III the experiment carried out in the present
investigation was described in which a modulated electron beam excites
low-frequency resonances in a finite-sized plasma. At these resonances
a relatively large radial RF electric field is excited in the plasma
which produces the observed ion heating. In Section 4.1 a theoretical
model based on the experimental arrangement is established. It is then
analyzed in Section 4.2 to obtain the expressions for ac beam-velccity
modulation, ac current-density modulation, ac quasi-static potential and
ac electric field. The fields are then computed with the help of a
digital computer (Model IBM 360/67) for the configuration experimentally

investigated as well as for two other configurations.

L.1 Theoretical Model of the Experiment

A schematic drawing of the theoretical model is given in Fig. L.1.
It shows a homogeneous, monoenergetic, cylindrical electron beam cof
radius b passing through a homogeneous plasma of cold electrons and ions.
The plasma is surrounded by a cylindrical metal vacuum envelope of
radius d. The beam-plasma system is axially bounded by the grid cf the
electron gun and the electron-beam collector. The system is thus assumed
to be axially bounded by perfectly conducting electrical short circuits.
There is a steady magnetic field Bo along the axis of the electron beam
(z-direction). Both electron and ion motion is included in the model

because low-frequency modes are of interest.

-154-
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The electron beam and plasma diameters are assumed to be equal
since the beam-generated plasma was operated in the quiescent mode , 82
The metal vacuum tube radius is assumed to be infinite (d — ») since the
ratio of the metal tube diameter to the plasma diameter was approximately
17 in the experiment. A constant current modulation of the beam is
imposed at the gun end as was done experimentally. The experiment was
conducted with low percentage modulation to obtain sinusoidal drive;
therefore the small-signal approximation is assumed to be valid. First-
order quantities are assumed to vary as exp[j(wt -~kzz)]. For the
experimental parameters, electron-ion, ion-electron and ion-neutral
collision freQuencies are much less than the electron-neutral collision
frequency, therefore only the electron-neutral collisions are included
in the theoretical model. The axial phase velocities of the waves
which are involved are all much higher than thermal velocities,

w >> KZVT; therefore temperature effects such as Landau damping are

neglected. Cyclotron damping effects are also neglected.

4.2 Analysis of the Theoretical Model

The aim of the present analysis of the beam-plasma system
described in the preceding section is to obtain expressions for the
electric field in terms of the beam-modulation current. Thus the
experimentally observed RF electric field in the beam-plasma system can
be compared to that obtained theoretically.

As mentioned in Section 2.3, obtaining the expressicns for the
potential and fields for a beam-plasma system requires the study of the
dispersion characteristics of the waves which exist in such a system.

The solutions of the dispersion equations given in Section 2.3.3 show
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that six waves (solutions for k for real w) exist in the beam-plasma
system for each radial mode. Each of thesé waves contribute to the
total electric field which is observed experimentally. Therefore to
compare the theoretically calculated and experimentally observed fields,
the contribution of each wave must be taken into account. The relative
amplitude of each wave (or normal mode) that is excited is determined
by applying the boundary conditions at the gun and collector end. The
total field is then obtained by the superposition of all the normal modes
in relative amounts proportional to their complex amplitudes.

The dispersion equation for the axial propagation constant kz
includes the effect of finite beam and plasma radii, electron-beam
space charge, uniform axial magnetic field and plasma electron-neutral
collisions. The experimental observations show that the axisymmetric
(m = 0) mode is excited, therefore only the m = O mode has been included
in the theoretical calculations. Two of the above mentioned six rcots
are associated with the electron-beam cyclotron waves and have an axial
wavelength given approximately by vo/fce' Since experimentally the
electric field was found to have a much larger wavelength, these two
roots are neglected. The dispersion equation for the three configurations
of the beam-plasma system has been solved in Section 2.3%.3%. At each
frequency, four kZ roots are obtained. Two of these roots correspond
to the plasma waves and the other two to the beam space-charge waves.
Although there are an infinite number of radial modes for a given
azimuthal moae, only the lowest-order radial mode has been included in
the solution given in Section 2.3.3. Higher-ordet radial modes could
be included in principle, but at a great cost in complexity. The use
of higher-order radial modes would require additional information about

the field structure over a cross section of the beam.
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The use O0f complex kz solutions of the dispersion equation for
real frequency w implies that no absolute instabilities exist in the
beam-plasma system under consideration. It is well known that absolute
instabilities can exist in infinitely long beam-plasma systems. The
parameters used in the present investigation do not permit an absolute
instability in an infinitely long system in the u%i range. (Other
frequency ranges were not checked.) This was verified by applying the
Bers-Briggs stability criterion to the dispersion equation. If it is
assumed that absolute instabilities do not exist at other frequencies
(no experimental evidence was found in the present experiment to indicate
that one might exist), then solving the dispersion equation for complex
kz for real w is justified. The results give a weak convective instability
as expected from the stability criterion.

As discussed in Section 3.2.1, the experimental data were taken by
holding the beam-current modulation constant. For comparison of the
experimental and theoretical results, field expressions in terms of the
beam-current modulation are required. For this purpose, the value of
the arbitrary constant A in the potential and field equations (Eq. 2.94)
is determined in terms of the beam-current density modulation. The
electron-beam and plasma equations are solved in a self-consistent manner.

If it is assumed that the total velocity V. , the charge density Py
and the convection current density jb of the electroﬁ beam consists of
an average value plus a small harmonic time-dependent perturbation, then
J (ot Tkzz)

= v + v (
vy VotV e , (k.1)
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jlwt - kzz)
Py = Pgp + Py © (4.2)
and
jlwt - k.zz)
= \
Iy b T I © (4.3
Since Jb = pbvb,
) ) ) ) jlat - kzz)
Jb = Pob'o * (plbvo * pdb%b) © (h.4)

in which the product p has been neglected since it is the prcduct

1b'1b
of perturbation quantities and is of second order. The ac current-

density modulation can be written as

T = (0T * bopty) - (4.5)

From the continuity equation (Eq. 2.5), the force equation
(Eg. 2.8) and Maxwell's equations, the small-signal axial ac beam
velocity and beam-current density are given by (the derivation is given

in Appendix D)

EZ

— 4.6
= (+.6)

and

R o))
J = Jue, — (1 +A)EZ R (L.7)
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where
ab = w- kv
and
2 2
A = wD TlVO
2 (,02 kZ(D
ce

For & wide range of parameters A may be very small compared to unity.

Substitution of the expression for Ez from Eq. 2.109 into Eq. 4.7 yields

2
o J (T r) .
. pb . o' 1 jlat - k z)
Jlbz = JUE J ——'2 (1L +24) JKZA m e 2 (L.8)
1

“

in which m = O has been assumed. At r = O and z = O and omitting the

time dependence,

o2
- _bb ﬁ_thA_g =
I bz o, hae ke, £ J(TDo) I 1ot
=0, 1
Z=0
or
J.. .atJ (T.b)
1b01ab 01
A = . , (4.9)
axokza$b(1 + A)
where Jlboi is the ac beam-current modulation at the gun on the axis

for the ith normal mode. Substituting the value of A in Eq. 4.8 yields

-jkzz
J1bz - JlboiJo(Tlr) ©

and the other quantities are obtained as follows:
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e ‘D K,z
Vibz 1boi m 2 Jo(Tlr> € ’ (k.11)
we_w
o pb
2
-k z
ot - I boi D g (T 1) e z (4.12)
100 e k o (1 + A) 1
.0 z pb
T of -jk z
B = T, ;‘DD J(rx)e ° (4.13)
k wpb(l + A)
and
. 2 .
J -jk 2z
I _ “D z
E, = i J(Tr)e . (L.14)

2 o 1
weocbpb(l + A)

Since at each frequency there are four waves, the total field is

obtained by a normal mode summation:

§ _jkziz
o )
bz = Iivo X;9,(T 47) e ) (k.15)
i=1
e Jibo N -k, 42
RS
Ver © T m . }j Xi(w - kzivo)Jo(Tlir) e , (4.10)
o pb i=1
4 2 .
cI>I _ Jlbo Xi(w kzivo) J (T .r) e Jkle (4. 17
B > k . (L+4,) “o1i ’ -
we aS, zi i
o pb i=1
4 -Jjk .z
I I 1bo X1<w } kzivo) 2og(r.r)e 2
r o (1L +A,) zi
we W i
o pb i=1

and
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. 4 .
JjJd -jk .z
I 1bo o zi
E, = 2 Ej X, (o - k. V) J (T.r) e . (k.19)
e W, .
o pb i=1

In the preceding expressions Jl is an experimentally identifiable

bo

quantity and is the beam-current modulation at the grid of the gun.
The boundary conditions at the two ends of the system are now

imposed to obtain the coefficients Xi which determine the relative

amplitude of each excited wave. The axial boundary conditions at the

axis of the beam (r = 0) are:

- - Jat
l. atz=0 , Jlbz = JlbO e~ 3
2. atz=0 , Vg = O
I
3. atz=0 |, & = 0
L, atz=1 , ot = o . (4.20)

Substituting the boundary conditions given by Eq. 4.20 into Egs. 4.15

through 4.17 gives

X +X +X +X =1 ,
1 2 3 4
FX +FX +FX +FX = 0 ,
11 2 4 33 4 4
SX +5X +8SX +8X = 0 ,
11 22 3 3 4 4
-jk_ L -jk_ L -jk_ L -jk_ L
S e X +5 e X +5 e 23y +85 e Z4x = 0 , (h21)
1 1 2 2 3 3 4 4
where
F. = w-k . vV
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and

2
(w - kzivo)

i kzi(l + Ai)

This set of simultaneous equations is solved on the computer to obtain
Xi' Their values are substituted back into Egqs. 4.15 through 4.19 to
determine the physical quantities given by these equatiouns.

The electrostatic potential and the electric field in the région
outside the beam‘can similarly be expressed as a normal-mode summation.

Using Egs. 2.115 and 2.116 for the open beam-plasma waveguide gives

4
oI o I,(T)50) Ko<T21r) (4.22)
B ik (T b) J(T .r) ’ ’
. 0" 21 o 11
1=1
4 2 _3
EII _ Jlbo X u)Dl JO(Tllb) K (T I') e JkZiZ (“-* 2:)
z 2 i (L ¥A.) K (T .b) o' 2l Vel
e @ 1 o' 21
O pb i=1
and
4 2 4k
1T I1bo oy Ty I,(T)5P) Ik, 2 )
B~ = 2 X, RGN K (Tgir) e . (hk.ak)
. . 1
we 05 T (1 + Ai) zi o ol

For the unfilled-beam, filled-plasma waveguide (b < a = 3), the

expression for the electrostatic potential and electric field become

4 _ ; Y .
I }j I JO(Tlib) [ IO(TZir)KO(TZia) Io(Teia)Ko(Tzir, |
i Jo(Tlir) IO(Tgib)Ko(Tzia) - IO(Taia)KO(Taib) g
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4 =4
LT I o . U1 7 (T..0)
z >/ 1L +A) Yoid
we @ . 1
o pb i=1 .
“jkz I (T .r)K (T .a) - I (T .a)K (T .r
e J Z l: O( ol ) O( ol ) O< ol ) O( ol ) } ()4.26)
IO(TzibSKO(TEié) - IO(TZia)KO(Tzib)
and
4 2 s
LI I1bo i T T(T ) e Jkp32
r > i(l+4A) k.. o071l
e @ . 1 Z1
o pb i=1

(4.27)

I (T .r)K (T .a) + I (T .a)K (T .r) -
1" o1 o' o1 o' ol 1 21
[ IO(Tzib)KO(T2ia) - IO(T2£57KO(T2ib) |

The numerical solutions of these equations are obtained with the

computer and are described in the following section.

4.3 Computer Solution of the Normal-Mode Field Equations

It is clear by examining Egs. 4.15 through 4.19 and Egs. k.22
through 4.27 that the dispersion equation for a given beam-plasma
configuration must be first solved to obtain kzi.(i =1,...4) at a given
w. The kzi are then used to obtain the coefficients Xi and finally the
total electric field and other quantities.

4.3.1 Outline of the Procedure for Computer Solution of the

Normal-Mode Field Equations. A brief flow chart for computer solution

of the normal-mode field equations is given in Fig. 4.2. The dispersion
equation for a given beam-plasma waveguide configuration is first solved
as described in Section 2.3%.3. It is evident that there are four roots
of kZ at a given real frequency w. BEach of the four roots is comvuted
as a part of a continuous branch corresponding to that root. There are,

therefore, essentially four branches in the dispersion diagram to be
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computed. The computation of each branch is independent of the other
three branches. Four roots are required at a given frequency for
calculation of the normal-mode field quantities. Since the root
tracing program does not give roots at specified frequencies, a method
of interpolation is used to obtain the value of each of the four roots
at a given frequency. The interpolation is made between the points
computed by the root tracing program for each given frequency until the
desired frequency range is covered. Usually the given frequencies are
chosen to be equally spaced. The subroutines DATSG and DALI obtained
from the IBM System/360 Scientific Subroutine Package (SSP) are used for
interpolation. A set of four roots for discrete values of frequencies
is thus obtained and 1s stored in a private file.

For a given frequency, the four roots are read in by the program
which is used to calculate the normal-mode field quantities. The
subroutine DGELG obtained from the SSP is used to determine the ccefficients
Xi' This subroutine solves a system of general simultaneous linear
equations by Gauss elimination.

The appropriate field equations for the chosen beam-plasma
waveguide configuration are now selected with the help of three switches
SW, SW2 and SW3 provided in the normal-mode field calculation program.
The desired quantities, such as ac velocity modulation, ac current-
density modulation, potential, radial and axial electric fields as a
function of frequency at an arbitrary position, are computed by this
program and the output is either printed or stored in a file for pletiing
by a digital plotter. A separate program is used to compute the axial
and radial variation of the above quantities at a given frequency. A

listing of the preceding computer programs is given in Appendix E.



-167-

4L.%3.2 Computer Results for an Open Beam-Plasma Waveguide. In

this section theoretical results which were obtained with the preceding
programs are given. A typical set of results for an open beam-plasma
waveguide configuration are first presented because this was the configu-
ration which most nearly models the experiment. The parameters chosen
for this set are typical of the experimental parameters and are given

in Table L.1.

Table 4.1
Theoretical Parameters for Computer Analysis

(See Section 2.3.3a for Definition of Parameters)

CV = 0.873 x 1072
R = 67.5
NU = 0.1

SYSL = L.775

7 = 1,182
a%e/abe =2
RBL = 0.5
RB2 = 2
Vb = 600V
I, = 2.5 mA
n, = 1 x 109/cm®

In Table 4.1 SYSL represents the normalized length of the syvstem
[SYSL = L/(vo/fpi)] and Z represents the normalized axial distance of
the observation point (i.e., the probe position in the experiment) from

the gun. RBL and RB2 are the normalized radial position of the observation
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point. The normalization factor in this case is the beam radius b.
The other parameters have been previously defined in Section 2. 3. 3a.
Figure 4.3 shows the ac current-density modulation and the ac
velocity modulation as a function of frequency at the axial position Z
and the radial position RB1 given in Table 4.1. Three "peaks" or
"resonances" are found in the frequency range of the investigation. The
normalized radial and axial electric-field amplitudes in Region I (inside
the plasma) plotted as functions of frequency are shown in Fig. L.b,
Again, three peaks in the frequency response curves are identified.
Similar curves are obtained for radial and axial electric-field amplitudes
in Region II (outside the plasma) and are shown in Fig. 4.5. The third
peak in the radial electric-field response is not as prominent as the
first and second peaks. Similarly, the first peak in the axial electrics
field response is not pronounced but the third peak has a large amplitude.
The reason for this behavior may be explained by information frem the
curves given in Fig., 4.6. In Fig. 4.6 the real part of the radial and
axial electric field is plotted as a function of the axial distance at
the first three resonant frequencies. The real part of the complex
field is proportional to the response of an interferometric detector
of the type shown in Fig. 3.27. It is clear from Fig. 4.6 that the
first, second and third resonances are half-wave, full-wave and three
half-wave resonances, respectively. The axial electric field is
maximum and the radial electric field is zero at the two conducting
.ends. It is noted that at the third resonant frequency the radial
electric field has a node and the axial electric field has an antincde

near the axial position of the observation point (coincident with the
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probe position in the experiment). The radial electric-field amplitude,
therefore, is small at the third resonant frequency but the axial electric
field has a relatively large amplitude at this frequency.

Figure 4.7 shows the ac charge density plb as a function cf the
axial distance at the first resonant frequency. It is noted that it
remains essentially constant along the entire length of the system. The
radial and axial electric-field amplitudes are plotted as functions of
radius in Fig. 4.8. The axial field is continuous at the plasma surface
but the radial field is discontinuous because of the equivalent surface
charge. This is consistent with the boundary conditions which were
imposed at the beam-plasma edge. In Fig. 4.8 the falloff of fields
outside the plasma is that which corresponds to the modified Bessel
function KO in the case of the axial electric field and Kl in the case
of the radial electric field. The fields fall off relatively slowly
because kZ is small.

Examination of the frequency response curves of radial and axisl
electric fields given in Fig. 4.4 reveals that the resonant frequencies
lie just above the ion-plasma frequency and that the resonant fregquencies
are not harmonically related.

Since these resonant frequencies are half-wave, full-wave and
three half-wave resonances, it is concluded that these frequencies can
be predicted quite accurately for any set of parameters from a dispersicn

diagram of the type shown in Fig. 4.9 by finding the frequencies where

kZL = nx , n = 1,2,...

or
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where the positive plasma wave root is used for kz and L is the distance
from the electron gun to the beam collector. Since these resonant
frequencies are dependent on the length L of the beam-plasma system,
they are called the "geometric" resonances.

The geometric resonant frequencies can be predicted conveniently
by the preceding method and are found to lie very close to those
obtained by the detailed normal-mode analysis. The effects of the

variation of the plasma density, magnetic field, beam voltage and

)

ion mass on the resonant frequencies can be easily predicted. 1In Fig. 4.

the propagation constant kz is normalized with respect to the plasma
radius and the frequency is normalized with respect to the ion-plasma
frequency of H+. This normalization is used to emphasize the effect

of ion mass and beam voltage on the dispersion curve. Figure 4.2 shows
only the positive plasma wave root as a function of frequency for rive

+ + + + .
, He', Ne and Ar ') and

different ion masses (corresponding to H+, D
in the case of H+ for three beam voltages.
The effect of ion mass can te predicted by finding the rescnant
frequencies from the intersections of the lines kZ = n/L and kz = 2x/L,
etc., with the 600-V dispersion curves for argon and hydrogen. It is
found that the resonant frequencies decrease with increasing ion mass

but the amount of decrease is much less than the decrease in a%i. The

decrease in resonant frequencies for Ne, He and D can similarly be

predicted. By using the resonant frequencies for hydrogen as refsrences,

it can be clearly seen that the decrease in the first resonant freguency

of Ar, Ne, He and D is more than the decrease in the second resonant

frequency.

Mo
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The effect of variation of beam voltage on the resonant frequencies
can be similarly predicted from Fig. 4.9 using the curves for H+. It
is found that the resonant frequencies decrease as the beam voltage is
increased. The decrease in the first resonant frequency is smaller than
the decrease in the second resonant frequency. The effect of the
variation of plasma density can be easily predicted since the frequency
is normalized by wpi (H+). For a given beam voltage, ion mass and
plasma dimensions, the resonant frequencies increase as the square
root of the plasma density.

The effect of the variation of the external dc magnetic field
(or wce/hhe) on the dispersion curve, such as that given in Fig. L.g,
is negligible in the low-density regime (a%e >> mge >> wcembi)' Thus
it is found that the geometric resonant frequencies are rather independent
of the dc magnetic field in the low-density range if the other parameters
such as the plasma density, beam voltage, etc., are held constant.

In summary, the results of the normal-mode field calculations
show that in the frequency range of interest there are three peaks or
resonances in the electric field frequency response curves for an cpen
beam-plasma waveguide configuration. These peaks are not harmonicalily
related and are essentially independent of magnetic field in the low-
density regime. The first and second resonances are shown to be half-wave
and full-wave resonances, respectively. The resonant frequencies can
be accurately predicted from a dispersion diagram by finding the frequencies
at which kZL = nyg where kz is the plasma wave root. The resonant
frequencies decrease slightly with increasing ion mass at constant
plasma density but the decrease is much less than the decrease in w ..

L

The resonant frequencies also decrease with increasing beam voltage.
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4.3.3 Computer Results for the Unfilled-Beam, Filled-Plasma

Waveguide. Behavior similar to that given in the preceding section for
the open beam-plasma waveguide is obtained for an unfilled-beam, filled-
plasma waveguide. The latter configuration is achieved experimentally
when an electron beam streams through a relatively large-diameter
plasma which is generated by a separate plasma source (such as the

PIG discharge) and which can be modeled as completely filling the
waveguide. Although such a model does not fit the experiment performed
in the present investigation, calculations on this model were carried
out for parameters which might be obtained in a typical PIG or ECR
discharge. The following results are for a proposed experiment for

such a configuration. The plot of the radial electric-field amplitude
as a function of frequency is shown in Fig. 4.10. Three peaks are
observed in the frequency range of investigation. At these peak
frequencies the real part of the radial electric field is plotted as a
function of the axial distance as shown in Fig. 4.11. Again, the three
resonances are half-wave, full-wave and three half-wave resonances. In
the present case, however, the probe position was chosen such that it
does not coincide with a node in Fig. 4.11. Therefore the third peak

is as strong as the other two peaks. Again, it is easy to determine the
effects of the variation of ion mass, beam voltage, etc., on the resonant
frequencies as was done in the open beam-plasma waveguide. The parameters
for this "computer experiment" are given in the figures.

4.3.4 Normal-Mode Field Calculations near the Lower-Hybrid

Resonance. In Section 2.2 an analysis was given which showed that a
source (such as an electron beam) at the axis of a cylindrical rlasma

column in a waveguide excites large radial electric fields at the
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lower-hybrid resonant frequency for perpendicular propagation. The
present normal-mode field calculations were extended down to a frequency
range such that it includes the lower-hybrid resonant frequency.

Figure 4.12 shows the radial electric-field amplitude as a function
of frequency for an open beam-plasma waveguide. The frequency range
of investigation is around the lower-hybrid resonant frequency. The
parameters are the same as those given in Table L.1. It is found that
there is a peak in the radial electric field at the lower-hybrid
frequency. It is called the "body" resonance. However, it is
somewhat smaller in magnitude in comparison to the first geometric
resonance.

The‘frequency region around the lower-hybrid frequency was alsc
investigated for the proposed experiment studied in Section 4.3.3,
Recall that in this model the waveguide is completely filled by plasma
and partially filled by beam. The parameters are slightly different in
comparison to those given in Section 4.3.3 but are given in Fig. k.13.
A peak in the radial electric-field amplitude is found at the lower-hytrid
frequency as shown in Fig. 4.1%. The plot of the real part of the radial
electric field as a function of axial distance as shown in Fig. 4.1%
indicates that this resonance is not a half-wave resonance and is thus
fundamentally different from the geometric resonances. The radial
electric-field amplitude aé a fuﬁction of radius is plotted in Fig. L,1%
at several frequencies near the lower-hybrid frequency. It can be seen
in this figure that the radial electric-field amplitude at the lcwer-
hybrid frequency has its maximum value at a position in the plasma
which is several beam diameters away from the beam edge. Thus an

appreciable field penetrates into the plasma away from the team at the

lower-hybrid frequency.
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The same calculation was performed for the beam-plasma filled
waveguide (a = b = d); Fig. 4.16 shows the behavior of the radial
electric field as a function of frequency around the lower-hybrid frequency.
Again, there is a peak in the radial field at the lower-hybrid frequency.
The second peak at higher frequency is due to the first geometric
resonance.

All the curves given in the preceding figures were for a low-
density regime (a%e >>»a§e >> wced%i)' A curve for the high-density
regime (a%e >> aﬁe) is shown in Fig. 4.17 in which the radial electric-
field amplitude.is plotted as a function of frequency near the lower-
hybrid frequency. The configuration studied is the beam-plasma filled
waveguide. In the high-density regimé the lower-hybrid resonance is
near the geometric mean frequency. There is a peak in the radial field
at the lower-hybrid frequency.

It is found that there is a peak in the radial electric field
frequency response curves at the lower-hybrid frequency for all taree
configurations. The axial variation of the field shows that this btody
resonance is not a half-wave or a full-wave resbnance and is therefcre
fundamentally different from geometric resonances.

The use of the quasi-static assumption is open to question in
the immediate frequency range near the lower-hybrid frequency. The
quasi-static assumption is used in the analysis presented here. At
or very close to the lower-hybrid frequency, kz tends toward zero and
the phase velocity may not be negligible in comparison to the velocity
of light. The quasi-static assumption may not be valid at the lower-
hybrid frequency and therefore an electromagnetic analysis should be

carried out near this resonant frequency.



-188-

Cv= .01110 R= 8.00

v8= 1000.00 V IB= 1.00 MA
NP= 1,00 #10%/CC FPI= 6.62 MHZ
SYSL= 90.00 CM NU= 100

<15

FIRST GEOMETRIC RESONANCE

| ERR |
09

BODY RESONANCE

.08
—
v

NORMAL IZED

s — -l 1 4 v
v v
L]

I .
NORMALIZED FREQUENCY, W

FIG. 4.16 RADIAL ELEETRIC-FIELD AMPLITUDE AS A FUNCTION OF
FREQUENCY SHOWING BODY AND GEOMETRIC RESONANCES IN
THE CASE OF A BEAM-PLASMA FILLED WAVEGUIDE. (wce/w =

35, H')



-189-

Cv= .11123 R= 1.53
VB= 1000.00 V I8= 20.00 MA
NP= 100.00 »10%/CC FPI= 66.00 MHZ
SYSL= 15.00 CM NU= 100
BODY RESONANCE
o8¢
X
%&r
T
3
o
=
5}
Win
8 —+ + ~+ | + — ~
%00 10 S0 .60

.20 «30 40 .
NORMALIZED FREQUENCY, W

FIG. 4.17 RADIAL ELECTRIC-FIELD AMPLITUDE AS A FUNCTION OF
FREQUENCY AROUND THE LOWER-HYBRID FREQUENCY IN THE

HIGH-DENSITY CASE FOR A BEAM~PLASMA FILLED WAVEGUIDE.

(/0 = 1/5, H)



-190-

The theoretical results obtained in Section 4.3 are compared in
Chapter V to those obtained experimentally for the open beam-plasma

waveguide configuration.

4,4 Negative Conductance Analysis and Energy Transfer

The field analysis does not give much insight into the energy
transfer mechanism by which ions in the plasma are heated by the
electron beam. Another viewpoint based on the beam loading admittance
of the cavity and developed by Bartsch”® is discussed in this section.

The finife-length beam-plasma system analyzed in the preceding
section can be described alternatively as a system in which a modulated
electron beam streams through a low-frequency plasma cavity which is
axially bounded by the electron gun and the collector. The problem
can be described as that of the interaction of a modulated electron beam
with the standing slow-wave field of the plasma cavity. The general
relation between the small-signal beam current and an externally applied
standing-wave electric field has been determined by Wesselberg76 for
arbitrary transit angles. The small-signal beam admittance® is determined
from the complex power-flow expression. They found that for certain
ranges of parameters the beam conductance is negative. The existence of
the negative beam conductance indicates that there is a real power flow
from the electron beam to the standing-wave field. Such results have
been used and extended by Bartsch,75 who plotted his results in the form
of energy-loss contours in a standing-wave field. He found that there

are frequencies of maximum energy loss for kZL =7, 2n..., etc.

*  The beam admittance y, is defined by ° P = (l/2)ye E|2, where F is

the complex power flow.
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On the basis of Bartsch's analysis, it can be said that a modulated
electron beam traversing through a plasma cavity excites the plasma-
cavity modes by losing energy to the initially small cavity fields. At
the cavity resonances a large radial electric field is created in the
plasma which excites ion oscillations. The generation of this large

RF field at low frequencies results in ion heating through collisicns.



CHAPTER V. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULIS
OF LOW-FREQUENCY BEAM-PLASMA INTERACTIONS

IN A FINITE-SIZED PLASMA

5.1 Comparison of Experimental and Theoretical Results

In this section the experimental results described in Section 3.k
for a finite-length open beam-plasma waveguide are compared with the
predictions based on the normal-mode analysis for such a system given
in Section 4.3. Experimental and theoretical RF electric field frequency
response curves, the location of the resonant or peak frequencies and
the variation of RF radial electric field as a function of radial and
axial distance are compared. Also, the effect of the variation of
plasma density, ion mass, beam voltage and magnetic field on the
resonant frequencies are compared. The theoreticalvand experimental
results are found to be in good agreement.

5.1.1 Comparison of the RF Radial Electric Field as a Function

of Frequency and Position. A set of experimentally obtained RF radial

electric field frequency response curves have been given in Section 3.4.1
for hydrogen, deuterium, neon and argon plasmas. Examination of these
curves reveals that they are essentially of the same general form excert
that the resonant frequencies are different due to different beam and
plasma parameters. In this section the frequency response curve which
was obtained experimentally for a hydrogen plasma is compared with that
calculated theoretically. Experimentally obtained radial and axial
variations of the radial RF electric field are also compared in tnis

section with those calculated theoretically.
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The relative amplitude of the radial RF electric field outside
the plasma (Region II) is plotted as a function of unnormalized
frequency in Fig. 5.1. The frequency response of the probe which was
experimentally determined with the help of the modulated electron beam
in high vacuum is also shown in Fig. 5.1. It is found to be relatively
flat over the frequency range of investigation. A beam-generated plasma
is produced when hydrogen gas is introduced into the system. A typical
probe response curve outside the plasma is shown by the line drawn
through the solid circles in Fig. 5.1. The beam and plasma parameters
are given in the title of the figure. Two or three peaks or resonances
are typically observed in the probe response at frequencies which are,
in general, not harmonically related. In the present case, the
resonances are at 7.0, 12.5 and 19.5 MHz.

A radial RF electric field frequency response curve calculated
theoretically from the normal-mode field analysis is also drawn in
Fig. 5.1 as shown by the continuous lines. The chosen axial observation
position coincides with that used for the Langmuir probe in the
experiment. The parameters chosen for theoretical calculation are the
same as those of the experiment. Resonances in the theoretical curve
are found at the frequencies 7.0, 12.5 and 17.5 MHz in Fig. 5.1. The
theoretical variation of radial field strength with frequency in Fig. 5.1
shows sharper resonances than the experimental curves. Electron-neutral
collisions are dominant in the experiment and realistic values of
collision frequency give VeN/ubi = 0.25. Curves for VeN/h%i = Q.1,

0.25 and 0.5 are shown in Fig. 5.1 at the second resonance only. The
experimental curve in Fig. 5.1 has a broader resonance prcbably because

of the nonhomogeneous plasma density profile. In the theoretical
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calculation, a sharp boundary at the plasma edge was assumed which also
may result in sharper resonances. The unnormalized field strengths at
the first two resonances for the case of veNﬂwpi = 0.25 in Fig. 5.1 are
35 V/cm and 48 V/cm, respectively. Measuremeﬁts in other experiments
have indicated that the electric-field strength is of the same order of
magnitude.106

A simple calculation is made to deduce the radial RF electric-
field strength outside the plasma from the RF Langmuir probe measurements.
It is based on the fact that an oscillatory charge is induced on the
probe surface in the presence of the RF field. Since the probe is
grounded through a 50-Q resistor, an ac current flows through the
resistor and develops én ac voltage across it. This voltage is then
detected by a VIVM after passing through an amplifier and an integrator.
The calculation of the field strength from such measurements is given
in Appendix F. It is found that an electric-field strength of the crder
of 10 to 20 V/cm is detected by the probe, and this value compares
favorably with that predicted from the normal-mode field calculations.

The first two resonances have the axial distribution shown in
Fig. 5.2 and are therefore relatively large at the axial position
chosen in Fig. 5.1. The third resonance has an antinode in the radial
electric-field pattern near the observation position and therefore
appears only as a small peak near 17.5 MHz. This point has been discussed
in Section 4.3.2 in regard to Fig. L.4. If the observation point is
moved away from the antinode position, a large peak occurs in Fig. >.1
at 17.5 MHz. This was illustrated theoretically for the case of an
unfilled-beam, filled-plasma waveguide configuration and was discussed

in connection with Figs. 4.10 and 4.11.
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The quantity Re(ER) plotted in Fig. 5.2 would be the output of
a. phase-sensitive detector and is in good agreement with the fie}d
strength measured by such means (Section 3.1.7c). The resonances occur
when the length of the system is an integral number of half-wavelengths.

The theoretical variation of the radial field strength as a
function of radius is shown in Fig. 4.8 and the experimental curve is
shown in Fig. 3.26. The theoretically calculated and experimentally
obtained radial variation of the field strength outsidé the plasma is
of the same general shape, i.e., a decay of the fields corresponding to
that of the modified Bessel function K and K .

1 o

5.1.2 Comparison of the Resonant Frequencies as a Function cf

Plasma Density and Ion Mass. Two or three peaks or resonances were

generally found in the RF field response curves in the frequency range

of investigation and the resonant frequencies were found to lie Jjust

above the ion-plasma frequency. The effect of variation of plasma density
and ion ﬁass on the resonant frequencies is presented in this sectiocn

and comparison is made between theoretical prediction and experimental
observation.

Figure 3.18 shows the RF field frequency response curves for a
hydrogen plasma in which the parameter for the three curves is plasma
density. By examination of this figure it is found that the resonant
frequencies increase with increasing plasma density. Similar curves
are given for neon, deuterium and argon in Figs. 3.20, 3.21 and >.22,
respectively. The first and second peak frequencies obtained from these
curves are plotted as a function of plasma density on a log-log graph

for hydrogen, deuterium, neon and argon plasmas in Fig. 5.3. As discussed
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in Section L4.3.2, theoretical calculations predict that the resonant
frequencies should increase as the square root of the plasma density. A
straight line with a slope of one-half is drawn in Fig. 5.3 through the
points corresponding to the hydrogen plasma. Similar lines can be

drawn through the points of other gases. There is.some scatter in the
data but they confirm the theoretical prediction that the resonant
frequencies increase as the square root of the plasma density.

The effect of the variation of ion mass on the resonant frequencies
was theoretically predicted in Section 4.3.2. It waé found that the
resonant frequencies decrease with increasing ion mass but the decrease
is much less than the decrease in the ion-plasma frequency. Such
behavior is evident from the resonant frequency data plotted in Fig. 5.3.
The theoretical analysis in the case of argon and neon predicts that
the first resonant frequency should decrease by a factor of 1.13 and the
second by a factor of 1.04 compared to the resonant frequencies for a
hydrogen plasma with the same density. The experimental data shew a
decrease of the same order, however, these factors are in the range of
experimental error which occurs in the determination of plasma density.

o)

5.1.% Comparison of the Resonant Frequencies as a Function of

Beam Voltage and Magnetic Field. The experimentally observed RF electric

field frequency response curves in which the parameter for different
curves is the beam voltage were presented in Section 3.4.1. Curves for

hydrogen, neon and argon plasmas are given in Figs. 3.19, 3.23 and 3.2&,

respectively. Examination of these curves reveals that they are essentizlly
of the same form for these three gases. The first and second rescnant

frequencies in the case of hydrogen plasma are plotted 'as a function of

beam voltage in Fig. 5.4. The two curves show that the resonant freguencies
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decrease as the beam voltage is increased. The decrease in the second
resonant frequency is more than that of the first for the same change cf
beam voltage. This behavior is predicted by the theoretical analysis
as discussed in Section 4.3.2 and was obtained from Fig. 4.9. The
continuous lines drawn in Fig. 5.1 represent the theoretical curves for
the variation of the resonant frequencies as functions of beam vecltage.
The agreement between theory and experiment is good considering the
influence of experimental errors in the measurement of plasma density.
The effect of the variation of the external dc magnetic field on
the resonant frequencies was experimentally studied and the results are
shown in Fig. 3.25. It is found that the resonant frequencies dc nct
change appreciably with the change in the magnetic field for the range
of parameters under study. The same behavior was predicted theoretically
in Section 4,3.2 for the low-density regime in which the exreriments

were carried out.

5.2 Conclusions

The normal-mode field analysis of the beam-plasma, finite-length
system is in good agreement with the major results of the experiments
with the beam-generated plasma. This is particularly true in the
case of the resonant-frequency values and their dependence on the various

experimental parameters.



CHAPTER VI. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

6.1 Summary

Experimental measurements and theoretical calculations have
been presented for a system in which a modulated electron beam excites
resonances in a bounded plasma. As a result of the excitation of these
resonances plasma ions are heated. The experimental and theoretical
results show that a relatively large, radial RF electric field is
excited in the plasma at the resonances and it is hypothesized that this
field produces the observed ion heating.

The experimental investigation was carried out in a beam-
generated plasma. The beam voltage was 400 to 1000 V and average
beam current was about 2.5 mA. The modulation frequency was in the
ion-plasma frequency regime. Either hydrogen, deuterium, neon or argen
gas was used at pressures in the range of 10™% to 1072 Torr. The
excitation of plasma-cavity modes was observed directly by measuring
the RF electric field as a function of beam-modulation frequency, and
indirectly by measuring the current carried by energetic ions to a
gridded probe as a function of frequency. Two or thfee resonances
lying slightly above the ion-plasma frequency are typically observed
in the probe responses. Interferometric measurements at the lowest
two resonant frequencies show that they are half- and full-wavelength
axisymmetric resonances. The retarding potential energy-analyzer
curves show that the largest ion-energy spread occurs when the beanm Iig

modulated at a resonant frequency.

-202-
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The beam-plasma system is analyzed as a finite-length,
boundary-value problem with a specified driving current. The dispersion
equation includes the effect of finite beam and plasma radii, electron-
beam space charge, uniform axial magnetic field and plasma electron-
neutral collisions. The plasma is assumed to be cold. The quasi-static
assumption is assumed to be valid and only the lowest-order, radial,
axisymmetric modes are considered. The quasi-static potential, beam-
modulation current and beam-modulation velocity are expressed as
superpositions of four normal modes of the beam-plasma waveguide.
Appropriate boundary conditions are applied at both ends of the system.

The results of the normal-mode analysis are in good agreement
with the eiperiment and can be used to predict the values of the rescnant
frequencies and their wvariation with plasma density, beam voltage, ion
mass and magnetic field. A comparison of the theory and experiment
resulted in good agreement when the above-mentioned parameters were
varied. The effect of electron-neutral collisions was to introduce
small imaginary parts to all the four roots in the entire frequency range
and to significantly reduce the RF electric-field strength at the

resonances.

6.2 Conclusions

The predictions based on the normal-mode analysis of the axially
bounded beam-plasma system are in good agreement with the experimental
observations particularly with regard to the resonant frequencies. the
relative RF electric-field amplitudes and their spatial variatioms.
Therefore, the theory presented in this investigation may be useful Tor
predicting the behavior of other actual and proposed experiments utilizing

similar beam-plasma configurations. This has been done in the case of an
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1 and the results of the analysis

experiment performed by Haas and Eisner®
are in good agreement with his experiment.52 It is found that the
interaction encountered in the present beam-plasma system is that of
the beam space-charge waves and not that of the cyclotron waves. The
beam-plasma system is not absolutely unstable for the parameters of the
present experiment.

The gridded probe measurements show that energetic ions are
produced when the modulated electron beam is passed through an axially
bounded system. ZEvidence of the production of energetic ions is also
obtained by the observation of increased plasma diameter when the beam
modulation is at a resonant frequency. Ion temperature cannot be deduced
from the gridded probe measurements because of its off-axis location.

The theoretical analysis and experiment suggest that the icns
are heated due to the creation of a radial RF electric field (of the order
of a few tens of V/cm) in the plasma. This radial electric field transfers
energy to the ions through collisions. The importance of this result
is that the eiectron beam can transfer energy directly to the plasma
ions at frequencies other than those at which there is a strong bteam-
plasma instability. A beam-plasma instability of the convective cor
absolute type which is usually desired for plasma heating is not directly
involved in the mechanism.

In thelpresent experiment the RF fields in the plasma are easily
produced by a modulated electron beam which is internal to the plasma.
This appears to have an advantage over those methods which utilize
coils external to the plasma and thus must meet conditions of accessibility
through the outer low-density region of the plasma. It has the disadvantage

of introducing a beam into the plasma but the beam need not be strong

enough to excite strong beam-plasma instabilities.



-205-

It has been shown in Chapter II that the geometric resonance
effect observed experimentally can be considered to be the lower-hybrid
resonance for a plane wave propagating obliquely with respect to Bo'

For oblique propagation the time-average oscillatory kinetic energy of
the ions is much less than that of the electrons. The oblique propagation
introduces a small axial electric field and as a reéult the wave is
strongly affected by axial ac electron motion. The ions tend to partici-
pate rather weakly when EZ is present. This manifests itself in the
dispersion characteristics by the fact that the plasma-wave branch of

the dispersion diagram becomes independent of ion mass very rapidly

above aﬁi' The plane-wave angle of propagation need only be less than
cos™t J57ﬁ for this to happen.

The normal-mode field analysis shows a peak of electric-field
strength at the lower-hybrid frequency where kZ tends toward zero. This
was the body resonance as discussed in Section 4.3.4. 1In the experimental
investigation this resonance is not observed, perhaps because it is
either heavily damped due to cyclotron collisionless damping or it is a
false prediction of the quasi-static analysis. Another possibility is
that the longitudinally current-modulated electron beam does not couple

to this resonance.

6.3 Suggestions for Further Study

The theoretical variation of the radial field strength with frequency
showed sharper resonances than the experimental curves. A possible
reason for this behavior is the nonhomogeneous plasma-density profile.
The plasma nonuniformity should therefore be included in the theoretical

analysis. As a first step the plasma density variation with position
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could be taken into account by letting the equivalent dielectric tensor
of the plasma column be a function of the axial and radial position.

Since the ratio of ion-to-electron time-average kinetic energy
decreases quickly for oblique propagation, there remains an incentive for
finding a method to excite the lower-hybrid resonance (body resonance )
for 90-degree propagation. Further theoretical work is required for
the study of the excitation of this resonance. The theory should
include temperature effects and collisionless damping. A nonquasi-static
analysis should be carried out to prove or disprove whether or not the
body resonance is a false prediction of the quasi-static analysis.

The results of the present investigation have clearly shown that
a current-modulated electron beam excites strong geometric resonances
and therefore couples to them significantly. However, it is umkncwn
whether the coupling occurs because the beam presents a charge source or
because axial current couples to the wave when kz # 0. It is reascnable
that the beam acts as a current; however, it may aiso act like a "charge
density." The beam velocity is nearly constant and thus an ac space
charge accompanies the ac current. If it acts as a charge density, the
present beam source may excite the body resonance. On the other hand,
if the modulated beam acts as a current source it may not be an optimum
source for excitation of this resonance. It has been shown that an
azimuthal current couples strongly with the lower-hybrid resonance for
90-degree propagation. Such a current can be produced by passing
currents in an RF coil wrapped around the plasma column. Other methods
of beam excitation can be imagined such as a dipole charge source
consisting of a positive and negative charge ipL(C/m) a distance d

apart. This source could be produced by radially displacing the electron
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beam. Also, this and other methods of excitation should be studied
theoretically when kz # 0 to determine the coupling between the wave
and the axial and azimuthal currents.

A mechanism of ion heating in the present experiment was
proposed based on the fact that the bounded beam-plasma system can be
described as a system in which an electron beam passes through a standing
slow-wave field. For certain ranges of parameters the electron beam
loses energy to the field and finally to the ions via collisions. Further
numerical calcﬁlations are required to determine the actual rate of loss
of beam energy to the fields and to the plasma.

The present investigation has shown that the ions can be heated

by a modulated electron beam streaming through a bounded plasma. This

in order to obtain accurate estimates of the degree of ion heating
achievable. The ion-heating rate and its variation as a function of
temperature must also be evaluated. This would be of great importance
in determining the merits of this method of ion heating in thermonuclear
plasmas.

In the experiment the size of the gridded probe velocity analyzer
was comparable to the size of the plasma. Therefore when the prcte was
brought close to the plasma it tended to disturb it. To cobtain an
accurate measurement of ion temperature and ion-energy distributicn. the
gridded probe should be modified so that it is smaller in size and gives
reliable ion temperature measurements. It would be necessary to arrange
the probe so that it received ions from the main body of the plasma
rather than only those ions which had sufficient energy tc reach a rajius

several centimeters from the plasma.
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The present experiment was carried out in the beam-generated
plasma only and the operation was in the low-density regime. From the
point of view of thermonuclear plasmas, it is of interest to study this
method of ion heating in large-diameter (separately generated) plasmas
and in the high-density regime. In this regime the lower-hybrid rescnance

is at the geometric mean frequency (a%ewci)l/z. Auer et al.%® have

shown that the effects of nonzero kZ are less important when the densiiy
is increased. Therefore, finite geometry effects which are inevitable

in a laboratory plasma may be less detrimental in the high-density regime.



APPENDIX A-. DERIVATION OF TRANSVERSE AND LONGITUDINAL CURRENTS AT THE

LOWER-HYBRID RESONANCE FOR AN ARBITRARY ANGLE OF PROPAGATION

The expressions for longitudinal and transverse currents Jk and Jt
for 90-degree propagation have been given by Allis et al.* Here expressions
for Jk and Jt are derived for an arbitrary angle of propagation.

Consider a spherical coordinate system (k,8,®) in the notation of
Allis et al. and a Cartesian coordinate system (x,y,z). The conductivity
tensor ; is readily available in the Cartesian system as given by Eq. 2.11.
To obtain the expressions for Jk and Jt in terms of gl, Opr O etc., a

coordinate transformation is required. The conductivity tensor in terms

of spherical coordinates is given by

= =_l

o =T 5 . 7 A1)
k,0,0 X,¥,2 , ’ (
where % represents a transformation matrix (E = f . E ) and is
X,¥,2 k,6,90
given by
~ =
sin 6 cos 6 0
T = 0 0 1
cos 8 =-sin 6 0
- -
and
" =
sin 6 0 cos 6
=-1
T = cos 6 0 -sin 6
0 1 0
- .

Carrying out the matrix multiplication in Eg. A.l yields
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8 0. sin® 0 + gy cos® 6 o, sin 6 cos 6 -0 sin o)
1 I 1 X
-0 sin 6 cos 6
b _ . _ 2 _
Gk,G,w = Ol sin 6 cos 6 o) cl cos< 6 + o) GX cos 6
sin 6 cos 6 sin® 6
o_sin 6 o_cos 6 o
- X X 1l
(‘Ate)

The current density in spherical coordinates is given by

J = E A.3)
K,6,0 k,0,9 K,0,¢ (A3

Qi

From Egqs. A.2 and A.3 Jk is obtained as follows

Jg, = (o

.2 2
. sin® 6 + o) cos® 6) E, + (o

- 0“) sin 6 cos 6 E; - o sin 6 E_ .

1 1 6 N
(A1)
The inverse transformation matrix $-l is used to obtain Ek’ EG and E_ in

N

terms of Ex’ Ey and Ez' Therefore, EQ. A4 can be written as follows:

d.

= in® 2 i - i )
K (ol sin® 6 + o) cos® 6) (sin 6 E, +cos 6 EZ) + (ol oy) sin 6 cos

- gi - i 5
(cos 6 E, - sin 6 EZ) o, sin 6 Ey (A.5)
At resonance the propagation vector is in the electric field direction

(i I E) and if the angle of propagation 6 is assumed to lie in the x-z

plane the following is obtained:

E =0 (A.0)
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If Eq. A.6 is used, Jk is given by

E
J,. = X <?L sin® 6 + o cos? é) (A7)

k sin 6

Similarly, J@ is obtained from Egs. A.2 and A.5 and is given by

= i + +
J@ Gx sin 6 Ek Ux cos 6 Ee Ol ECP

Substituting for Ek’ E@ and E@ in terms of Ex’ Ey and EZ and cancelling
out the terms gives

J = 0o.FE (A.8)

From the transformation matrix it is seen that J¢ = J&. The transverse

current J£ is defined to lie is a direction perpendicular to the plane

containing the propagation vector. Therefore J@ = Jt.
The ratio of transverse to longitudinal current at resonance for an
arbitrary angle of propagation is thus obtained from Egs. A.7 and A.3 and

is given by

Jt oX sin 6
k o, sin® 6 + o) cos® 6
Substituting for O Gl and ot from Eq. 2.12 in Eq. A.9 and for an
operation in the frequency range such that d%i <K o K afe gives, after
some manipulations,
dJ . ww
t .

J sin 6
k
o - w O . <i + ¥ ot2 Q)
ce ci m



APPENDIX B. LISTINGS OF THE COMPUTER PROGRAMS OF THE SUBROUTINE FUNCT FOR

THE THREE DISPERSION EQUATIONS

As mentioned in Section 2.3, Gillanders'®3

computer program was
used to trace the roots of the dispersion equations. The program requires
subroutines FUNCT and SETCON for each dispersion equation. The listings of

the subroutine FUNCT are given here. Subroutine SETCON is empty since no

constants were separately calculated.

B.1 Listing of the Subroutine FUNCT for a Filled Beam-Plasma Waveguide

The dispersion equation for this configuration is given in
Section 2.3.2a. In FUNCT the first three statements declare the modes and
precision of the variables used. The COMMON statement is used so that the
subroutine FUNCT can obtain data from and return data to the main program
through the common storage area COMM. PAR is a vector of fifty numbers
which may be used to enter any constants or parameters which are required
in the evaluation of the dispersion equation. The EQUIVALENCE declaration
allows one to refer to the same storage location by two or more names. In
the present case, CV, G, R, S, CWE, CWI and NU refer to the same stcrage
locations as PAR(1) through PAR(7), respectively. The remaining statements
in FUNCT are for the computation of the dispersion function. 1In the follcwing
listings of the computer programs, commands commencing with $ refer to the

Michigan Terminal System and must be modified for use on other systems.
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$RUN *FORTRAN SPUNCH=EPL 160 P AR=MAP
' SUBROUTINE SETCON
C SUBROUTINE SETCON IS EMPTY IN THIS CASE SINCE NO CONSTANTS
C ARE CALCULATED SEPARATELY
END

SUBROUTINE FUNCT

IMPLICIT COMPLEX*16(WeK¢DyF)COMPLEX*8(V)
COMPLEX*16 RWK¢RWKCE

REAL%*4 NU
COMMON/COMM/ WK DyDDKyDDWy F4PAR(50) s ITYPE,H
EQUIVALENCE (PAR(1),CV)s{PAR(2)+G)4+(PAR(3)4R) 4{PAR(5) 4CNE),
L(PAR(6)4CHW Iy {PAR(T)4NU)
VJ=CMPLX(0.0y1.0)

CV2=CVv*CV

CV1=5.783/CvVv2

KK=K*K

WW=WxW

WC I=WW-CWI

WCI2=WCI*WCI

WCE=WW~CWE

WCE2=WCE*WCE

WK=W-K

HK2=WK*W K

WKC E=WK2-CWE

RWK=R/WK?2

RWKCE=R/WKCE

WNUJ=HW-V J*NU

WNUJ2=WNUJ*WNUJ

WNUCE=WNUJ2-CWE

WNUCE2=WNUCE*WNUCE

RllZ2= e=1e/WW=0G/TWXWNUJ )

KIT1=KII2-RWK
KPER2=1e=14/WCI-G/{WXWNUCE) *WNUJ
KPER1=KPER2-RWKCE

KIT1PK=—-2.*RWK/WK
KPE1PK=—-2./WKCE*WK*RWKCE

KIT2P=2,/(WXWW) + Z2.%G/(W¥xWNUJ2) = VJIENUXG/(WWEWNUJ2)
KIT1P=KITI2P-KII1PK

KPER2P=2 *W/WCI2 + 2.%G*WNUJ2/(WEWNUCE2) — VJIRNURG/ {WW*WNUCE)
KPER1P=KPERZ2P-KPEL1PK

C=CV1*KPER] ¢ KK*KII1

DDW=CV1*KPER1P + KK*KII1P

DDK=CV1*KPE1IPK + 2.%K*KII1l + KK*K[I1lPK

IF (ITYPELEQ.2) DDW=(0eyl.)%DDW
F=-DCW/DCK

RETURN

END

$ENDFILE

*kxxkNORMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000048
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B.2 Listing of the Subroutine FUNCT for an Unfilled-Beam, Filled-

Plasma Waveguide

The dispersion equation for this configuration is given by Eg. 2.1L53.
The same remarks as those given in Section B.l apply in the present case
also. In addition, PAR(8) and CV2 refer to the same storage location

where the variable CV2 is the normalized waveguide radius.

$RUN *FORTRAN SPUNCH=EPL170 PAR=MAP
SUBROUT INE SETCON

c SUBROUTINE SETCON [S EMPTY IN THIS CASE SINCE NO CONSTANTS
C ARE CALCULATED SEPARATELY

END
c CWE ANC CWI ARE THE SQUARES OF ELECTRON CYCLOTRCN FREQUENCY
c AND TON CYCLOTRCN FREQUENCY, RESPECTIVELY

SUBROUT INE FUNCT

IMPLICIT COMPLEX*16 (WeKeDoFodyY) COMPLEX*8(V)

COMPLEX*16 CVJ4P1l4PT1,PA1,PAL12,PAT1,PATTL,PT1P,PT1PK,TAL,TALP,
ITALIPKyTA24TA2J4RWKyRWKCEsP2¢PT2,PA24PA22,PAT2,PATT2,TA2,PT2P,TA2P,
2TA2PK4yRNRy RDRyRDR2+RNCRyRNDR24RNDRP yRNDRPK¢RPT2MePBTT2,TB2
3TB2P,TB2PK,TB2J

COMPLEX*8 Al,A2

REAL*8 AT24NU*4

COMMON/COMM/ W4 Ky D9y DLCK4DDKy F9yPAR(S0) 4 I TYPE,H

EQUIVALENCE (PAR(L)¢CV)4(PAR(2)4G) ¢ (PAR(3)4R),(PAR(5)CHWE),
LIPAR(6)+CWI)y {PAR{T)4NU)+{PAR(B),4CV2)

VJ=CMPLX{0.041.0)

CVJ=vVJ*Cv

KK=K*K

WW=W*W

WCI=WW-CWI

WCI2=WCI*WCI

WCE=WW-CWE

WCE2=WCE*WCE

WK=W-K

WK2=WK*WK

WKCE=WK2-CWE

RWK=R/HWK?2

PHKCE=R/WKCE

WNUJ=W-V J%=NU

WNUJ2=WNUJ*ANUJ

WNUCE=WNUJ 2-CWE

WNUCE2=WNUCE*WNUCE

KIT2=1e-1a/WW-G/{W*WNUJ)

KIT1=KII2-RwWK

KPER2=14-1¢/WCI-G/(WXWNUCE) *wWNUJ

KPER1=KPER2-RWKCE

KPER22=KPER2*¥KPER2

KPER12=KPER1*KPER1

KITIPK==~2,%RWK/WK

KPE1PK=-2,/WKCE*WK*RWKCE

KII2P=2./7 (W5WW) + Zo%G/{WXWNUJ2) = VJIXNURG/ (WWEWNUJI2)
KIT1P=KII2P-KIT1PK

KPER2P=2.,%W/WCI2 + 2.%G*WNUJ2/{WXWNUCE2) - VJIENU%G/ {WRN*WNUCE)
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KPER1P=KPER2P-KPEL1PK

P1=KPERL*KII1

PT1=CDSQRT(P1)

PA1=KII1/KPER1

PA12=PA1/KPER1

PAT1=CDSCRT(PALl)

PATTI=CVJ%*PAT]

TAL=K*PAT11

PT1P=.5/PT1%{KII1P*KPER]1 + KPER1P*KII1)
PT1PK=4,S/PT1%*(KIT1PK*KPER]1 + KPEL1PK*KII1l)
TALP=,5%CVJ*K/PATLI*(KII1P/KPER1-PAL12*KPERLP)
TAIPK=PATTl+ .5%CVJ*K/PATLI*{KII1PK/KPER1-PA12%KPELPK)
P2=KPER2%KI12

PT2=CDSQRT{P2)

PA2=KII2/KPER2

PA22=PA2/KPER2

PAT2=CDSCRT(PA2)

PATT2=CV*PAT2

PBTT2=CV2%PAT2

TA2=K%PATT?2

TB2=K%PBTT2

PT2P=0.5/PT2% (KII2P*KPER2+KPER2P*KII2)
PT2PK=0.0
TA2P=0.5*%CV=K/PAT2*(KI12P/KPER2-PA22*KPER2P)
TB2P=CV2/CV*TA2P

TA2PK=PATT2

TB82PK=PBTT2

150 Al=TAl
TA2J=VJI*TA2
TB2J=VJ*TB2
IF(ABS(AIMAG(AL)).GT.170) GO TO 180
GO TO 200

180 CALL BJ1JOR(TAl,J1JCR)

GO T0 220
200 CALL CDBESJ{TA1,J0TAl+J1TAl,YOTALl,Y1TAl)
J1JOR=J1TAL1/JOTAL

220 CALL CDBESJ(TB2J+J0TB2J+J1TB2J,YOTB2J,Y1TB2J)

300 CALL CDBESJ(TA2J,JO0TA2J,J1TA2J+YOTA2J,Y1TA2J)
YIITA2=-VJ%J1TA2J
YI0TA2=J0TA2J
YI1TB2=-VJ*J1TB2J
YIOTB2=J0TB2J
PI1/2=1.570796
KOTAZ=1.°T70790%{(VI¥JCTA23-YOTA2))
K1TA2==-1.570796*(J1TA2J+VJI%XY1TA2J)
KOTB2=1.570796%(VJ%*JCTB2J - YOTB2J)
K1TB2==1.57C796%(J1TB2J+VJ*Y1TB2J)

320 JACK=1.-J1JOR/TA1l + J1JOR%J1JOR
RNR=YI1TA2%KOTB2 + YICTB2%K1TA2
RDR=YIOTA2%KJTB2 - YICTB2*KOTA2
RDR2=RCR*RLCR
RNDR=RNR/RDR
RNDR2=RNCR*RNDR
YIKAB=YI1TB2%K1TA2 -~ YI1TA2%K1TB2
YIK10=RNR*{Y[OTA2%K1TB2 ¢ YI1TB2*KOTAZ)
YIKABR=YIKAB/RCR
YIK10R=YIK10/RDR2
KACK=1. — RNDR/TA2 ~ RNDR2
J1JOR2=J1JOR%J1JCOR
JPT1IM=2,%PT1%J1JCR
RPT2M=2 %P T2%RNDR
RNDRP=TA2P%XKACK + TH2P*{YIKABR + YIKICR)
RNDRPK=T A2PK*KACK + TR2PK*{YIKABR + YIKLOR)
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D=P1%¥J1JOR2 + P2#RNDR2

DDW=JPTIMX(PTIP#J1JOR ¢ PT1*TALIP¥JACK) + RPT2M*(PT2P*RNDR +
1PT 2#RNCRP) ’

DDK=JPTLM* (PTIPK*JL1JOR+P TI*TALPK*JACK) +RPT2M*PT2*RNDRPK

IF (ITYPE.EQ.2) DDW=(C.y1,)%DDW

F=-CCW/0CK

RETURN

END
C RI1JOR(Z+J1JOR) IS USED TO CALCULATE RATIO J1(Z2)7J0(2)
C DIRECTLY FOR VERY LARGE IMAGINARY ARGUMENT

SUBROUTINE BJLIJCR(Z,J1JOR)
IMPLICIT COMPLEX*16{AyBoZ+J)REAL*8{P4X)
COMPLEX*8 VJ
PI=3.141¢€92¢65
VJ=CMPLX(0.0.1.0)
X=2
PARG=X-P1/4.
A0=-0.125/17
BO=1.+.5€25/2%A0
Al=-3,0%A0
Bl=1.+40.2125/7%A1
PCOS=DCAOS(PARG)
PSIN=DSIN(PARG)
Al11=B1*PSIN + A1l*PCOS
A12=B1%*PCOS - A1*PSIN
A21=BO%PCOS - AOD%PSIN
A22=BO%PSIN + AO*PCOS
JIJOR=(A11+VJI*A12)/(A21-VI*A22)
RETURN
END

SENDFILE

®k&4ENORMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000140
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B.3 Listing of the Subroutine FUNCT for an Open Beam-Plasma Waveguide
The dispersion equation for this configuration is given by Eg. 2.1L5.

The remarks given in Section B.l also apply in this case as well.

$RUN *FORTRAN SPUNCH=EPL180 PAR=MAP

SUBROUTINE SETCON
c SUBROUTINE SETCON IS EMPTY IN THIS CASE SINCE NO CONSTANTS
C ARE CALCULATED SEPARATELY

END
c CWE AND CWI ARE THE SQUARES OF ELECTRON CYCLOTRCN FREQUENCY
c AND ION CYCLOTRCN FREQUENCY, RESPECTIVELY

SUBROUTINE FUNCT

IMPLICIT COMPLEX*16 {WoKeDyFyJyY)sCOMPLEX%B(V)
COMPLEX*16 CVJyPlyPT1,FA1,PAL2,PAT]1,PATT1,PTL1P,PT1PK,TALl,TALlP,
1TALPKyTA2,TA2JRWK4RWKCE PT12

COMPLEX*8 Al,A2

REAL*8 AT2,PATT2,NU%*4

COMMON /COMM/ WKy Dy DOK4DDWoF o PAR({50) s ITYPE4H
EQUIVALENCE (PAR{1)4CV),(PAR(2)+G) 4 (PAR(3),R)+(PAR(5),CHE),
1{PAR(6),CWI)y (PAR(T),4NU)

VJ=CMPLX(0.0y1.0)

CVJI=VJ*CV

KK=K*K

W=WkW

WCI=WW-CWI

WCI2=WCI*WCI

WCE=WW-CWE

WCE2=WCE*WCE

WK=W=-K

WK 2=WK %WK

WKC E=WK2-CWE

RWK=R/WK?2

RWKCE=R/WKCE

SR e R T AR o N T
WitUo~n v v v

WNUJ 2=WNUJ *ANUJ

WNUCE=WNUJ2-CWE

WNUC E2=WNUCE*WNUCE

KIT2=1e=1a/WH=G/ (W¥xKNLJ)

KIT1=KII2-RWK

KPER2=1e=1./WCI-G/ (W*WNUCE) *WNUJ
KPER1=KPER2-RWKCE

KPER22=KPER2*KPER2

KPER12=KPER1*KPER]

KIT1PK=-2.%RWK/WK
KPEL1PK=+2./WKCE*WK*RWKCE

KIT2P=2./(W*WW) + Z.¥G/(WxWNUJ2) - VJIENU*G/(WW*KNUJ2)
KIT1P=KII2P-KII1PK

KPER2P=2 J#W/WCI2 4+ 2.%GX*WNUJ2/( WXWNUCE2) — VJ*NU*G/(WW*WNUCE)
KPER1P=KPER2P-KPE1PK

Pl=KPERL1*KII1

PT1=CDSQRT(P1)

PA1=KIT1/KPER1

PA12=PA1/KPER]

PAT 1=CDSQRT{PAl)

PATT1=CVJ%PAT1

TAL=K*PATT]

PT1P=,5/PT1*(KIT1P*KPER]1 + KPERI1IP®*KII1)
PT1PK=,S5/PT1*(KII1PK*¥KPER]1 + KPE1IPK*KII1)
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c PT2PK=0
TALP=,5%CVJ*K/PAT1*(KII1P/KPER1-PA12#%KPERLP)
TALPK=PATT1+ .5%CVJ*K/PAT1*{KII1PK/KPERL-PA12%KPELPK)
PATT2=CV
TA2=K#PATT2

c TA2PK=PATT?2
AT2=TA2
IF (AT2.LT.0.) GO TO 100
GO TO 150

100 TA2=-TA2

PATT2=-PATT2

150 Al=TAl
TA2J=VJ%TA2
A2=TA2J
IF(ABS(AIMAGIAL)).GT.170) GO TO 180
GO TO 200

180 CALL BJ1JOR{TAL,J1JOR)
60 TO 220

200 CALL COCBESJ{TAL,JOTA1,J1TAL,YOTAL,Y1TAL)
J1JOR=J1TA1/JOTAl

220 IF(ABS(AIMAG(A2)).GT.12C.) GO TO 280

GO TO 300
280 K1KOR=-VJxVvJ
GO TO 320
300 CALL COBESJ(TALZUYJUIALIZJLIAZI9YOIAZISYLITAZ I}
C PI/2=1.5701796

KOTA2=1,57019€%(VJI*JOTA2J-YOTA2J)
KITAZ==1.5T7T0796*%(J1TA2J+VJ*Y1TA2Y)
K1KOR=K1TA2/KQOTA2

320 JACK=1.~J1JOR/TALl + J1JOR*JI1JOR
KACK=-1.-K1KOR/TA2 + K1KOR*K]1KOR
PT12=PT1%PT1
J1JOR2=J1JOR*J1JOR
K1KQR2=K 1KOR*K 1KCR
D=PT12*J1J0OR2 + K1KOR2
DOW=2,%PT1XJ1J0R*IPTIPXI1 JOR+PTIXTALIP:JACK)
COR=2.*PT1*J1JIR*(PTIPK*JLJOR+P TLI*TALIPK*JACK) +2, %K1 KOR*PATT2 %K ACK
IF (ITYPE.EQ.2) DOW=(04y1.)%DOW '

F=-DDW/DDK

RETURN

END
C BJ1JOR(Z4J1JOR) IS USED TO CALCULATE RATIO J1{(2)7J0(2)
c DIRECTLY FOR VERY LARGE IMAGINARY ARGUMENT

SUBROUTINE  BJ1JORI(Z,J1J0R)
IMPLICIT COMPLEX*16{A¢PRyZyJ)+REAL%B(P4X)
COMPLEX*8 VJ
PI=3.141592¢65
VJ=CMPLX(0.0,1.0)
X=2
PARG=X-PI/4.
AD=-0.12%/12
BO=1e+.5€25/2%A0
Al==3,0%A0
Bl=1.+40.3125/2%A1
PCOS=DCOS{PARG)
PSIN=DSIN(PARG)
Al11=B1#PSIN + A1%PCOS
A12=B1*PCOS - A1%PSIN
A21=B0*PCOS - AQ*PSIN
A22=ROXPSIN + AQ*PCOS
JIJOR=(AL1+VI*AL2)/(A21-VI%*A22)
RETURN
END

$ENDFILE

¥EAXUNCRMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000118
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B.4 Listing of the Subroutine CDBESJ which Calculates the Bessel Function

of Complex Arguments

The dispersion equations for the unfilled-beam,filled-plasma waveguide
and the open beam-plasma waveguide require the evaluation of the Bessel

functions J and Jb and the modified Bessel function K and Kb of complex
1

1
arguments.
A program given in subroutine CDBESJ was written to compute J , Jb,
1
Y and YO for arbitrary complex arguments. For a complex argument Z such
1

that |z| > 20, asymptotic forms for J» J, Y and Y which are given
1 1

below were used:

1/2 .
@) = <§—Z> [S( N YR XORIROR n( .-y
(z.1)
and
’ 1/2 \
N . ng _x o _ %)
Yn(Z) = <';Z'> [51n ( -5 - ﬂ > Pn(Z) + Qn(Z) . cos <% -5 n /U
(R.2)
where
k (bn? - 1)(kn® - 32) +- [4n® - (4k - 1)2]
P(z) = 1+ Z (-1)
n - ok 28K 72K
and

1l

(2k - 1)1 2K72 g2k

Q,(2)
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In the preceding equations, n = O and n = 1 are used for Jb, YO and J , Y ,
! l b

respectively. For an argument such that ‘Zl < 16, the following expressions

for J and Y are used:

n 2 4
Jn(Z) = i < - Z + Z - 00-) (E.:\
2n! 22(n +1) 1! 2% +1)(n +2) 2!
and
n-1
* 2k-n
2 . z 1 n-k-1(72
v (2) = = [Jn(Z)G + log -2->-§ Z = <2>
n=o0
- +2k .
1 k+1 (z/2)" ! ,
. z EIL L) s <:p(k) + o + k)>!, , (B
k=0 -

where y is Euler's constant (y = 0.57721),

and

Again in Eqgs. B.3 and B.4, n = 0 and n = 1 are used. Since the J, and

Jl functions are required each time the YO and Yl functions are used,

the Y, functions are obtained by calculating the series terms for Jﬁ and

multiplying each by the appropriate constant to obtain the Yn series tern.
For an argument 7 such that 16 < |Z| < 20, a linear combination of

the values calculated from the two expressions is used. The listing of

the program follows.
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$RUN *FORTRAN SPUNCH=EPL 280 PAR=MAP
SUBROUTINE CCBESJ(Z+J04J1,4Y0,Y1)
IMPLICIT COMPLEX*16(XyYyZyAyByDy9J) +REAL*B(P,T)
DATA PI1,TMAXyTMIN,TD/3.1415926535897932384164¢20¢ ¢4/
DATA TGAM/.5772156649015328606/
T=CCABS(Z)
IF (T .LT. TMIN) GO 7O 10C
A=7-P1/4.0000000
B=CDSQRT{(2.000000000/P1)/2)
=-4125/1
X=1.0000+Y%,5625/2
JO=B*(COCOS{AY*X-CDSEN(AI*Y)
YO=B*(COSIN(A)*X+CDCOS(A)*Y)
A=7-,75000000C%P1
¥=-3.00000000*Y
X=1.0000+Y*.3125/2
J1=B*{CCCOS(A)*xX-COSIN(A}XxY)
Y1=B*{CDSIN(A)*X+CDCOS(A)*Y)
IF (T .GT. TMAX) RETURN
Jol1=J0
J1ll=J1
YOl=YO0
Yll=Y1
T1=(T-TMIN)/TD
T2=1.000C0020-T1

10 TEST=,0000001/0EXP(T%T/4.)
A=1.000000000
B=1/2.00000000
b=2%*1/4.
Y=B%8B
X=YXY
PK=1.,500€3030CO
PK1=10.090002G000/3.0C0000009
J0=1.000000000-Y
J1=(1,000000000-Y/2.CCC0C0000) %8B
YO={.375C0000C*Y-1.,C0CCO000)*Y
Y1=2,500C0000*%{Y/9.00CC00200-.500000000)%Y +1,
00 20 1=2,10042
N=1%(I-1)
M=T141
PK2=PK+1.003000000/M
PK3=PK1+1.00000C000/M+1,000000000/(M+1)
PK=PK2+1.00C3C00C0O/(M+1)
PK1=PK3+1.CC0000C00/(M+11)+1.000000000/{ M+2)
A=AxX/ (N%N)
B=B*X/ (N*x]*M)
D=D*X/ ( T®I%VEM)
JO=JO+A%(1,00000000C-Y/(M*xM))
J1=J1+B%(1.000CCCCCO-Y/(M%(M+1)))
YO=Y0-D*(PK2-PKxY/((M+1)%(M+1)))
Y1=Y1-D%(PK3/{M+L)-PKI*Y/((M+2) % {M+]1)%(M+1)))
IF (CDABSI(B) .LT. TEST) GO TO 30

20 CONTINUE

30 YO=((CDLOG(Z/2.)+TGAM) %J0~YD)*2.060C00020/P1
Y1=-2.,00/(Z%P1) + 2.0/PI%(COLOG(Z/2.)+TGAM)*J1-2/(2,%P])*Y]
IF (T +LT. TMIN) RETURN S
JO=JOxT2+J01%*T]
JI1=J1%T24J11%71
YO=YO*T2+Y01%T1
Y1=Y1*xT2+4Y11%T1
RETURN
END

$ENDFILE

2% &&NORMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000063



APPENDIX C. STUDY OF TRANSIT-TIME EFFECTS ON THE

BEAM-CURRENT MODULATION

The effects of the transit time of an electron beam streaming
through a drift tube of length L on the beam-current modulation is
studied. The effects are due to the presence of the space-charge waves

which exist on the electron beam.

o 1\

The relations for the space-charge waves in a thin beam (5éb <L 1

103

are given by Haus. The kinetic voltage V and the ac current

distribution through the beam are given below in the notation of Haus:

Bz -jp 2\ -jB_z
vV = <§ e T 4y e 9 > e € (c.1)
+ -
and
Jp z jB z —jﬁez
i = ¥ v, e -V e ‘> e (c.2)
where
Io Be
Y = == — ,
o) EVO Bq

b ¢

Py

IO is the dc beam current, VO is the beam voltage, Be = a/vo, Bq =y W, Vv
and 75 is the space-charge reduction factor for a thin beam.

The conditions at the entrance plane z = O of the drift tube are

0 (no velocity modulation)

o
d.
N
]
O
<
]

i = Im (a current modulation)

Substitution of these conditions at 2 = O in Egs. C.1 and C.2 gives
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and

(c.4)

Il
H

v (v, - V)

Equations C.3 and C.L4 yield

Substitution of V+ and V_ from Eq. C.5 into Eg. C.2 yields

-jp 2z
i = I cospBze € (c.6)
m q

The magnitude of the ac beam current at the collector (z = L) is then

given by

[i(L)| = I cos squ (c.7)

The first zero of the ac current at the collector occurs when

y w. L
BT = —°Pb  _
q

iR

%
e}

The reduction factor can be obtained from the plot given by Haus. For
the present experiment where d/b = oo, Beb << 1. Thus 7 = Beb.

Substitution of the value of y_ into Eq. C.8 yields

V2

(@]

= ———— Q

f o TL (c.9)
pb

The beam-electron plasma frequency, the dc beam current and the dc beam

voltage are given by



2
e
(Dzb = Zz (C.l@)
p o
2
= D11
IO nbevonb (C )
and
2
mv
= l -—q n 1’?\
v, 5 o (c.12]
Equations C.9 through C.11l yield
o3/4 | (e/m)l/4 (€ n)l/2 v 5/4
£ = - - (c.13)
LI1/2
0
Numerically,
V5/4
f = 853 = ’ (c.1%)
o

where f is in Hz, VO is in volts, L is in meters and IO is in amperes.

The ac beam current assumes a minimum at a frequency given by Eq. C.1k.



APPENDIX D. DERIVATION OF THE EXPRESSIONS FOR ac BEAM-VEIOCITY

MODUIATION AND ac BEAM CURRENT-DENSITY MODULATION

Consider an electron beam drifting along the z-direction with a
velocity v and confined by a magnetic field éo = QBO. A small-signal
approximation is assumed to be valid, i.e., all ac quantities are assumed
to be small perturbations of their corresponding dc values. Morecver,
all ac quantities are assumed to have the wave-like dependence
explj(wt - kzz)].

Beam current density jb is given by

) . _ j(am - kzz>
Jﬁ - QQ% - pobvo * (pleO * pobv1b> € ’ (p.1)

where @ and Gb have been defined in Eqs. 4.1 and 4.2. The ac current-

density modulation is therefore given by

)
fy
—

T = v -+ v 0
I 1o (plbvo pobvlb) '
For the assumed time and space dependence the ac current and ac charge

density are related by the equation of continuity (Eq. 2.5) and on

substitution from Eg. D.2 it yields

- - \vA - ’ 3
J( kzvo)plb oY T Viy (p.3)

Neglecting the beam-electron collisions with other particles, the equatio:n

of motion (Eq. 2.8) for beam electrons can be written as

. - - = - — _ - hy / \
j(w kzvo)mvlb ek eviy X BO (D.+,
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The quasi-static assumption 1s invoked (V x E = 0). The curl and the

divergence of Eq. D.4t together with the vector identity,
AV (A X E) = B*VxA-A-+-VXxXB ,

and some manipulation yields

= 2
Vv -+ E Jk o v
o = e D + 2 ce 1bz , (D.5)
1b mo 2 g2 2 _ 2
ab ce ab ce
where
ab = W - kzvo

where

The z-components of Egs. D.2 and D.4 yield

J1bz - plb o) pobvlbz \-
and
E
v, = -&.z ‘D
1bz m jub \

Substitution of Egs. D.8 and D.6 into Eq. D.7 gives

.
S~

(@8]
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LA E Jk, v o, E,
J1bz = €ow}fb [ 2 2 * 2 2 2 E7 " ag J (D.Q)
ab'_ a%e (ab i ch) ab

Equation D.9 on simplification can be written as

€ aﬁb _ ww?
J = 2P 1, g R+ € _.w )E (p.10)
1bz o 2 e} (.02 D Z

wD B aEe D

For the assumed spatial dependence, the operator V can be separated

into transverse and axial components as follows:

and

. = “E, - 5k E . {(p.12)
vV - E Y, El szEZ (D.1Z2,
Using the quasi-static assumption, the electric field can bte
expressed as the negative gradient of potential, therefore,

E = -v,0 (p.17)

and

= jk ¢ . (D.1%)
E sz (D.1~+)

v E can thus be written as

- oy
vV -E = Vl¢ JKZEZ
or
- E'?
V-E = (TF+ k%) = (12 + k®) S (p.2=)
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where T is the transverse propagation constant. Substitution of Eq. D.1<

into Eq. D.10 yields

v T
. b o
J. = - jweE [ 2o, P OJ (D.1¢)
o z 2

Equations D.8 and D.16 are the required expressions for axial beam-velocity

modulation and current-density modulation.



APPENDIX E. DESCRIPTION OF THE COMPUTER PROGRAM WHICH IS USED FOR

NORMAL-MODE FIELD CALCULATIONS

A brief description of the Fortran IV computer program which is
used for normal-mode field calculations is given here. A listing of
the program is presented at the end of this appendix. Commands ccmmencing
with $§ refer to the Michigan Terminal System and must be modified for
use on other systems. Section E.l describes the program for field
calculation as a function of frequency and Section E.2, as a function

of radial and axial distance.

E.1 Computer Program for Normal-Mode Field Calculation as a Functicn of

Freguencx

The first few statements declare the mode and precision of the
variables used in the program. The dimension statement assures the

<

appropriate storage space. These are mainly required to print the cutput

the desired form as indicated by the format statements at the end of ths
program.

The NAMELIST type of input is used. Some of the variables are
initialized by the data statement but others are read in at the beginning
of the program. The variables W and K which have been previcusly calculazed

by solving the dispersion equation and which are stored in a private file

[}
Hh
4]
b

are now read in. The program calculates the variables needed to trax
data from the main program to the subroutine DCOEFF which is ncw called.
The subroutine DCOEFF calculates the coefficients Xi’ i= l...h, and

returns data to the main program. With the help of switches SW and SWE

-229_
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the program chooses a particular section of the program which is used
for normal-mode field calculation for one of the three beam-plasma
waveguide configurations. SW = 1 and SW2 = 1 bypass the program for
the open beam-plasma waveguide and choose the unfilled-beam, filled-
plasma waveguide and beam-plasma filled waveguide configurations,
respectively. The Bessel functions encountered during the calculations
are computed by the subroutine CDBESJ which is described in Section B.k.
A few quantities of interest, such as axial and radial electric-field
amplitude as functions of frequency, are stored in a private file for
plotting by a digital plotting system (Calcomp 763). Other desired
quantities are printed out in a prescribed format by a printer. The

listing of the computer program follows.

$RUN *FORTRAN SPUNCH=EPLST71 PAR=MAP

IMPLICIT COMPLEX*16(WeKoXgVoJePoToE(Fs¥),y REAL#*8(B)

COMPLEX*16 RWK RWKCE+DELTA,DELTAA,RDR4RNR1 jRNRyRNDR]1 4 RNDR

COMPLEX%8 Al,A2

REAL*8 CVyCWE,CWIyG4RyAT2,AR242 +RB1,RB2,ABSJ1B,ABSV1B,ABSPCT,
1ABSER]14ARSER2yABSEZ1yABSEZ29SYSL4RB1INCRB2INCyZINCR(AJKZ ,
INU,RBBL,yCV2 .

DIMENSION WA(200)+KA(2C0v4) ¢ XA{20094) +K(4) oX(4) yRWK(4) yRWKCE(4) o
1KK(4) sWK(4)4WK2(4) s WKCE(4)  KIT1(4)4KPERL(4) 4PAL(4),PATL(4),
1PATTL(4)4TAL(4),TA2(4) TR1(4),TR2(4),AT2(4) (AR2(4),TA2J(4),
1TR2J( 419 J1J0R(4),JOTAL(4) 4 J1TAL(4) s YOTAL(4) ,Y1TAL(4) 4JOCTRL(4),
1J1TR1(4) yYOTRL(4)yYITRYI{4) yK1KOR(4) 4 JOTA2J(4)4J1TA2J(4),YOTA2J(4),
1Y1ITA2J(4),KOTA2(4),JOTR2J(4)4J1TR2J(4),YOTR2J(4),Y1TR2J14),
1K1TR2{4) 4 VIKZ(4) 4F(4)FF(4)4FK{4)4J1BZ(200+4)+V1IBZ(200+4),
1POT(2004+4) 4ERI(20094)4EZ1(20044)4ER2(20044)4,E22(2004%),
1J1BZT(200)4VIBZT(200),POTT(200) yERLT(200),EZ1T(2C0) 4ER2T(20D1),
1EZ2T7{200 )y FFF(4),KOTR2(4),KORAR(4) ,ABSJL1B(2D00),YIOTR2(4),
IABSV{B(ZCO)VABSPDT(ZCC)'ABSERI(ZOO)1ABSER2(2°O,'ABSEZI(ZOO?’
LABSEZ2(200),yA1(4)yA2(4)y AJKZ{4),AEZ1200),AER(200)yAWA(200),DELTAI(
14),FFFF(4), BBSJBZ{200,4),8BSVBZ{200,4),8BSPOT(200,4)+BRASERL (200,
14)4BBSER2{200+4)BBSEZ1(20C+4)+BBSEZ2(2C0¢4),TB2(4),TB2J(4),
1J0TB2J(4)14J1TB2J(4)4YOTR2J(4)Y1TB2J(4)YIOTA214)YIOTB2(4),
1KOTB2(4),YI1TR2(4),RCR(4),RNRL1(4)+RNR(4)RNDR1(4) 4RNDR(4),RBB1(4)

NAMELIST/INPUT/NysZ+RBI9yRA2yCVyCWE yCWI 3G oR9ySYSLINU,CV2¢Sh,SW2

DATA NyZyRBLyRB2yGeSYSLySWySW2/59Ce29Ce592.091e843E340.25+0.040.0/

VJ=CCMPLX({0.0041.D0)

1 READUS, INPUT)

WRITE(64 INPUT)

VJdil=1%VJ

DO 500 L=1,4N
READ{7+50) WeK

50 FORMAT{10E13.5)

WA(L)=W

CO 40 1I=1,4



40

45

55

160
150

200
250

260
270

280
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KA(Ly I1=K(T)

KKED)=K{I)*K (1)

WW=hW¥W

WC I=WW-CWI

WCI2=WCI*WC1]

WCE=WW-CWE

WCE2=WCE*WCE

WNUJ=W=-V.J*NU

WNUJ2=WNUJ*WNUJ
WNUCE=WNUJ2-CHWE

WK{T)=W-K(I)
WK2{T)=WK{I)*WK(T)
WKCE(I)=WK2{1)}-CWE
RWK(T)=R/WK2(I)

RWKCE{ I)=R/WKCE(TI)
KI12=1e=1e/WH=G/{W*WNUJ)
KITI(I)=KITI2-RWKI(I)
KPER2=1.+-14/WCI-G/{WXWNUCE ) *WNUJ
KPERI(I)=KPER2-RWKCE(I)
PALL{I)=KIT1(I)/KPERL(TI)
DELTA{T)=1.+WK2(I)*K(I)/{W*CWE)*PAL(])
CALL DCOEFFUIWsKySYSLyDELTASX{L1)yX{2)4X{3)4X{4))
DO 400 I=1,4

XA(Ly I)=X(1)
PAT1U{I)=CCSQRT(PAL(I)]

IF (SW2.EQ.1.) GO TO 375
PATT1(T)=CV*PAT1(1)*vy
TAL{I)=K(1)*PATTI(I)
IF{SW.EQ.1.) GO TO 45
TA2{1)=K(1)*CV

GO 70O 55

P2=KPER2*KII2

PT2=CDSQRT(P2)

PA2=KII2/KPER2
PAT2=CDSQRT(PA2)

PATT2=CV*PAT2

PBTT2=CV2%PAT?2
TA2(1)=K(1)*PATT2
TB2(I¥=K(I)1%PBTT2
TRI(I)=RB1*TAL(I)
TR2(I1)=RB2*TA2(])

IF(SW.EQ.1.) GO TO 25C
AT2(11=TA2(1)

AR2(I)=TR2(1)

IF(AT2(I).LT.0.) GO TO 109

G0 TO 150

TA2(1)=-TA2(1)
IF(AR2(1).LT.0.) GD TO 200

GO TO 250

TR2{I1=-TR2( 1)
TAJUI)=TAZ( 1 )*VJ
TR2J{II=TR2(1)*Vy

IF (SW.EQ.1.) GO TO 2¢C
A2(1)=TRZJ(TI)

GO TO 270

TB2J(I1)=TB2(1)*VJ

AL(T)=TAL(I])

IF(ABS (ATMAG(AL(I})).GT.170.) GO TO 280
GO TO 300
JOTAI{I)=DCMPLX(1,CD5Cy1.0D50)
JOTRI(I)=DCMPLX(1.CD5C,y1.0050)
J1TRI(I)=DCMPLX(1.0D5C,y1.0D5G)
GO TO 320
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300 CALL CDBESJ(TAL(I),JOTAL(I),JITAL(I),YOTAL(I) Y1TALLI))
CALL CDBESJ(TRI(I),JOTRI{I},J1TR1ICI},YOTRI{I),Y1TRL(I))
JLJOR{II=JLITRI(I}/JCTAL(I)

320 IF{SW.EQ.1l.) GO TO 36C
IF(ABS(AIMAG(A2(1))).GT.170.) GO TO 340
GO TO 360

340 KI1KOR{I)=-VJ*VJ
KORAR(1)==VJI*VJ
GO 70 380

360 CALL CDBESJ(TA2J(I),JOTA2J(1),JLTA2JCI),YOTA2JLI),YLITAJ(I))
CALL CORESJ(TR2J(I)4JOTR2JCI),JITR2J{1),YOTR2JCTID),VITR2J(I))
KOTA2{1)=1457C796%(VJ*JOTA2J(I)-YOTA2J(]))
KITR2{1)==1.570796%(J1TR2J(II+VI*YITR2J(I})
KOTR2(1)=1.57C79¢x(VJ*JCTR2J(I)-YOTR2J(T N}
KIKOR{I)=K1TR2(I)/KCTAZ(T1)

KORAR(1)=KOTR2{1)/KQTA2(I)

IF (SW.EC.0.) GO TO 38C

CALL CDBESJ(TﬁZJ(I)qJCTBZJ(I)9J1T82J(I)qY0T82J(I).YITBZJ(I’)
YIOTA2(I)=J0TA2J(1)

YIOTR2(1)=4CTB2J(1)

YIOTR2(U1)=JQ3TR2JAT)

YILTR2(1)==VJ*J1TR2J(I)
KOTBZ(I)=1.570796*(VJ*JOTBZJ(I)-YOTBZJ(I))
RDR(T)=YIOTAZ(1)%=KOTB2([)-YIQTB2( I)*KOTA2(I)
RNRL(I)=YI1TRZ(I)*KOTB2(1) +YICTB2(I)*K1TR21I)
RNR{I)=YIOTRZ(I)*KCTB2(I) - YIOTB2(I)*KOTR2(1)
RNORI{TI)=RNRI(T)/RDRI(I)

RNDR (I )=RNR(I)/RCR{I)

GO TO 380

375 RBB1(I1)=2.4048%RB1
TR1(1)=DCMPLX(RBB1(1),C.DD)

CALL COBESJ{(TRI(I)4JOTRL{I) JITRI{I}YOTRIC(I),YLITRLI(IN)

380 VJKZ(I)=VJZxK(1)

FOI)=W-K{I)

FELTI=FCT)=F(I])

AJKZ{I)==VJIKZ(])

FK{I)=CDEXP{-VJIKZ(I))

FFEIT)=1+/R¥FF(T)*FK(I)
FFFF(I)=XA(LyI)/DELTA(I)XFFF{I)
J1IBZ{LyI)=XA(Ly I1*JCTRILTI*FK(])
VIBZ{Ls1)==1o/{W*DELTACI) I*FLTI)*J1BZ(LVI)
POT(Ly1)=14/ (WEK{IVXDELTALI)IRFFLT)*JIBZ(Ly1T)
ER1{LyI)=FFFFUI)*PATI{I)*J1TRILI) /W

EZL(Ly IV=FFFF{I)I*JOTRI(T) /W

IF(SW.EQ.1.) GC TO 381

IF (SW2.EQ.1.) GO TO 282

ER2(L I V==VJI*TA2LIN/(K(IDIXCVIXFFFF(I) *K1KOR{I I *JOTAL(I)/ (W)
EZ2(Ly1)=FFFF{I)*KORAR(I}*JOTAL(I) /N

GO T0 37s ’

381 ER2{L4I)=VJ/U%PAT2 (FFFF(T)*JOTAL(T)*RNDRL(I)
EZ2(Ly I)=1./WHFFFF{L)*JOTALCI)*RNDR(I)

379 CONTINUE

BBSER2(L4I)=CDABS(ER2(L, 1))

BBSJBZ(LI)=CCABS(JLIBZIL.I))

BRSVBZ(L,1)=CDABS(VIBZ(L.I))

BBSPOT{L,I)=CCABS(POT(L,1))

BBSER1{L,)=CCABS(ER1(L,1))

4C0 BBSEZ1{(L.I)=CCABS(EZI{L,I))

383 JIBZT(LI=J1B3Z(L,y114J1BZ(L+2)04J1BZ(L43)+J1BZ(L+4)
VIBZT(L)=VIRZ(Ly1)+VIBZ(L,2)+VIBZ(Ls3)+VIBZ{L4)
POTT(L)=POT (Lo 1)4POT(L,2)+POTIL+3)+POT(L+4)
ERIT(L)=€ER1(Ly1I4ERI{L s 2)+ERLIL,3)+ERL(L,4)

W
[4+]
~n
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EZIT(L)=EZ1(Ls104EZ1(Ls214EZL1IL43)4EZ1L44)
IF (SW2.EQ.1.) GO TO 284
ER2T(L)=ER2(Ly 1 )4ER2{L 4 2)4ER2(L43)+ER2( L4}
EZ2T(LI=EZ2{L s LV4EZ2(L+2)+EZ2{L+3)+EZ2(L 4}
ABSER2(L)=COABS(ER2T{L))
ABSEZ2(L)=CCABS{EZ2T(L )

AER(L)=ABSER2(L)

AEZ(L)=ABSEZ2(L)

384 ABSJIB(L)=CCABS(J1BZT(L))
ABSVIB(LI=CDABS{VIBZT(L)}
ABSPOT(L)Y=CDABSIPGTT{L))
ABSER1{L)=CDABS{ER1TI(L))
ABSEZ1(L)=CLABS{EZLT(L))

IF (SW2.EQ.0.) GO TO 261
AEZ(L)=ABSEZ1(L)
AER(L)=ABSERLI(L)

391 CONTINUE
AWA(L)=WA(L)

5CO0 CONTINUE

505 WRITE(64600) (WA(L)Q(KA(L»I, QI:I’I’)'L’_‘]-'N)
WRITE(69595) (WAIL) o (XA(L,I)eI=1,4)4L=1,N)
WRITE(64€1C) (WA(L)9(JIBZ(LyI)eI=1494)4L=1,yN)
WRITE(694730) (WALL)(BBSJIBZ{LeI)yI=144)4L=1,4N)
WRITE (6496150 {WA{L)J1BZT(L)sABSJLIB(L)L=14N]}
WRITE(64€620) (WAL )o(VIBZ(L,yI)eI=144),L=1,N)
WRITE(64740) (WA(L)y(BBSVBZ{LsI)yI=144),,L=1,N)
WRITE (64625)(WAIL)WVIBZT(L)ABSVIB(L) L=14N]}
WRITE{64630) (WA(L)s (POT{L4I)4I=144),L=14N)
WRITE(64750) (WA(L)(BBSPOT{Ly1)yI=144),L=1,N)
WRITE (64€35)(WA(L), PCTT(L) +ABSPOT(L)4L=1,N)
WRITE(64640) {WA(L)y (ER1{L4I)sI=144)4L=1,4N)
WRITE(6,760) (WA(L)y(BBSER1{LyI)yI=144)yL=1,4N)
WRITE (64645)(WA(L)y ERLT(L)ABSERL(L)9L=1,N)
WRITE(64650) (WAIL)e (EZ1{L4+I)41=144)4L=1,N)
WRITE(64+780) (WA(L)4(BBSEZ1{(LyI)sI=144),L=14N)
WRITE (6,65%) (WA(L)SEZL1T(L)ABSEZ1(L) L=1,4N}
IF (SW2.EQ.l.) GO TG 2€5
WRITE(64660) (WA(L)y (ER2{L 1) 9I=144),4L=1,N)
WRITE{6+770) (WA(L)o(BBSER2(Ly41)yI=144)4L=14N]}
WRITE {64665) (WA{L)+ER2T(L)yABSER2(L) 4L=1,4N)
WRITE(64670) {(WALL)y (EZ2{L41)s1I=144),4L=1,4N)
WRITE(64790) (WA(L)(BBSEZ2(Ls1)sI=144)4L=1,N)
WRITE (6,+6175) (WA(L)EZ2T(L)ABSEZ2(L)yL=14N)

385 WRITE(2, INPUT)

WRITE(2,9G0) (AWA{L)AEZ(L)JAER(L),L=1,N)

595 FORMAT(*1',T28,'X(I) VALUES FOR DIFFERENT K VS FREQUENCY?®
1/1X/1X/(2F8.348E1l4.4))

600 FORMAT ('1',T735,'K VALUES OF THE FOUR WAVES VS. FREQUENCY!/1X/
1T8 "Wy T29, "K{1) 'y T57,'K(2) 9 T85,'KI(3)",T114,'K(4)*/1X/
1(2F8.3,8E1444)) »

610 FORMAT (v 1'9y728y'AC CURRENT DENSITY MODULATIUN OF FCUR WAVES VS
JFREQUENCY®/1X/ T8 W TZ2Te 7 J1BZ{13 1 4T5540J1B62(2)",T83,%J1BZ(3)?
14T111,%J1B2(4) ' /1X/(2F€.348E14.4))

615 FORMAT ('1',T735,'TOTAL AC CURRENT-DENSITY MODULATICN VS FREQUENCY!
1/71X/T304 "Wy T65,'J1BZT', 752, 'ABSJLIBZT/1X/1X/120X42F10.3,43E20.41))

620 FORMAT('1',T28,*AC VELCCITY MODULATION OF FOUR WAVES VS FREQUENCY!?
1/1X/T8y "Wy T27 4 VIBZ(1)*eTS55,'VIRZ{2)",T83,'V1IB2{(3)*,T1l1,'V1iBZ{4)
1*/1X/(2F8.348E14.4))

625 FORMAT(*1',T35,'TOTAL AC VELOCITY MCDULATION VS FREQUENCY*/1X/
1T304 "W e TO65,'VIBZT 'y T92, *ABSVIBZT*/1IX/1X/(20Xe2F104343E2Ce4))

630 FORMAT(%1*,728,'POTENTIAL INSIDE BEAM OF FOUR WAVES VS FREQUENCY!
1/1X/ T8 VWt g T27, 'POT(1) *9T554 'POT(2) " ,TB3,'POT(3)Y 4T111,y°PCT(4)?
1/1X/(2F8.348E1444))
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FORMAT (*1*, T35,'TOTAL POTENTIAL FUNCTION INSIDE BEAM VS FREQUENC
1Y'/1X/T30, Wy T65,'POTT*3T92,'ABSPCTT*/1X/1X/(20X42F10.3,43E20.4))
FORMAT (*1',725,'RADIAL ELECTRIC FIELD INSIDE BEAM OF FOUR WAVES
1VS FREQUENCY'/LX/T8y'h®,T274*ERL(1)*4T55,'ER1(2)*4T83,'ERL(3)",

ITI11,'ER1(4) ' /1X/12F843,8E14.4))

FORMAT (1,730, 'TOTAL RADIAL ELECTRIC FIELD INSIDE BEAM VS [REQUE
INCY'/1X/T304 ' W® ¢T659"ERLT! 4 TG29 *ABSERIT/1X/1X/(20X42F103,3E20.4
1)

FORMAT ('1°*,7T25,*AXIAL ELECTRIC FIELD INSIDE BEAMCF FOUR WAVES
1VS FREQUENCY!/1X
1/T8y W o T2Ty"EZL(L) 4TS5, EZ1(2) "y T83,'EZL(3)*yT111,'EZL1(4)/1X/
1(2F8.348E14.4)) .

FORMAT ('1°',730,'TOTAL AXIAL ELECTRIC FIELD INSIDE BEAM VS FREGUEN
1CY ' /1X/T20, "Wy T65,EZ1T*,T92, *ABSEZL1T/1X/1X/(20X92F10.3,3E20.4
1))

FORMAT (*1',T25,'RADIAL ELECTRIC FIELD OUTSIDE BEAM OF FOUR WAVES
1VS FREQUENCY®/1X/T8By'W* 4 T27,"ER2(1)*T55,ER2(2)¢T83,'ER2(3)",
1T111,'ER2(4)*/1X/(2FE.2,8E14.4))

FORMAT (*'1%,730,'TOTAL RADIAL ELECTRIC FIELD OUTSIDE BEAM VS FREQU
LENCY '/ 1X/T304 ' W?9T65,*ER2T* 4 T92,4*ABSER2T/1X/1X/(20X42F10.3,3E20.
14))

FORMAT ('1',T25,'AXIAL ELECTRIC FIELD OUTSIDE BEAM OF FOUR WAVES
1VS FREQUENCY'/1X/TBy'W'yT27,'EZ2(1)*,T55, EZ2(2)*,T83,'EZ2(3)?,
1T111,'E22(4)*/1X/(2F8.3,8E14.4))

FORMAT (*1*',T30,*'TOTAL AXIAL ELECTRIC FIELD OUTSIDE BEAM VS FREQUE
INCY'/1X/T30, "Wy T654EZ2T* 4 T92y *ABSEZ2T'/1X/1X/(20X42F10.3,3E20.4
1))

FORMAT (' 1',728,'ABSJ1BZ VALUES FCR DIFFERENT K VS FRECUENCY !
1/1X/1X/{2F8.3,4D25.6))

FORMAT('1',T28,'ABSV1BZ VALUES FOR DIFFERENT K VS FRECUENCY !
171X/71X/{2F8.3,4D25.€))

FORMAT (' 1,728, *ABSPOT VALUES FOR DIFFERENT K VS FRECUENCY !
1/1X/1X/(2F843,4D025.6)) ‘

FORMAT(*1',T28,*ABSER1 VALUES FOR DIFFERENT K VS FRECUENCY ¢
1/1X/1X/(2F8.3,4D25.¢€))

FORMAT('1*,T728,'ABSER2 VALUES FOR DIFFERENT K VS FRECUENCY !
1/1X/1X/(2F8.3,4D25.61))

FORMAT(*1*,T28,'ABSEZ1 VALUES FOR DIFFERENT K VS FRECUENCY ¢
1/1X/1X/(2FB84344D25.6))

FORMAT (' 1*,T28,'ABSEZ2 VALUES FOR DIFFERENT K VS FRECUENCY ¢
1/1X/1X/{2FB43,4025.6))

FORMAT (3E20.4)

END

$ENDFILE

*¥¥%¥NORMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000267
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E.2 Computer Program for Normal-Mode Field Calculation as a Function of

Axial and Radial Distance

This computer program is essentially the same as the one given in
Section E.1 except that in this case the normal-mode quantities are
calculated as a function of radius or axial distance at a fixed frequency.
Approximately the first two thirds of the program calculates the
quantities which are required for normal-mode field calculation at a
given frequency. Again switches SW and SW2 have the same meaning as
that given in Section E.1. The last one third of the program computes
the variation of normal-mode gquantities as functions of radius cor axisl
distance. Switch SW3 = 0 allows the program to bypass a section ¢ the
program which calculates the radial variation. Agéin the Quantities of
interest, such as the real part of the axial and radial electric field
and axial distance, are stored in a private file for plotting. Other

quantities are printed out in the desired format by a printer. The

listing of the computer program follows.
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$RUN *FORTRAN SPUNCH=EPLST2 PAR=MAP

40

IMPLICIT COMPLEX*16(WeKoXeVyJoPeToEoF,Y), REAL*8(B)

COMPLEX*16 RWK.RWKCE,DELTA,DELTAA,RDR,RNR]1 RNRyRNDR] ,RNDR
COMPLEX*16 RO1BZ.,RO1BZT

COMPLEX*8 Al1,A2,AR1

REAL*8 CyvCHE'CHIyGquATZyARZ'Z.RBlyRBZ,ABSJIByABSVIBvABSPOTv
1ABSER19AESERZ!AHSEZI:ABSEZZtSYSLle!NCRvRZ[NCRleNCR;AJKZ;NU:
2RBB1,CV2,RB1I,RBZI ,ABSRO1l

DIMENSION ZA{200),DELTA(4),XA(200+4)e K{4) o X{4) RWKI(4) yRNKCE(4)
IKK{4) 3 WK (4) g WK2(14) yWKCE(4) yKIT1(4) +KPERL{4) 4PALL4) ,PATL(4),
1PATT1(4) ,TAL(4),TA2(4) 4 TR1{4),TR2{4),AT2(4) ,AR2(4),TA2J(4),
1TR2J{4) y J1JOR(4) 4 JOTAL(4) 4 JITALI(4) ,YCTAL(4),Y1TAL(4),JOTRL(4),
1JITR1{(4) s YOTRI(4)s YITR1(4) \KIKOR(4) 4JOTA2J(4) 4JLTA2J(4),YOTA2J(4),
1Y1TA2J(4),KOTA2(4),JCTR2J(4)4J1TR2J(4) ,YOTR2JI(4),Y1TR2J{4),
1K1TR2(4’gVJKZ(4)'F(4’1FF(4)'FK(4)vJIBZ(200v4,yVIBZ(200'4’9
1POT{200,44),ER1(200,4),EZ1(200+4)4ER2{200,44),E22(200+44),
1J182T(200),VIBZT(200)4POTT(2G0),ER1IT(200),EZ1T(200),ER2T(200),
1EZ2T (200 )y FFF{4)4yKOTR2(4)KORAR(4) ,YIOTR2(4) +ABSUL1B(200),
1ABSV1B(200),ABSPOT(2C0),ABSER1(200) +ABSER2(200),ABSEZ1(200),
IABSEZZ(ZOO"A1(4,9A2(4)' AJKZ{4)AEZ(200)4AER{20C) 4AWA(200)
1,FFFF(4),TB214),T82J(4),J0T82J(4),J1TB2J(4),YOTB2J(4),Y1T8B2J(4),
1YIOTA2{4),YIOTB2(-4) 4KCTIB2(4),YI1TR2(4)4RDR(4) 4RNR1{4) 4RNR{4),
1RNDR1{(4),RNDR(4),RBB1(4)4+RA(20C)+AR1(4),ARLR{4)AR1I(4),RO1BZ(200,
14),RO1BZT(220)4AB6SR01(200),B8SR01(200,44)

NAMEL IST/INPUT1/Z42INCR,ZI,RB1,RB2,R1INCR4yR2INCR,RB1IRB2I/INPUT/
I1W KyNyN14yCV4CV24CWEyCWIgGyRy SYSLyNUy Sk SH24SW3

DATA NyN1,yZ 4214 ZINCRyRB1+RBLIyRB24RB2I yR1INCRyR2INCRySW¢SW24SW3/
1101590¢090¢290¢6010¢6090¢0+40e6040e09Ce0¢0.090.0,0¢030.0/+ChECWI Gy
2NU /1.66E440.00489,1.843E3,0.1/

VJ=DCMPLX(0.CO,41.D0)

V2ERU=DCNMPLX{U U0y 0.0C)

REAG{S, INPUTI)

WRITE(&, INPUTL)

READ(54 INPUT+END=999)

WRITE(6,4 INPUT)

WW=W*W

WCI=WW-CWI

WCI2Z2=WCI*WCI

WC E=WW-CWE

WCE2=WCE*WCE

WNUJ=W-V J%=NU

WNUJ2=WNUJ*WNUJ

WNUCE=WNUJ 2-CWE

DO 40 I=1,4

KK(I)=K{T)*K(I)

WK(T)=W-KI{T1)

WK2 (T )=WK(T)*WK(])

WKCE{I)=WK2(1)-CWE

RWK{I)=R/WK2(1)

RWKCE(I)=R/WKCE(T)

KIl12=1a=1o/Wh=-G/ {WEWNLJ)

KITI(I)=KII2=-RWwKI{I)

KPERZ2=1e-14/WCI-G/(WXWNUCE ) *WNUJ

KPERLI(I)=KPER2~-RWKCE(T)

PAL(I)=KII1(I)/KPERI(I)

DELTA(I)=) o +WK2(I)*K(T)/(WXCRE)%XPAL(])

CALL DCOEFF(WyeKySYSLyDELTAZX{1) ¢X(2)¢X(3)4X(4))

IF{SW3.£Q.0.) GO TO 41

RB1=0.0

RB2=RBR21I
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1=1%0.421

CO 500 L=1,N

IF (SW3.EQ.1.0) GO T0 43

IF (L.GT.1) GO TO 377

CO 380 I=1,44
PATL(I)=CDSQRT(PAL(I))

IF (SW2.EQ.1.) GO TO 375
PATTL(I)=CV*PAT1I(] }*VJ
TAL(I)=K(I)*PATT1I{])
IF(SW.EQ.1.) GO TO 45
TA2(I)=K{1)%CV

GO TO 55

P2=KPER2*KII2

PT2=CDSQRT(P2)

PA2=KII2/KPER2
PAT2=CDSCRT(PA2)

PATT2=CV*PAT2

PBTT2=CV2%PAT2
TA2{1)=K({1)%PATT?2
TB2LI)=K{I)*PRTT2
TRI(I}=RBI*TAL(])
TR2(I)1=RR2%TA2(I])

IF{SW.EQ.1.} GO TO 25¢C
AT2{1)1=TA2(1)

AR2(1)=TR2(1)

IF(AT2(1).LT.C.) GO TO 100

GO TO 153

TA2(1¥=-TA2(1)
IF{AR2(]).LT.0.) GO TO 200

GO TO 250

TR2(1)==-TR2(1)
TA2J(1)=TA2{1)*Vy
TR2JILT)=TR2(1)%*VJ

IF (SW.EQ.1.) GO TO 26C
A2(1)=TRZJ(1) i

GO TO 270

TB2J(I)=TB2(1)*Vy

AY(T)=TAL(T)
IF(ABS(AIMAG{ALLI))).GT.170.) GO TO 280
GO TO 300
JOTAL(1)=DCMPLX{1.CD5C+1.0D50)
JOTRI(1Y=DCMPLX{1.005Cy1.0050)
JITRI(L)=0CHMPLX{1.005C,+1.0D50)
GO T0 3290

CALL COBESHU(TAL(I)+JOTAL(I) $JLTAL(I) 4YOTAL(L),Y1TALCI))
ARLIT)I=TRLI(T}
ARIR(1)=REAL{ARL(I))
ARYITIUI)=AIMAG(ARI(I))
IF{ARIR{T)«EQ40.C.AND.ARL1I(I).EQ.C.0) GO TO 301
CALL COBESJU(TRLUI)JOTRLI(I) 4 JITRICTI) 4YOTRLI(I) 4Y1ITRLI(I))
GO T0 302
JOTRIII}=CCMPLX(1.DC+0.00)
JITRI(IV=VZERD
JIJOR(I)=JITRI(II/JOTAL(T)
[FISW.EQ.1.) GO TO 360
IF(ABS(AIMAG(A2(TI))).CT,.17C.) GO TO 340
GO TO 360

K1KOR{1)=~VJ%VvJ
KORAR (1) =-VJ%xVy

GO TO 380
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CALL CDBESJ(TA2J(I)4J0TA2J(1),J1TA2J(1),YOTA2J(I),Y1TAJ(I))
CALL CDBESJ(TR2J(I)4JOTR2JUI)4J1ITR2J(I)+YOTR2JLI) 4Y1TR2J(I))
KOTA2(1)=1.57079¢x{VI*JCTA2J(1)-YOTA2J( 1))
KLTR2(I)=-1,570796% (J1TR2J(II+VJI*Y1ITR2J(1))
KOTR2(I)=1,57079€*(VI*JOTR2J(I)=YOTR2J(1))
KLKOR(I)=K1TR2(I)/KCTA2{ 1)

KORAR(I ¥=KOTR2(1)/KCTA2(T)

IF (SW.EQ.0.) GO TO 28C

CALL CDBESJ(TB2J(I1),J0TB2J(1),J1TB2J(I),Y¥Y0TB2JUI),Y1TB2J(I))
YIOTA2(1)=J0TA2J(1)

YIOTB2(1)=J0TB2J(I)

YIOTR2(I)=J0TR2J(1)

YILTR2(I)==VJ*J1TR2J(I)
KOTB2{I)1=1.E7079€6x(VJ*JOTB2J(I)-YOTB2J(1))
ROR(I)=YIOTA2({I)*KOTB2(1)-YIOTB2( 1)1*KOTA2(I)
RNRI(I)=YI1TR2(T)*KOTB2{ 1) +YIOTB2(I1)*K1TR2(I)
RNR{I)=YIOTR2(I)*KCTB2(I) - YIOTB2(1)*KOTR2(I)
RNDRI(T)=RNRL(T)/ROR(I)

RNDR{I)=RNR(T)/RCR{I)

GO TO 380

RBAR1(1)=2.4048%RB1

TR1(I)=DCMPLX(RBB1(I),0.00)

ARL{I)=TRI(I)

ARLR(I)=REAL(ARL(I))

ARLI(T)=AIMAG(ARL(I))
IF(ARIR(I)+EQ.0.C.AND.ARII(I).EQ.C.0) GC TO 376
CALL CODBESJU{TRL(I)JOTRI{I),JLTRICI),YOTRI(I),Y1TRI(]))
GO TO 380 :
JOTR1{I)=DCMPLX(1.COyC.DO)

JITRI(1)=VZEROD

CONTINUE

ZA(L)=2

VJIZ=1%VJ

D0 400 I=144

XALLyI)=X(1)

VIKZ(1)=VJIZ*K(1)

FOI)=W=K(T)

FECI)=F{I)*F(I)

AJKZ(1)==VJIKZ(1)

FK{I)=CDEXP(-VJIKZ(I))

FFF(I)=1./R*FF(I)*FK(I)
FEFF(I)=XA(L, 1) /DELTACII*FFFLT)

JIBZ(LyI)=XA(L,y I)*JCTRICT)*FK(I)
VIBZ(LoI)==1./{W*DELTA(I))*F(T)*J1BZ(L,1)

POTH{L,y I)=1o/(W&K{I)*DELTACT) VXFF(I)*JIBZ(Ly 1)
ERL(L,y [)=FFFF(IM%PATLI(I)*JLTRI(I) /W

EZL(Ly 1)=FFFF{T)I*JOTRI(I) /W

ROLBZ(Ly I)=K(I)*(RWK(I)-RWKCE(I)*PALLI)) *EZ1(L,1)
BBSROL(L s I)=CDABS(RO1BZIL,I))

IF{SW.EG.1.) GO TO 3¢l '

IF (SW2.EQ.1.) GG TO 4CO

ER2{Le I)==VIXTA({IV/(K{IDI%CVI*FFFF(I)*K1KOR(I)*JOTAL(I)/ (W)
EZ2(LsI)1=FFFF{I)*KQRAR(I)%JOTAL(T) /W

GO TO 400

ER2(LyI)=VJI/WHPAT2  #FFFF(I)%JOTAL{1)%*RNDRL{I)
EZ2(Ly1)=1o/WFFFFUI)*JOTAL( 1) *RNDR(I)

CONT INUE

JIBZT(L)=J1RZ(Ls 1V+J1BZAL,2)+J1BZ{Ls3)+J1BZIL 44)
VIBZTIL)=VIRZ(L 1) +VIBZIL42)+VIBZUL3)+VIBZ(L 44)
POTT(LI=POT{L,1i+POT(Ly2)+4POT(L,3)14POT(L,4)
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ERIT(LI=ERL(Ly1)+ERL(L,y21+ERLIL 43 )+ERI(L4)
EZITILI=EZI(L 1 )4EZLML 4 214EZL{L 43 )+EZL(L+4)
RO1BZT(L)=RO1BZ{Ly1)+RCOL1BZ(L42)+RO1BZ(L,3)4ROLBZIL ¢4}
IF (SW2.EQ.1.) GO TO 384 .
ER2T{L)=ER2(Ly1)+ER2(L 4 2)+ER2{L+3)+ER2(L %)
EZ2T{L)=EZ2(Ly 1)+EZ2(L 4 2)+EZ2{L 43 )4EZ2(L4%)
ABSER2(L)=CCARS(ER2TI(L))

ABSEZ2{L )=CCABS{EZ2T{L))

AER(L)=ER2T(L)

AEZ(L)=EZ2T (L)

384 ABSJIR(LI)=CDABS(JLIBZT(L))
ABSVIB(L)=CDABS(VLIBZT(L))
ABSPOT(L)=CDABS(POTT(L))
ABSER1(L)=CDABS(ER1T(L))
ABSEZ1(L)=CCABS{EZL1T(L))

ABSROL1 (L )}=CCABS(RO1IBZT{L))
IF (SW2.EQ.D.) GO T0O 291
AEZIL)=EZ1T(L)
AER(LI=ERIT(L)

391 CONTINUE
I=7Z+7ZINCR
IF (SW3.EQ.0.0) GO TO =0¢
IF(L.GE.N1+2) GO TO 38¢
RA(L)=RB1
GO TO 287

386 RA(L)=RB2

387 IF (L.GT.Nl) GO TO 392
RB1=RB1+R1INCR .

GO TC 500

392 IF(L.GE.N1+2) GO TO 363
RB2=1.0
GO TO 294

393 RB2=RB2+R2INCR

394 RB1=RB1I

500 CONTINUE .

505 WRITE(6+4595) Wy (X{I)eI=1,4).

IF(SW3.EQ.1.,) GO TO 51C

WRITE(6,602) (ZAIL)y(ROIBZ{L 1) sI=144)4L=1yN)
WR]TE(61603, (ZA(L’,(BBSRDI(L,I)QI=’.'4) 1L=11N'
WRITE(6,604) (ZA(L),RO1BZT(L)yABSRO1{L)L=14N)
WRITE (64615)(ZA(L)¢J1IBZTI(L)ABSJILIBIL)sL=14N)
WRITE (6,625 ZA(L) s VIBZT(L)ABSVIB(L)L=1,N)
WRITE (6,635)(ZA{L)y POTT(L)4ABSPOTI(L) yL=14N)
WRITE (646450 {ZA(L)y ERITIL)ABSERLI{L) +L=1,N)
WRITE (6,655 (ZA(L)4EZLITIL) ¢ABSEZ1(L) +L=1,4N)
IF (SW2.EQ.1.) GO TO 285

WRITE (6,665) {ZA(L)+ER2T(L) 4ABSER2{L)4L=1,N)
WRITE (6,675} {ZA(L) +EZ2T(L) 4ABSEZ2(L) 4yL=14N)
GO TC 385 .

510 WRITE (6,4815)(RA(L),JIBZT(L),ABSILIBL(L)L=14N)
WRITE {64825)(RA(L)VIBZT(L)ABSVIBIL) L=14N)
WRITE (6,835)(RA(L), POTTIL)ABSPOT(L} L=1,N)
WRITE (64845)(RA(L)y ERLT(L),ABSERL(L)yL=14N)
WRITE (6,855) {RA(L)GEZIT(L)ABSEZL{L)sL=14N)
IF (SW2.EQ.1.) GC TO 285
WRITE (6,865) (RA(L) ¢ER2T(L)4ABSER2(L)4L=14N)
WRITE (6,875) (RA(L)+EZ2T(L)4ABSEZ2(L)+L=14N)

385 WRITE{(2, INPUT)

IF(SW3.EC.1.0) GO TO 289
WRITF(2+4900)  ZAUL)AEZ(L),AER{L),L=1yN)
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GO TO 991

WRITE(2,509) U RA(L)+AEZ(L),AER(L),L=1,N)

FORMAT(*1',T284"X(I) VALUES FOR DIFFERENT K ¢
1/1X/1X/(2F843,8E14.4))

FORMAT(*1',T28,' AC CHARGE DENSITY MODULATION OF FOUR WAVES
1 VS Z'/lX/lX/TS"Z'.TZT.‘ROlBZ(1)'.TSS"ROIBZ(Z)'.783.'ROIBZ(3)'
2T111,'RO1IBZI4) ' /1X/1X/{F16.3,8E14.4))

FORMAT(*1',T728,*ABSRO1BZ VALUES OF FOUR HAVES VS 2 /1X/1X/
1{F16.3,4025.¢€))

FORMAT(*1*,735,'TOTAL CHARGE DENSITY MODULATION VS 2'/1X/1X/
173044214765, 'RO1BZT"yTG2,*ABSROLBZT ' /1X/1X/{25X4F104345X,
22E20.4))

FORMAT (*1',745,'TOTAL AC CURRENT-DENSITY MODULATION VS Z !
1/1X/T384 02476542 J1BZT"4T92,*ABSJIRZT'/1X/1X/(20X+1F2043,3E23.4))

FORMAT(*1',T45,'TOTAL AC VELOCITY MCDULATION VS 2z v/1x/
173840214765, 'V1BLT*yT92,'ABSVIBZT*/1X/1X/(20X41F20.3+43E20.4))

FORMAT (*1', T45,'TOTAL POTENTIAL FUNCTION INSIDE BEAM VERSES
1ZY/1X/T38, %21, T65,POTT'4T92,*ABSPOTT*/1IX/1X/(20X91F20.3,43E20.4))

FORMAT (*1',T45,'TOTAL RADIAL ELECTRIC FIELD INSIDE BEAM VS
1Z Y/1X/T38,'7%yT654ERLT 7924 *ABSERLIT*/1X/1X/(20X¢1F20.343E20.4
1))

FORMAT ('1',T45,'TOTAL AXIAL ELECTRIC FIELD INSIDE BEAM VS
1Z "/1X/T384'2'3T65,'EZ)T,TG2,ABSEZ1T*/1X/1X/(20X41F20.3,3E20.%
1))

FORMAT ('1',7T45,'TOTAL RADIAL ELECTRIC FIELD OUTSIDE BEAM VS
1z Y/1X/T38y %2 s T6S+"ER2T' 3y T92,YABSER2T'/1LX/1%/(20X41F20.3,3E20.
14))

FORMAT ('1',745,*TOTAL AXIAL ELECTRIC FIELD OUTSIDE BEAM VS
1Z '/1X/T38y 972" ¢T65,%E22T 4TS24 'ABSEZ2T'/1X/1X/(20X41F20.3,3€20.4
1))

FORMAT ('1*,T45,'TOTAL AC CURRENT-DENSITY MODULATICN VS R !
1/1X/T38y Ry T654*J1BZT* ¢ TI2¢ *ABSJIBZT/IX/LX/(20X41F2043,3E20.4))

FORMAT(*1*,T45,*TOTAL AC VELOCITY MCDULATION VS R '/1X/
17384 'Ry T65,*VIBZT*yT92,"ABSVIBZT'/1X/1X/(20X41F206343E2044))

FORMAT ('1Y, T45,'TOTAL POTENTIAL FUNCTION INSIDE BEAM VERSES
IRY/1IX/T3Ey 'RV TOES,'POTT 9 T9249ABSPCTT/1X/1X/(20X41F20.343E2044))

FORMAT (*'1',T45,'TOTAL RADIAL ELECTRIC FIELD INSIDE BEAM VS
IR 7/1X/T38B9'RY"4yTOHS9'ERLIT® yT924 *ABSERIT*/1IX/1X/(20X41F20.3,3E20C.4
1))

FORMAT (*'1',T45,'TOTAL AXIAL ELECTRIC FIELD INSIDE BEAM VS
IR Y/1X/T384 R4 T654'EZ1T '+ T924*ABSEZLIT?/1X/1X/{2CX41F20.3,3E20,.4
11)

FORMAT ('1',T45,'TOTAL RADIAL ELECTRIC FIELD OUTSIDE BEAM VS
1R Y/IX/T384 'R, T65,'ER2T "3 T92 4y *ABSER2T/1X/1X/(20X41F20.3,3E20.
14))

FORMAT (*1*,T745,'TOTAL AXIAL ELECTRIC FIELD OUTSIDE BEAM VS
IR ¥/1X/T38y 'Ry T654VEZ2T' yT924 *ABSEZ2T/1X/1X/(20X¢1F20.3,3E20.4
1)

FORMAT (3E20.4)

CONTINUE

GO TO 1
CONTINUE

END

$ENDFILE

*¥x&xNORMAL TERMINATION: THE NUMBER OF RECORDS PROCESSED IS 00000294
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$RUN *FORTRAN  SPUNCH=EPLE850  PAR=MAP

SUBROUTINE CCOEFF(WoKyLyDELTAy X1y X24X3,X4)

IMPLICIT COMPLEX*16{WeKsFeSeGyeXyV)

COMPLEX*16 LCELTA

REAL*8 A4R,L

DIMENSION A(848)y RU8ByL1)eK{4)F(4),S504),G(4) VIKLI4)4VIF(4),
IVJIS(4),VIG(4)4DELTAL4)

VJ=CCMPLX({0.00,1.00)

VJIL=VJ*L

EPS=.0000001

N=1

M=8

O 10 I=1,4

F{I)=W-K{1)

FII)=F({I)/DELTALI)
CSEIN=1o /KO R (W-K(T))ex2

S{I)=S(1)/DELTA(I)

VJKLET)=VILEK(])

10 GUI)=S(I)*CCEXP{-VJKL(I))
CO 20 J=1l,4
VIF(J)=VI*F(J)
VJISUJI=VI%S(J)

20 VJG{J)=VJI*G(J)
CO 39 I=1,4
J=2%1-1
A(2,J)=0.0
All,d)=1.0
A(3,J)=F(])
Al4ed)==VJFL])
A(5,J1=S(1)
Al6ed)==VJSLI)
AlT7,9)=G(1)

30 A(84J)=-VJGI(I)
DO 40 1=1,4
J=2%]
A(15J)=0.0
Al2,J)=1.0
A(3,J)=VJIF(])
Al4yJ)=F (1)
ALS,J)=VJISIT)
AM6,J)=S(1)
A(T,J)=VJIG(I)

40  A(8,J)=G(1])

R(1,1)=1.0
00 50 1=2,8

50 R(I,1)=0.0
CALL CGELG(RyAyM,N,EPS,IER)
X1=DCMPLX(R(1,1)4R(2,1))
X2=DCMPLX(R(3,1),R(4,1))
X3=DCMPLX(R(5¢1)4R{6411))
X4=DCMPLX{R(T741)¢R{8451))
RETURN
END

$ENOFILE

*xxKk¥NCRMAL TERMINATION: THE NUMBER OF RCCORDS PRGCESSED IS 00000354



APPENDIX F. CALCULATION OF RF FIELD STRENGTH FROM

RF LANGMUIR PROBE MEASUREMENTS

A simple calculation is presented here to deduce the radial RF
electric-field strength from the RF Langmuir probe méasurements. A
schematic circuit diagram is shown in Fig. F.1l. The probe is connected
to a dc ground through a 100-kQ resistor and the capacitively coupled ac
voltage 1is fedvto a wideband RF amplifier. The output of this amplifier
is measured by a VIVM via an integrator (the need for the integrator is
discussed in Section 3.2.2).

The oscillatory charge induced on the probe surface in the

presence of an RF electric field E is given by

Q = € EA = ¢ FEFA , (r.1)

where A is the actual area of the probe surface and F is a factor by
which the probe area is multiplied to obtain the effective probe ares
Aeff' The factor F appears because of distortion of the field by tie

presence of the probe. The current which flows through the external

circuit is obtained by dQ/dt and for the steady state is given by
il = |se@] . (r.2)

The voltage which appears across the input of the amplifier terminals

is thus

where Ro = 50 0 and is the input resistance of the amplifier. The voltage

-2he-
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FIG. F.1 SCHEMATIC CIRCUIT DIAGRAM OF THE RF LANGMUIR PROBE

DETECTION CIRCUITS.
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at the output of the integrator is simply

0o G, IGI lV1, ] (F.)—}\

where AG is the voltage gain of the amplifier and G is the gain of the

integrator.

From Egs. F.1l through F.4 the electric-field strength is given by

,
g = 2 X _ (F.5)

where the gain of the integration has been assumed to be

ol = &

R and C are the values of the resistor and capacitor of the integrater.

1l

In a typical measurement at the second peak vy 35 mV. The cother

Il
=
»
H
<

®
)
9]
-~
ct
[
(")

parameters are A, = 100, Ro = 50 @ and the product RC

G
particular gain characteristic of the integrator used. The diameter of

the probe wire is 0.0l inch and the length is 1.25 cm, therefore the

probe area is A = 1 x 1075 m®. Substitution of these values in Eq. F.5

yields

il fee]

(V/em) . (F.6)

For O <F < 1, the field strength is of the order of a few tens of

volts per centimeter.
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LIST OF SYMBOLS

Effective area of collection of Langmuir probe.
Plasma radius.

Ratio of probe radius to Debye length.

Unit vectors along the x-, y- and z-directions.
External dc magnetic field intensity (Wb/mz).
Electron-beam radius.

Norﬁalized plasma radius.

Velocity of light.

Diameter of the probe wire.

Displacement vector.

Average distance between the charged particles.
Plasma waveguide radius.

Inner radius of the microwave cavity.

Electric field of the wave.

Electric field of the wave in the direction of the
propagation of the wave.

Radial, azimuthal and axial components of the wave
electric field.

X-, y- and z-components of the wave electric field.

Absolute value of the charge of an electron, and base of
natural logarithm.

Frequency of operation.
Ion-to-electron mass ratio.
Magnetic field intensity of the wave.

Isotopre of helium with mass of three times that of a
hydrogen atom.
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et Tsotope of helium with mass of four times that of a
hydrogen atom.

I Langnmuir probe current.

Io Zero order modified Bessel function of the first Kind.

Il First order modified Bessel function of the first Kind.

Ib Average beam current.

Ii Ratio of ion current collected by the probe to random
ion current.

I, mth order modified Bessel function of the first kind.

I& Derivative of the mth order modified Bessel function of
the first kind with respect to the argument.

I, Ion current drawn by a'Langmuir probe.

I Electron current drawn by a Langmuir probe.

J Plasma current density.

JB Zero order Bessel function of the first kind.

Job Average beam-current density.

J1 First order Bessel function of the first kind.

Jlb Beam current-density modulation.

Jlbo Beam current-density modulation at the gun end.

Jlbz Axial ac beam-modulation current density.

Jb Beam convection-current density.

Jer Random electron-current density.

JR Current density in the direction of propagation.

Jﬁ mth order Bessel function of the first kind.

J& Derivation of the mth order Bessel function of the first
kind with respect to the argument.

JS Source current density.

Jsr’Jsm’Jsz r-, %- and z-component of the source current density.
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Plasma transverse convection-currcent density.

Plasma convection-current density in the x-direction.
Normalized propagation constant.

Zero order modified Ressel function of the second kind.
First order modified Bessel function of the second kind.
Dielectric tensor of a cold plasma.

Diagonal element of the dieléctric tensor of a cold
plasma representing a left-hand wave.

mth order modified Bessel function of the second kind.

Derivative of the modified Bessel function of the second
kind with respect to the argument.

Diagonal element of the dielectric tensor of =z cold plasma
representing a right-hand wave.

Off-diagonal element of the dielectric tensor of a cold
plasma.

Off-diagonal element of the dielectric tensor of a cold
beam and plasma.

Dielectric constant of a cold plasma parallel to the
magnetic field.

Dielectric constant of a cold beam and plasma parallel
to the magnetic field.

Dielectric constant of a cold plasma perpendicular to
the magnetic field.

Dielectric constant of a cold beam and plasma perpendicular
to the magnetic field.

Boltzmann constant, 1.38 x 10 22 J/°K.

Free-space propagation constant.

Propagation vector.

Spherical coordinate system for the propagation vector k.

Axial propagation constant.
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kzi Axial propagation constant for the ith mede.

L Langmuir probe length, m.

L Length of the system, m.

M Mass of an ion, kg.

m Mass of an electron, kg.

m Azimuthal mode number.

m, Mass of the kth particle, kg.

N Neutral-particle density, cm °.

ND Number of charged particles in a Debye sphere.
NU Normalized collision frequency.

n Particle density, electron density, radial mode number,

and neutron.

n, Plasma density.

n Refractive index.

ni Ton density.

ny Density of the kth particle.

np Peak plasma density.

n(r) Radial plasma density profile.

P Proton.

Pn nth root of the mth order Bessel function of the first kind.
Qm Peak value of the ac induced charge on the probe.
q Electric charge of a particle.

Qe Electric charge of the kth particle.

R Radius of the plasma in the microwave cavity.

RR1 Normalized radial distance in Region I.

RB2 Normalized radial distance in Region II.

T Radius vector.



r,0,z Cylindrical coordinate system.

The Electron Larmor radius.

Ty Ton Larmor radius.

rp Probe radius.

S Perveance of the electron beam.

SYSL Normalized length of the system.

T Temperature in °K characterizing the motion of particles,

and transverse propagation constant.

Tl Transverse propagation constant in Region I.
T1i Transverse propagation constant for ﬁhe ith mode in Region I.
T2 Transverse propagation constant in Region II.
T2i Transverse propagation constant for the ith mode in Region II.
% Matrix of coordinate transformation.
Te Electron temperature.
ﬁ Unity tensor.
Ue Time-averaged electron energy.
Ui Time-averaged ion energy.
) Langmuir probe potential.
Vb Beam voltage.
VP Plasma potential.
v, Drift velocity of the plasma electrons, and drift
velocity of the electron beam.
Vb Axial ac beam-modulation velocity.
;b Beam velocity.
;k Macroscopic particle velocity for the kth particle.
Vp Phase velocity of the wave.
v, Mean square longitudinal thermal velocity of the electrons.
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W Normalized frequency.

WCE Normalized electron-cyclotron frequency.

WCI Normalized ion-cyclotron frequency.

Xi Coefficients in the normal-mode analysis.

X,¥sZ " Rectangular coordinate system.

Z Normelized axial distance.

Zke Magnitude of the charge.

ﬁe Electronic propagation constant.

Bq Change in electronic propagation constant due to

finite geometry effects.

70 Space-charge reduction factor.

2w Resonant frequency shift of the microwave cavity
due to the plasma (rad/s).

€ Dielectric constant of the medium.

6 Permittivity of free space, 8.854 x 10712 F/m.

€ Sign of the electronic charge.

M Ratio of probe voltage to electron temperature in eV.

6 Angle of propagation vector with respect to external
magnetic field.

res Resonant cone angle.

AD Debye length.

vl Reduced mass of an electron.

My Permeability of free space.

v Charge exchange collision frequency.

v¥ Effective collision frequency (Eg. 1.20).

Vei Electron-ion collision frequency.

v Electron-neutral collision frequency.
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Collision frequency of the collisions between kth and
neutral particles.

Plasma charge density.

Average plasma charge density.

Average electron-beam charge density.
Ac beam-modulation charge density.
Electron-beam charge density.

Line charge density.

Mass density of the particles.

Source charge density.

Conductivity tensor for a cold plasma.

Off-diagonal element of the conductivity tensor of a
cold plasma.

Conductivity of a cold plasma parallel to the
magnetic field.

Conductivity of a cold plasma perpendicular to the
magnetic field.

Electrostatic potential in Region I.

Electrostatic potential in Region II.

Frequency of operation (rad/s). |

Doppler-shifted frequency modified by collisions (rad/s).
Electron-cyclotron frequency (rad/s).

Ton-cyclotron frequency (rad/s).

Cyclotron frequency for the kth particle (rad/s).

Cutoff frequency of the plasma waveguide (rad/s).
Doppler-shifted frequency (rad/s).

Doppler-shifted frequency for the ith mode (rad/s).

Lower- hybrid resonant frequency (rad/s).
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@ Ho Lower-hybrid resonant frequency for oblique propagation
(rad/s).
@y Plasma frequency (rad/s).
O Beam-electron plasma frequency (rad/s).
Qpe Electron-plasma frequency (rad/s).
o Ion-plasma frequency (rad/s).
©p Peak plasma frequency (rad/s).
W, Resonant frequency of the microwave cavity (rad/s).
Wy Upper-hybrid resonant frequency (rad/s).
I
\“3 9015 02526 1267
v Electron-neutral collision freauency.
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