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1. Introduction

In both experimental and nonexperimental settings measurements taken
sequentially in time have become quite common. For example, we may be observ-
ing the same machine or individual over time; the position of a satellite and
stress level measurements of an individual are data of this form. The theory
for continuous-valued random variables is rather well developed: e.g., regres-—
sion analysis, time series analysis, etc.; however, for discrete-valued data,
different approaches are required. For independent observations, logit,
probit, and log-linear models are available. This is the domain of qualitative
data analysis. When the observations are dependent and discrete-valued, sto-
chastic process models are relevant. Markov chain theory is well developed;
Billingsley (1961) and Kemeny and Snell (1960) are relevant references for
statistical inference on Markov chains. However, problems often exhibit more
structure than just stationary transition probabilities. This work is concern-
ed with developing time series models for discrete-valued data, allowing for
arbitrarily long memory. The learning theory models and chains of infinite-
order are related, but are concerned with different structure (Lamperti and‘
Suppes (1959), Bush and Mosteller (1951)).

The data in the following three examples typify a certain type of data;
the observations are sequential in time, discrete-valued, and correlated. 1In
labor economics an important problem is the determination of those factors
which influence labor force participation. The Bureau of Labor Statistics
records over time (e.g., monthly) whether various individuals are in the labor
force or not (Heckman (1979)). In psychology one can study the moods of indi-
viduals over time in order to determine the variability both within and across
individuals (Larson (1979))." For example, if the happy-sad continuum (i.e.,
‘semantic differential) is divided into two parts, happy and sad, then the data

would consist of daily recordings of zeroes and ones. In business the
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prediction of directional changes of business cycles is of concern. If the data
consists of only the past directional changes, then the data is a series of
zeroes and ones. In these three examplgs the data, (Di’DZ""Dn)’ was discrete-
valued (actually, binary), sequential in time and correlated.

The approacﬁ of this paper is quite general; it is assumed that an under-
lying time series of continuous-valued data generates the time series of
discrete~valued data. The family of discretization mechanisms is broad and can
often be given intuitive meaning. The underlying probability structure is ex-
ploited with much of the structure carrying over to the discrete process prob-
abilities. Stationarity is a reasonable condition on the correlations; it also
serves as a first approximation in the nonstationary case. The next section

describes some alternative approaches to modelling data of this type.

2. Alternative Approaches

One method for modelling time series of discrete-valued data is to approach
the subject in a manner analogous to Box-Jenkins (1970); one such approach was
considered by Jacobs and Lewis in two articles (1978a, 1978b). Jacobs and
Lewis replace the linear combinations of the continuous-valued case with prob-
abilistic mixtures and call their models discrete autoregressive-moving aver-
age (DARMA) models. As an example, consider the simplest Box-Jenkins model,
the first-order autoregressive model (AR[1]), where the X.n process is formed

according to:

Xn = an_1 + en s

o 2 ©
where |p|<1 and {en}n=_°° are i.i.d. (0,0%). The DAR(1l) sequence, {Dn}n=-m’
is formed according to:

b = D _, with probability 0 < p <1

n E ~ with probability 1 - p,
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where {En}:=—w is an i.i.d. sequence of random variables in the discrete
set. An analogue of the Yule-Walker equations exists in which linear combina-
tions of correlations are replaced by probabilistic mixtures. An advantage in
approaching the discrete case in a mode analogous'to Box~Jenkins is that the
directions which have and have not proven fruitful in the continuous-valued
case may be of guidance. There are some disadvantages to the Jacobs-Lewis
approach. For example, in both the DAR(1) and AR(1l) models, pj is the auto-
correlation of lag j; however, p is forced to be nonnegative in the discrete
case, so that all autocorrelation must be nonnegative, thereby restricting the
model's applicability. In the DAR(1) model, Dn— contains all information

1

available at time n-1 about the past, as does Xh— in the AR(1l) model: However,

1

in the discrete model there is randomizing between D _ and E; E contains no

1
information about the past, and if En is chosen, then all memory before time n
is lost forever. In other words, the memory of such discrete models is dis-
continuous; in the AR(1l) model the memory dies out geometrically. These same
advantages and disadvantages carry over to the general DARMA models.

Another alternative is the Markov chain or modifications thereof; no
exposition of Markov chain modelling will be given here. Markov models of
lagged dependency of two or more become quite complicated and cumbersome in
tefms of calculations. However, the Markov property, by its very construction,
lends itself quite readily to forecasting.

Lomnicki and Zaremba (1955) and Kedem (1980b) model pinary data as the
clipping of an underlying process; a clipping is a truncation at zero. Kedem's
work is for the sifuation where the underlying data is available and, if need
be, can be properly centered; the original data, for computability reasons, is
replaced by the coarse data, zeroes and ones, which are used for estimation.
Lomnicki and Zarembé consider the clipping of the kth difference of a

Gaussian process.



3. Basic Framework

An alternative to defining the structure on the discrete process is to
assume, as Lomnicki and Zaremba (1955) and Kedem (1980b) do, that it inherits a
certain structure from an underlying continuous process. The discretization by
a threshold or truncaﬁion of a continuous-valued process is a common phenomenon
in engineering and biology. I consider a general procedure which includes
thresholds and truncations as special cases.

0 (o]
A binary process, {Dn}n is assumed to be generated by {Xn}n=—w’ a

=—0c0’

continuous, strictly stationary time series, and a monotone function F : R+[0,1]

in the following way. Given {Xn}z the D are independent and

=—00?

P(D

n 1an)

") (3.1)

1

P(Dn

OIXn) 1- F(Xn)'

By the definition of Dn’ let 0 < j1 < j2 < uee € jS be integers, then

P(D,, D RS )
1 9 1+JS
= P(D, X)) * B( 1l

Dependence among the responses Dn’ given Xh’ could also be considered, although

1+js’ D1+j x1’ X1+j1’ X1+j2""’xl+js)

D1+j )X+ . XP(D

X, . X L)
1+J1 1+Js 1+3S
for most applications independence has intuitive appeal. The Dn process was

generated through a response function F which maps R into [0,1]. Some examples

of F follow.

Example 1. Truncation or Threshold Function

A continuous process is truncated at some value u, so that, given Xn’

ALiIf X >y
D = n =
n 0.if X <y .

n
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Example 2. Probability Cumulative Distribution Function

In this case, the greater the underlying value, the greater the probability
of a one being generated. One can think of this as a random threshold or,

equivalently, as the introduction of measurement error followed by truncation.

Example 3. Survival Functions

A survival function is one minus a probability c.d.f.; this has the reverse

effect of Example 2.

Example 4. Defective c.d.f.

This puts bounds on the response probabilities below one and/or above
Zero.

The three examples given in the Introduction can be discussed in terms of
these generating procedures. In the mood aﬁalysis and business cycle turning
pointé examples, the underlying processes are our true mood and the actual value

. of the economic indicator, respectively. 1In the labor force participation
example, the underlying process could be the difference in the lifetime utility
at time n of the individual if employed and if not employed (Heckman (1979)).

A binary time series generated by these methods is strictly stationmary,

since the underlying X.n process is strictly stationary. The probability of the

=d D = dn}’ where (dl, d

greesD d) e {0,1}7, is

event {D1 =d g3t

1> Dy

P{D, =d;, D, =dp,.0s,D =d } =
©w 4 1-d a_ 1-d_
_i_i"li[F(xl)] (1 - F(x,)] oo x[F(x )] T[1-F(x )] d G (x),%y5000,% )0 (3.2)

Second-order stationarity of the underlying process will not insure second-
order stationarity of the discrete process. A characterization lemma, which
follows, shows that all strictly stationary binary processes can be generated

by the above procedure through just the Gaussian processes. The integral in



equation (3.2) is similar to a convolution and can be given probabilistic
meaning. The following lemma, a variation of a known result (Feller (1971),
p. 144), gives an alternative view of the response function F. Define the sets

C(0) = (-=,0) and C(1) = [0,=).

Lemma 3.1
Let the XS process and F be as above and let Gn be the distribution func-
tion of (XI’XZ""’Xn)' Let {Yn}"i":_co be i.i.d. with c.d.f. F, independent of

{Xn}m=_w, and define V, =X, - Y . Then, for (d,,d

L { dn) e {0,1}1,

2,.-0’

P{Dl = d = d ’...’Dn = dn} = P{vlsc(dl)’ VZEC(dZ),OOO,VHEC(dn)}

10 Dy =4y

Proof. The event {VlsC(dl), VzeC(dz),...,VneC(dn)}

= {Y, <X, for j2d,.=1lor X, <Y, for j©d, =0; j=1,2...,n}.
{j__J i34, 5 <Yy §j9dy=0;3=1, ,n}
Pick € > 0; R = €'Ik where -Ik = (ke,(k + 1)e]. Since the {Yi} are independent and

independent of the Xi process, the probability of the above event is approximately

(2] o (2]

1-d, .

n d,
Jry - J1.
klz_m kzz_m I
n

where xj € Ik.'
J

‘If xe Ik = (ke,(k + 1) €], then F(ke) { F(x) < F((k + 1) €), and the above
probability is bounded above and below by sums which depend only on € and

which both converge to P{D1 = dl’ D, = d2”"’Dn = dn}’ defined by expres-—

sion (3.2), as € + 0. Q.E.D.

This lemma shows that there is a duality with which one can view the generation
of discrete processes through response functions. One can view the binary

process as being generated by the Xn process and F or, equivalently, by the

Vn process and a truncation at zero. Note that if Xn is an ARMA(p,q) process,
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then Vn will usually not be an ARMA process of the same order, although it will

be in the ARMA family (see Granger and Morris (1976)). Lemma 3.1 says that proba-
bilitistically we need only conéider truncation as the discretizatiQn mechanism

if we are only concerned with properties of strictly stationary time series.

The binary process is a strictly stationary time series with

E(D)) = B(V_ > 0) = 2(D_ = 1)
Var(D ) = B(V_ > 0) * B(V_ < 0)

and

2
Cov(Dn, Dn+j) = P(Vn‘Z 0, Vn+j-2 0 - [P(Vn_z 01°, i>2 1.
o . = = 2
If {Xn}n=—w is a Gaussian process with E(Xn) 0, Var(Xn) T,
correlation structure {p(j)}?=1, and if F = ¢0 p2> the c.d.f. of N(O,bz),
b]
then the Vn process is Gaussian with E(Vn) = 0, and the covariance matrix of
(Vn+1’ Vn,...,Vl) is given by Mn with elements

c1n L2 . .
p(li-j1)t" if 1 # j
6 =

ij (1+k)12 1= j i, 3=1,2,...,n+1,

where k = b2/T2 is the ratio of the variance of the response function to that
of the underlying process. If there is no response function variation, i.e., a
truncation, then k = 0; as the amount of response function variation increases,
the autocorrelations of the Vn process are reduced, so that the past of the Vn
process has less effect on its future than the past of the Xh process has on
the future of the Xh process. Defining p& = (p(1),p(2),+..,p(n)) and

V = (vn’vn—l""’vl) we have

—11
(1 +%k) p!
Mn = T2 [ ———————— F:E__J .

-0 IMn—l
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The regression coefficients of Vn+1 on (Vn’vn—l""’vl) are
-1
1 = At
Sy T8 M (3.3)
and, defiﬁing Z =S8'V , Z is Normal with mean zero and variance
n -a-n’n
.2 -1
% =T 2 Mo &y 3+

Throughout, 12 will be assumed to be one; the effect of taking other values
for 72 will be pointed out.

The bivariate and trivariate probabilities involving the Dn process can be
calculated, since the process can be viewed as a truncation of the Vn process.
Classical results on the probabilities of bivariate and trivariate normal
quadrants (orthants) can be used; see, for instance, the survey article by S.S.

Gupta (1963). Applying these results to yﬂ, we have for j, £ > 1, (dn’dn+j) €{0,1}2,

3
(dsd pgrdppgeg) €101
d +Hd . p(3)
_ _ _ 4y b ntj . [
P{Dn = dn’ Dn+j = dn+j} =1/4 + (-1) arc31n2H1 + k (3.5)
and
plD =d,D ,,=d ,,,D, ., =4d,.,..}
n n’ ntj nt+j’ Tnt+jts n+j+e
d H . p(J) d +_,. p(j+L)
S8+ (1) areain TFE + (1) ® et TR
A} am v
p(L)
dn+j+dn+j+£ arcsin [iffrﬁz] (3.6)
+ (_1) .
41
The correlation structure of the Dn process is
[ p(j)] ’
§(3) = 2arcsin ‘1 + k j21 (3.7)

I
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The discretization operates on the underlying correlations by rescaling in two
stages, first by scaling down by the factor (1 + k), due to the response func-
tion, then by applying the scaled arcsin function, due to the truncation. Note
that k does not depend on {p(j)}‘;=1 except that any such structure not compatible
with a finite 72 constrains k to be zero. The function Zafcsin [.]/7 is a
monotone increasing function of [-1, 1] onto itself, shrinking the value towards
zZero.

The above derivations of the bivariate and trivariate probabilities of the
Dn process were possible because of closed-form expressions for 2 and 3 dimen-
sional multivariate normal orthant probabilities. For dimensions greater than
3 there is no general expfession. There are a few special cases in 4 dimen-
sions; see Gupta (1963), and Cheng (1969). Numerical methods are described in
Abrahamson (1964), McFadden (1956), and Moran (1956), and some recursive
formulas in Schlafi (1858), David (1953), Sondhi (1961), and Choi (1975). Omnly
in the equicorrelated case is a closed-form expression known for general n ‘
(Gupta, 1963). If good approximations to the n-dimensional probabilities were
available, then the joint and one step-ahead transition probabilitiesvof the
D process could be approximated.

The following lemma is a characterization of those binary processes which
can be generated by an underlying process through a response function. All
strictly stationary binary processes can be generated in this manner; in fact,

all can be generated under the Gaussian assumptions.

Lemma 3.2

Let {Dn}‘;;_o° be a binary-valued strictly stationary time series with finite

dimensional joint probabilities P{D1 = 0,D, = 0,...,Dn = 0} specified for n 1, -

2

then there exist an underlying stationary Gaussian process {Xn}‘;:_°° and a
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Gaussian c.d.f. F:R+[0,1] such that the joint probabilities are given by
expression (3.2).

Proof

We can assume without loss of generality that Var(Xn) =1, E(Xn) = 0, and
the mean and variance of F are u and k, respectively. Define C = p/v1 + k,

so that

P{D; = 0} = B{V; < 0} = 0y ;(c)

and ¢ = QO:} (P{D1 = 0}) is uniquely determined. Suppose that p(l),p(2),...,p(j-1)
have been determined, and let Zj be the correlation matrix with elements

Pom = p(|2—m|), L,m =1,2,...,j+l, with Zj, therefore, being only a function
3

of p(j). Let an = (0,0,...,0) and }fn = (1,1,...,1) be n-dimensional vectors

of zeroes and ones. Then we have the following:

(c lj—l) = P{V1 <ec, V2 S‘c,.'.,Vj <ec, V1 <{c}
P{D1 = 0,...,Dj = 0}
lim o (cl )=P{V e,V £cyees,V L,V >ec}
p(N+-1 0, T =1 1— " 2~ i~ 1
L7y -0
The distribution @O (c lj-l) is continuous in p(j), and Slepian's

. . L,
=j-1,7j

lim )
p(HHL 1%y

Theorem (see Slepian (1962), Das Gupta et al. (1972)) says that @0 7 (c_]:_j_l)II
=3-1,7] ‘

is a monotone increasing function of p(j). Therefore, there exists a p(j) such
that -1 < p(j) 1 and

%, .3

(c l._ ) = p{D, =0,D, =0,...,D, = 0,D
=i-1,73 -1 L 2 ]

w1 =0

and by mathematical induction there exists a sequence {p(j)}§=l. By Kolmogorov's
Existence Theorem there exists a stationary Gaussian process with correlation

structure {p(j)}§=l. Q.E.D.



-11-

A result more general than Slepian's Theorem 1s available for the family
of elliptical distributions (See Das Gupta et al. (1972)).
The next section is concerned with predicting and/or determining the

conditional distribution of Dn+1’ given data DI’DZ""’Dn’

4. The Binary Prediction Model

For a time series of discrete data an important problem is how to use the
data in making decisions about the future behavior of the series. One may want
to predict this future behavior or make probabilistic statements about it. To

be more precise, given d,,d d

1, 2’..0,
determining the conditional distribution of dn+

0’ these problems consist of predicting and/or

3, j 2 1. In terms of the three
examples. given in the Introduction, the data (dl’dZ""’dn)’ would consist of
employment history, moods, and economic directional changes, and our objective
would be to predict and/or determine the distribution of future employment,

mood, and directional change. The determination of the transitional probabili-

ties P(Dn+1 =d IDn =d ,.4.,D

a 1= dl) are of fundamental importance. The

nt+l
derivation of approximations to these conditional probabilities is discussed in
Keenan (1980) in the context of the loss of Markov property; the difference
between the actual probability and certain reasonable approximations can be
viewed as a measure of such a loss. Therefore, the determination of the
conditional distribution of Dn+1’ given Dl""’Dn’ will not be discussed here,
but rather the related problem of predicting Dn+1’ given Dl’DZ""’Dn'

It is assumed that {Xn}‘;:_oo is a strictly stationary time series generating

| {Dn}:=—m through a response function F:R+[0,1], as follows:

(-]
Given {Xn}n=—w s

P(D = 1IX ) = F(X )

P(D, = 0IX ) =1 - F(Xn) .
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Given data d., d dn from this process, the problem considered in this

1 2,.:.,

section is to predict dn+j' For simplicity we shall deal with j = 1. To pre-
dict dn+1’ a prediction accuracy measure 1s needed. Since in binary data there
is only one possible wrong and right prediction, the probability of predicting
incorrectly is a reasonable measure of prediction uncertainty. The probability

of error using 5n+ is given by

1
P(D ,, #D 1) = ) / dp (d),dgseeeyd yd o)
{Dn+1 # Dn+1} (DI’DZ""’Dn’Dn+1)’ (4.1)
where Dn+1 is a predictor of Dn+1 based on the data dl’dz""’dn' The broadest

class of predictors which can be considered is the class of all randomized rules.

For an arbitrary, randomized rule §, the probability of error, P.E.(S), is:

P.E.(8) .= )| - [8(dy,dg,eeeyd ) P{D; = d;,D) =dy,.00,D =d ,D . =0}
(dl,dz,ooo’dn) (4'2)
+ (1 - G(dl,dz,-tu,dn))P{Dl = d]_,DZ = dz,uo-’Dn = dn, Dn+1 = 1}]‘
One nonrandomized rule which is a reasonable predictor of Dn+1 is
Dn+1 _ 1 if P(Dn+1 = 1|Dn = dn""’Dl = dl)_z 1/2 (4.3)
0 if P(Dn+1 = lan = dn,...,D1 = dl) <1/2,

which predicts that value which is the highest probable. A randomized rule which

is just as reasonable is that which randomizes with the conditional probability:\

8(dy,dy,eeyd ) = B(D . = 1D =d j...,D; = d)).

n+l

The next lemma shows that ﬁn+1’ a nonrandomized rule, has minimum probability

of error among all randomized rules.

Lemma 4.1

A

Dn+1 has minimum probability of error within the class of all randomized

rules.
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Proof - Define an arbitrary randomized rule § by'G(dl,dz,...,dn) = P(lldl’dz""’dn)'

The P.E.(8) is given by equation (4.2). For a given (dl’dZ""’dn)’

G(dl,dz,-on,dn) P{Dl = dl’lal,Dn = dn’ Dn+1 = 0} +
(1 - G(dl’oo-,dn)) P{Dl = dl’vul,]?n = dn, Dn+1 = 1}
lies between P{D1 = dl,...,Dn = dn’ Dn+1 = 0} and P{D1 = dl""’Dndn’ = Dn+1 = 1},
and so the P.E. is minimized by
H2 " d d 1) < d =4
if P(Dl - 1’-00,Dn - n, Dn+1 - ) P(Dl - 1,'000,Dn - n’Dn+1“
which is equivalent to Dn+1' . Q.E.D.

This lemma shows that if our main concern is predi¢ting Dn+

know the exact probability, P(Dn+l = lldl,dz,...,d;), but only whether or not it

1 then we need not

exceeds or equals 1/2.

We saw in Section 3 that, when {X }* and F = ¢ are Gaussian, the
n° n=-ow ‘ (0,b2)

Dn are binomial (1, 1/2), with the bivariate aﬂd trivariate probabilities given
by expressions (3.5) and (3.6), respectively. Consider the special case of just

one data point, dl' The minimum probability of error predictor of D2 is given by

5 1 is P(D, = 1|p, = d;) > 1/2
2 = =
0 is P(D2 llD1 dl) <1/2,
where
1)
d, +d [<2{L)]
_ _ _ 1y 1 2 arcsin '1 + k
P(D2 = d2|D1 = dl) =1/2 + (-1) : i .

The predictor of D2 is what we intuitively expect,

namely

) d if p(1) >0
D =11

2 1-d, if p(1) < 0.
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The P.E.(ﬁz) can be calculated:

arcsin [|p(1)|/(1 + k)]

> (4.4)

P(D2 # DZ) =1/2 -
For p(l) = 0, we have independence of D2 and‘Dl, and since D1 gives no infor-

mation about D,, the probability of predicting wrongly is 1/2. If [p(1)] =1,

2’
then Var(Xn) = 12 ig infinite, k = bZ/T2 = 0, and the probability of error is

zero, as expected.

Consider the case of two data points, d,, d Before considering D

1 % 3

look at the following two predictors, ﬁgj), j=1,2, given by

1 if P(D,
0 if P(D,

&)

1ip, ) > 1/2
Dj 35 =

1Dy ) <1/2 .

(4.5)

ﬁgl) and ﬁ§2) are predictors based on only part of the available data, one and
two time points back, respectively. From the case of prediction based on one

data point, we know that for j =1, 2

arcsin [lp() /(1 + k)]
Il

P.E.(ﬁgj)) =1/2 - (4.6)

Now consider ﬁ3 which uses both data points. Using equations (3.5) and (3.6),

the conditional probabilities of D and D

3 1 2
Figure 1 divides the (p(1), p(2)) plans into 4 parts via the equiangular lines.

given D are explicitly determined.

Figure 1
p(2)
= —
~ ~ arcsin [12&21L] el
— ~ i
-~ ~ /'// N+
l:i-M ~ ~ | l
‘o..-l-l ~ 1 7~ -
! £ |F ~ | - a 1.
-1 5 S"Llp(l)
| 9 //—/; ~ = |
| d - ~ Fl
{ ! o ~ 32
)—I
-l ~ arcsin [{Pigil] ::l
' L 1/2 - - ~ l
e ~
-~ N
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Table 1 shows 63 for these four areas, and Figure 1 also plots the probability of

error of ﬁ3 as a function of (p(l), p(2)).

Table 1

Data

D

=1y D=1

1

D

(=15 D,=0

I |
I |
I I
I |
| |
ID, = I
I I
I I
|D,=0, D=1 |
I I
I |
ID,= I
I I
0.0, 2,0 |
1= ]
L

Figure 1 suggests that if |p(1l)|>|p(2)|, use only the preceding observation

to predict; if [p(2){>|p(1)], use the penultimate observation. In each

case, if the larger correlation is positive, predict concordance with the past
value; if negative, predict discordance. This is summarized in the following

lemma.

Lemma 4.2

For n = 2 data points when the XS process and F = Q(O bz) are both Gaussian,
H

the minimum probability of error predicator of D, is ﬁgz), where |p(2)|=Max

3

{Ie()!, lp(2)!} and ﬁgg) is given by expression (4.5). The minimum probability

of error is

_arcsin [|p(8)|/1+k]
1/2 il ¢
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Remark. ~ This lemma states that for two data points, the minimum probability’
of error prediction is based on only one of the two points, that which has

highest correlation with D,; knowledge of the other point does not help.

3

A A(l) .
Proof. From Table 3 it can be seen that D3 equals D3 in areas 2 and 4 and

5{?)

in areas 1 and 3. Therefore, in areas 2 and 4 the P.E.(ﬁB) is

arcsin{ | p(1)|(1+k)]

II \ ?

and in areas 1 and 3 it is

1/2 -

_aresinf |p(2)]/(1+k)]
1/2 i . Q.E.D.
For an arbitrary n > 2, define B(l’z)as
] =™ nt+l
ﬁr(nlLiZ) _jriee@ =1 =d,D , =d ) >1/2
0 if P(Dn+1 = 1|Dn = qn, Dn-l = dn—l) <1/2,
(i.e., optimal predictor based on only the two preceding values), and let ﬁéiiz)

be any decision rule based on only the two preceding values.

Corrollary 4.3.

If the XS process and F = ¢ are Gaussian, then for an arbitrary

(0,b%)

n> 2,

2(1,2) ~(1,2)
15>.E.(Dmle > RE.D 27

- 1/g - arcsin[Max{lp(1)|,10(2)1}/(1+k)]
it

P.E.(D

v

n+1) *
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A(1,2)y 4o o e 3(1,2)
Proof. The P.E.(Dn+1 ) is given by expression (4.2). Since Dn+1 does

not depend on (dl’d dn—l) and the Dn process is strictly statiomary, the

2,-0-,

2(1,2)
P.E.(Dn+1 ) reduces to

g p{D ,=d,,D =d,D ,, =4d 512 Ly L g

(dn—l 0 dn+1) n-1 1° "n n’ ntl n+l’ “n+l n+l
’ H

which is greater than or equal to P(ﬁiiiZ))’ which by Lemma 4.2 (and since ﬁgiiz) does

not depend on (dl,...,dn_l)), is

1/2 -

’

arcsin{Max{|p(1) |, p(2)1} (1+k)]
I

Q.E.D.

which is greater than or equal to P.E.(Dn+1), by definition of Dn+1'

EEEéEE' Therefore, for data, dl’dz""’dn’ n > 2, we have a lower bound on how
well predictors can do using only the present and penultimate observations and
an upper bound on the optimal predictors which use more than the previous two
preceding observations.

For the remainder of this section we will consider the binary prediction
problem for an arbitrary n > 2 and the most fundamental model, that of the

first-order autoregressive. Therefore, the X.S process is Gaussian AR(1),

X =pX

We have seen that the
s s-1

+ ey lpl <1, Var(Xs) =1and F = Q(O,k)'
DS process generated by Xs and F is not a Markov chain. An important question
is: How much of the past must be used for prediction purposes? Previously

we considered the binary prediction problem for the arbitrary Gaussian case
with n = 2 data points. The determination of the conditional distribution of

D3, given D2 and Dl’ allowed for explicit probability of error calculations. For

n 2> 3, general closed-form expressions for the conditional distribution of
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Dn+1 given Dn’D D, are not available. In Keenan (1980) six approximationms,

n-1’"""""1

A(1l) to A(6), to this distribution are developed in a different context, that of
determining the loss of Markov property due to discretization. Rather than
attempting to numerically approximate p and (n + 1) dimensional integfals, the
approach of the six approximations is to reduce the dimensions to 2 and 3 for
which closed form expressions, (3.5) and (3.6), are available. Approximations

A(2) and A(3) are the conditional distributions of Dn given Dn and Dn— and

1
given Dn’ respectively. Approximations A(4), A(5), and A(6) use the binary data

+1°

= LY
(Dn’Dn-l""’Dl) first, to estimate the underlying unobserved data (Vn’vn—l""’vl) v 0

= atly’ ' . .3):

then to estimate Zn §'V’, where §-n is given by expression (3.3); and finally
to calculate the conditional distribution of Dn+1 given the estimate of Zn. In
Keenan (1980), or using Kalman filtering methods (see Jazwinski (1970), Duncan

and Horn (1972) Downing et al. (1980) etc.), recursive expressions for

1 = = = -
§n (Sn,l’sn,Z""’sn,n)’ Qn Var(Zn), and Rh k/(1+k Qn) are

s . PR -1 Sa-1, -1
n,3 " (1R ) 3= 4.7)

2, 2
Qn =0 Rn—l) to Rn—1 Qn—l'

The factor (1-Rn_l) is the usual Kalman gain. Approximations A(4), A(5), and A(6)

estimate Zn by

. 2 1-d__,
2M - [ s xE b=y =[] (n s ]/200)
sh md S T M &
(3) _ = =
2 =5, | xR EID = d, D= d ) (4.8)
+ Sn,2 X E(Vn-lan = dp Dpog =1 y)
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1-d 1-d dn+dn-1
oo n n-1 - 2(1+k) 1+ (-1) [p/(14+k)] (4.9)
=[(-1) s+ (1) s )] ( ) x A
n,1 n,2 /I dn+dn-1 arcsin[p/(1+k)]
1+ (-1) i
and
(6) _
Zy =8y 1 BCVID) _
i ((_1)1—dn s ) 2(1+Kk) . (4.10)
n,l I
Approximation A(l) is the conditional distribution of Dn+1'given Dn and En—l; i.e.,
P(Dn+1 - lan - dn’ En—l € en—l) ’
where En-l is the binary (0,1) function of (Dn—l""’Dl) defined by
B - 1ifz ;>0
0 if Z <0
n-1
and
e . {0,1} if Range (Zn_l) =R

1 if Range (Zn—l) = [0,®]
0 if Range (Zn-l) = [-»,0] .

Justification for this approximation 1s, described in Keenan (1980). The correl-

ations of (D En—l) are

n+1’ Dn’

_ 2arcsin[p/(14+k)]
Corr(Dn+1, Dn) = i

2ar:csin[sign(p)'(Qn__1/(1+k))1/2

n—l) I

]
Corr(Dn, E

and

2arcsinl 1ol *(Q_,/(1+k) /%]
Corr(Dn+1, En-l) = T .

Approximations A(1l) and A(4) were shown to be better than the others; these were
: , 2

the only approximations which used all of the data (D1 =d D2 = d2,...,Dn = dn).

1,
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~A(3)

W j=1,2,...,6, where the approximations A(1l) to

Consider the predictors, D
A(6) are substituted for P(Dn+1 = 1an = dn""’Dl = dl) in expression (4.3).
The next theorem allows us to calculate the probability of error for these

predictors.

Theorem 4.4
If the D process is generated by an XS process which is Gaussian AR(1l),|pl < 1,

Var(X ) = 72 , and response function F = with k = bz/rz, then for n data

®(0,b2)
points

P.E. (DA(Z))

p.E. (523 = p.E. (DA(S)) = p.E.(52(9))

_arcsin[ |pl/(1+k)]
1/2 T

p.E. (54 15 Q| < 1/(140) (4.11)
P.E. (DA(4)) if pr < 1/2. (4.12)
Proof. Without loss of generality we can assume that p 1s positive; the same

conditions hold for p negative. By strict stationarity P.E. (DA(Z)) P.E. (D(1 2))

and P.E. (DA(3)) = P, E.(D(l)) Corollary 4.3 now gives the result for A(2) and A(3).

Using expression (4.7) and comparing expressions (4.9) and (4.10) the result

follows for A(5) and A(6). For approximations A(4), A(5), and A(6), zéJ).Z 0
is equivalent to A(j) > 1/2, j = 4,5,6. For A(4) the most extreme case is where

Dn is one (zero) and the entire infinite past (Dn—l’Dn-Z""’D ,D.,D ) is

1 0’ 1,0‘0

all zeroes (ones); Z

(4)
n

is greater than or equal to zero in the case if pr < 1/2.

If the data only goes back finitely and pr < 1/2, then Zék) 2 0 is certainly

satisfied. Approximation A(l) is the same as A(3) except when'the past differs
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from the present (d1 = d2 = L. 0= dn—l # dn); but A(4) and A(3) will both be
greater than or equal to 1/2 at these extreme points if Qn-l-s 1/(1+k). Q.E.D.
Conditions Qn—l-s 1/(14k) and pr { 1/2 are conditions measuring the correlation

of Dn with Dn+ relative to that of (D Dl) with Dn , and

1 n-1°Dp-22° s
(Dn-l’Dn—Z’""Dl’DO"'°) with Dn+1’ respectively. Tables 2 and 3 show values

+1

for p and k for which the conditions of Theorem 4.4 are satisified.

Table 2
Conditions for expressions (4.11) and (4.12) to be

satisfied in terms of |p| and K.

I | l
l | Q < 1/(1+)(for all m) | p . r < 1/2]
| | |

k [ol o]
=0 < 1.00 < 1.00
< .2 < .95 < .95
< .5 < .90 < .85
<1.0 < .8 < .80
< 2.0 < .80 < .70

The minimum Probability of Error predictor involves P(Dn+1=1an=Dn,...,D1=d1).
Rather than numerically approximating the probabilities of the exact n+l and n-
dimensional random variables, the approximations A(l) to A(6) calculate exactly
the probabilities of 3 and 2 dimensional approximations to the n+l and n dimensional
random variables. 1In Keenan (1980) different approximations are shown to do
well for different parameter values; for any given parameter region, either
A(1) or A(4) appears to be a reasonable approximation to the probability

P(D = lIDn=dn""’D1=d1)' Therefore, Corollary 4.3 and Theorem 4.4 suggest

n+l
that if the underlying proceés is AR(1) (therefore, Markov) and Dn is a discreti-

zation of this process, then even though Dn is not a Markov chain (having in
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fact infinite memory), for prediction purposes we should act as if Dn is a
Markov chain and predict from the present value with

arcsin{lpl/(1+k)]
I

1/2 -

as the approximate probability of error for one-step-ahead prediction.

5. Multinomial Time Series

The previous sections have dealt with binary data; both the generalyframe-
work and the specific results under Gaussian assumptions were for the binary
case. We can now consider a more general model for the generation of ordered
categories-multinomial time series by an underlying continuous valued-state
space process and a response function F. AsymmetricaGaussian randomization,

F = ¢(u,b2) and y not equal to zero, is a special case. EFEach of the three
examples of binary times series given in the Introduction can be generalized

to the multinomial case; for example, one could consider more than 2 psychologi-
cal states and more than‘the simple dichotomy éf being employed or unemployed.

For m > 1, an (m + 1) valued-multinomial process, {Dn}:=_m, is assumed to

be generated by an underlying continuous-valued, strictly stationary time series,

{x }*

13 p=mco? E(Xn) = 0, a probability c.d.f. F : R + [0,1], and the sequence

-0 = .o = L
u_l_s u0‘$ eee £ um~1-£ M +o, such that, given {Xn}n=—w} the D are

independent with

Dn = {J with probability F(Xn - uj—l) - F(Xn - uj), j=0,1,...,m.
The joint probability of (D1 = dl""’Dn = dn)’ where (dl,...,dn) e {0,1,...,m}?, is

(]

n
[ m[F(x, -u
-0 J"l J dj"].

) - F(Xj - udj)l dG (xy5e005x )e (5.1)

As in the binary case the process can be viewed as a truncation of a new process

v}

n :=_m, except that now the truncations occur at the points (uo,ul,...,u

m—l)’
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and a characterization Lemma analogous to Lemma 3.2 can be proven. The approxi-
mations A(l) to A(6) can be extended to the multinomial setting, although they
will be given by integral representations rather than closed-form expressions.
However, because the integrals are at most 3 dimensional, they can be evaluated

quite efficiently.

6. Some Comments on Estimation

In the previous sections probability calculations have involved the para-
meters of the underlying process and the response function; ordinarily, these
parameters are unknown and, therefore, need to be estimated. Prior to estima-
tion, the model to be estimated must be determined. First, the appropriate
underlying process and response function are identified, and, second, the para-
meters involved are estimated. A third step is diagnostic checking; this in-
cludes goodness—of-fit tests, residual analysis, and plots to see if the data
shows any gross departures from the fitted model. For continuous-valued time
series data, Box and Jenkins (1970) have developed procedures for these three
,éteps of anaiysis. This section is a brief introduction to the model identi-
fication and estimation steps for binary processes. The ideas developed here
are introductory, and it is hoped that they will serve as a first step towards
a moré comprehensive theory. This section deals with data from a binary pro-
cess generated by an underlying Gaussian process and response function.

Let {Dn}:=-w be a binary process generated by {Xn}:=—w’ a Gaussian

process with E(Xn) = 0, Var(Xn) = Tz, and correlation structure {p(j)}?=1,

and F = ¢ ) = c.d.f. of N(O,bz). The autocorrelation function {D
0,b

given by equation (3.7):

n}:=—w is

6(s) = 2 arcsin [p(s)/(1+k)]
I
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Given data D1 = dl’ D2 = d2""’Dn = dn’ if §(s) can be estimated from the

sample, say, by 6 (s), then [1p( )] can be estimated (method of moments)

inverting equation (1.7) to obtain

1p5?% = sin [-% g(s)] .

As for probabilistic statements concerning the binary process, {D }:__m

{ D(S)

T K}s -1’ rather than {p(s)} - are the appropriate parameters. One estimate

of 6(s) is the sample autocorrelation of lag s, Gn(s):

d +d

. , b i+

b () =— 1 ("’ .
i=1

For s = 1, 3n(1) counts the number of changes of sign (i.e., directional
changes) in the (dl’dZ""’dn)’ relative to the number possible, n-1. Kedem
(1980b) and Lomnicki and Zaremba (1955) develop some asymptotic results for
this and related estimators. These estimates do not involve assumptions about
the form of the underlying autocorrelation structure {p(s)}:=1. That is,

{Xn};= need not have a specified ARMA (p,q) form. However, the model

—0
assumes that the response function is symmetrical, that is, F = ¢u0,b2 and
uo = 0. Without constraints on the correlation structure, k = b2/12, the
ratio of the response function variance to that of the underlying process
cannot be estimated. If we assume a specific ARMA model for {Xn};=—m’ then

as a result of the constraints that knowing p and q impose on the autocorrelations,

k can be estimated. The vériance of Sn(s) is

2 n-s n-s D. + D, +D + D,
var(3 (s)) = (=) I § E(¢n b 3 A ) rsie)?
n I el
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and can be evaluated if 4-dimensional probabilities can be determined. Plackett
(1954), McFadden (1960), and Gehrlein (1980), among others, discuss numerical a
approximations to these probabilities. However, the appropriate approximation
depends on the magnitudes of the correlations. Lomnicki and Zaremba (1955)

give a bound for these 4-dimensional probabilities.

7. Concluding Remarks and Future Directions

Data which is binary, recorded sequentially in time, and correlated is
common. In Section 2 a family of models for such data which allow for
arbitrary correlation structure was proposed. The memory of such models dies
out in a continuous manner. It is assumed that an underlying process with
continuous-valued state space generates the discrete process through a response
function F. An important question is, how much of the structure of the under-
lying process passes through to the discrete process? The structure with which
we are concerned is that of being Markovian. If the states of a Markov chain
are lumped together to create a smaller number of new states, the question becomes
whether or not the new chain is Markovian (i.e., has the property of lumpability)
(Kemeny and Smell (1960), pp. 123-140, and Burke and Rosenblatt (1958)).
Therefore, the above question can be viewed as a stochastic version of the
lumping of a Markov process into two states, zero and one.

A future direction is Ehe measurement of the loss of the Markov property
as a result of discretization. In Section 3 it was shown that the discretiza-
tion could be viewed as the addition of i.i.d. noise followed by truncation;
each of theée distorts the Markov property. In a forthcoming paper a measure
of the loss of the Markov property due to discretization is proposed. In that
paper, the loss is decomposed into a loss due to the noise and a loss due to
truncation. The relationship of the above models to those’other areas--functions

of Markov chains, source-coding, and quantization in signal processing--will be
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explored. In Section 5 one aspect of the above question, the ease of forecast-
ing from the discrete process when the underlying process is Markovian, was
considered. It was shown that although the discrete process is not Markovian,
fo; prediction purposes it is reasonable to act as if it is. Bounds on and

approximations to the Probabilities of Error for the optimal predictor were

derived.
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