THE UNIVERSITY OF MICHIGAN College of Engineering Department of Mechanical Engineering Cavitation and Multiphase Flow Laboratory Report No. UMICH 306090-1-F CAVITATION - EROSION RESISTANCE FOR CAST AND WELD DEPOSITED CORROSION RESISTING STEELS FOR BIRDSBORO CORPORATION by) N. R. Bhatt F. G. Hammitt Financial Support Provided by: Birdsboro Corporation Birdsboro, Pennsylvania October 1971

THE UNIVERSITY OF MICHIGAN College of Engineering Department of Mechanical Engineering Cavitation and Multiphase Flow Laboratory Report No. UMICH 306090-1-F CAVITATION - EROSION RESISTANCE FOR CAST AND WELD DEPOSITED CORROSION RESISTING STEELS FOR BIRDSBORO CORPORATION by) N. R. Bhatt F. G. Hammitt Financial Support Provided by: Birdsboro Corporation Birdsboro, Pennsylvania October 1971

CtI I he'" N-,. ~5;)4,

ABSTRACT Cavitation - corrosion tests have been conducted in a vibratory facility (20 kHz, 2 mil double amplitude) upon cast and weld deposited corrosion resisting steels at a water temperature of 120 F and a pressure of 1 atm to provide damage rates for the different materials provided by Birdsboro in terms of MDPR and incubation period. Correlations of loss rates with mechanical properties are also shown with correlation coefficient and factorial standard error.

TABLE OF CONTENTS ABSTRACT.................................................... i LIST OF FIGURES,................ ~~~~~~~~~~~~~~~~,~~~~ 11iii I. INTRODUCTION.......................................... II. EXPERIMENTS AND RESULTS...............1 A. Experimental Facility...................................1 B. Experimental Results.................................... C. Data Correlations....................................... 5 III. CONCLUSIONS.......................................... 6 IV. ACKNOWLEDGEMENTS................. 7 V. REFERENCES...................,....... 7 TAFIGURES....................................................... 14 PPENDIXGURES............................................... 7 7 ~~~~~~APPENDIX....i......... 77

LIST OF FIGURES Figure Page 1. Schematic of Baffled Test Configuration.........14 2. Grade CF8, Heat E - 4012 (A-1,- 10) Wt. Loss VS. Time........15 3. CA7M Stainless (C-1, 2,3) Wt. Loss VS. Time......16 4. CA15 #1, CA15 #2 Wt. Loss VS. Time.................. 17 5. CA6NM Stainless (D-1,2,3) Wt. Loss VS. Time.................18 6. CF8 Stainless (E-1,2,3) Wt. Loss VS. Time.................. 19 7. CF8 Stainless (F-1, 2) Wt. Loss VS. Time..........20 8. 25 CM Carbon Steel (G-1,2,3) Wt. Loss VS. Time............21 9. 45 A 7 Carbon (H-1, 2, 3) Wt. Loss VS. Time..................22 10. CA15 (I-1,2,3) Wt. Loss VS. Time.......................... 23 11. CA15 (J-1, 2, 3) Wt. Loss VS. Time..........................24 12. CA15 (K-l, 2,3) Wt. Loss VS. Time..........................25 13. CF8 Stainless (L-1, 2,3) Wt. Loss VS. Time..................26 14. CF8 (M-1,2,3) Wt. Loss VS. Time..........................27 15. Arcos Stainlend (N-1,2,3) Wt. Loss VS. Time................28 16. Arcos Stainlend (0-1,2,3) Wt. Loss VS. Time...... 29 17. 304 -L Solution (P-1, 2,3) Wt. Loss VS. Time................30 18. 304 -L Sensitized (Q-1, 2, 3) Wt. Loss VS. Time...............31 19. CF8 M Solution Quenched (R-l, 2, 3) Wt. Loss VS. Time........ 32 20. CF8 M (S-1,2,3) Wt. Loss VS. Time........................ 33 21. CE 30 Water Quenched (T-l, 2, 3) Wt. Loss VS. Time...........34 22. CE 30 As Cast (U-1, 2) Wt. Loss VS. Time...................35 23. 308 -L Water Quenched (V-1, 2, 3) Wt. Loss VS. Time....... 36 24. 308 -L As Welded (W-1,2,3) Wt. Loss VS. Time..............37 25. 308 Wire As Welded (X-l, 2) Wt. Loss VS. Time............. 38 26. 308 Wire Solution Quenched (Y-l, 2,3) Wt. Loss VS. Time.......39 27. E 410 Stainless As Quenched (Z-1, 2,3) Wt. Loss VS. Time.....40 28. E410 Stress Relieved (Z2-1,2,3) Wt. Loss VS. Time.........41 29. AM355 Stainless (A'-1,2,3) Wt. Loss VS. Time.............. A2 30. CF 8 C Solution Quenched (B'-1, 2, 3)......................43 iii

31. CF 8 C As Cast (C'-1,2,3) Wt. Loss VS. Time............... 44 32. Photographs of Damaged Specimens A-C......................45 33. Photographs of Damaged Specimens CA-G................... 4:6 34. Photographs of Damaged Specimens H-M.....................47 35. Photographs of Damaged Specimens N-S...................... 48 36. Photographs of Damaged Specimens T- Y......................49 37. Photographs of Damaged Specimens Z 1-C'.................... 50 38.. Photomicrograph of Material C-i, 2, 3 and D-ir 2, 3. 9. 9 9 9 51 39. Photomicrograph of Material F-1, 2, 3 and E-l, 2,3............. 52 40. Photomicrograph of Material G-l, 2, 3 and H-, 2, 3............. 53 41. Photomicrograph of Materiai I-i,2,3 and J-i,2, 3.54 42. Photomicrograph of Materiai K-i, 2, 3..55 43. Photomicrograph of Material L-l, 2,3.. 0.,,... 9..56 44:;. Photomicrograph of Material M-i, 2, 3. a e e57 45. Photomicrograph of Material N-1, 2, 3................58.........5 46. Photomicrograph of Material 0-1, 2, 3.. 5........ 59 47. Photomicrograph of Material P-i, 2, 3...................60 48. Photomicrograph of Material Q-1, 2, 3...61.........6 49. Photomicrograph of Material R-1, 2, 3.6............. 50. Photomicrograph of Material S-l1, 2, 3...............3.......... 51. Photomicrograph of Material T-l, 2, 3. 6.4...........65 52. Photomicrograph of Material U-1, 2, 3............65. *. 65 53. Photomicrograph of Material V-l, 2,3..............66 54. Photomicrograph of Material W-1, 2, 3..6O.. 7.................6 7 55. Photomicrograph of Material X-i, 2, 3.. o a o o e. o. o. *68 56. Photomicrograph of Material Y-i, 2,3.69.. 9 50. Photomicrograph of Material S-l1, 2, 3.........................63 51. Photomicrograph of Material T- 1, 2, 3.........*............... 6471 2 592 Photomicrograph of Material Al-1, 2, 3.............., 572 56. Photomicrograph of Material X-1, 2, 3........................9. 59. Photomicrograph of Material A'-1, 2, 3......................... 72 62. Best Fit Correlation and Standard Deviation for 98 Samples..... 75 63. Best Fit Correlation and Standard Deviation for 198 Samples....76 iv

I. INTRODUCTION The objective of this project was to provide cavitation damage test data for various stainless-steel type materials (supplied by Birdsboro Corporation) of interest for use in applications where intense cavitation exists. Our modified cavitation damage vibratory system, using a baffle-plate around the vibrating specimen- was used to obtain more uniformity in damage and greater repeatability of damage rate. It was found in preliminary tests( ) that increased repeatability was in fact achieved with this method as compared to the conventional vibratory test arrangement. The tests were run at 120oF rather than at room-temperature since damage rates are considerably greater at that temperature and hence test time is minimized. The properties of the materials tested are listed in Table I along with damage rates and MDPR. The modified cavitation damage vibratory system provides 2 mil double amplitude at 20 kHz. The test conditions and test procedure used are specified in Table II. II. EXPERIMENTS AND RESULTS A. Experimental Facilities (1) The modified experimental facility differs from (2, 3, e. g. ) that used in the conventional vibratory test only in that the specimen is positioned within and concentric with a circular hole in a baffle-plate. The radial clearance with the baffle plate must be a minimum (3 mils was used in the present test). The arrangement is shown in Fig. 1. The horn, transducer assembly, and flange are unchanged from the conventional arrangement, but the baffle-plate is mounted firmly to the flange to maintain the required parallelism and flushness with the specimen face, the MDPR = Mean Depth of Penetration Rate = Vol. Loss Rate/Spec. Ar

desired distance from the flange, and the concentricity with the horn and specimen axis. It was found that optimum uniformity of damage occurs in the flush condition (meas'ured when horn is not operatting). Water level in the test vessel is maintained 1-1/2 in. above the top surface of the baffle-plate. The specific vibratory facility, to which the baffleplate arrangement was later added, was designed for high-tempera(3) ture tests with various fluids and hence includes a sealed flange which also supports the horn. Hence, tests at higher than atmospheric temperature and pressure are not inconvenient if this were desired for future work. Horn amplitude is monitored by a power meter provided in the driver unit. This unit in turn is calibrated for each specimen with a Fotonic Sensor (MTI Inc., Latham, New York) accurate to about 5% of the desired amplitude. Frequent measurements indicate that frequency remains constant to the order of 0. 1%o of the desired value. Temperature is automatically controlled by the heater power control to the water bath surrounding the vessel. Air content of the test water (distilled) was maintained at an approximately constant value, somewhat less than saturation at STPlyby using a 30-minute pre-run with a dummy specimen to achieve an equilibrium air content somewhat less than saturated. Experience has shown that an air content so obtained remains relatively constant throughout a test. For each weighing of specimens, a wash and dry procedure is used as explained in Table II, where other facility procedures and parameters are listed. B. Experimental Results The raw data for all 99 specimens are tabulated in the Appendix, and have been plotted in terms of weight loss vs. time of exposure. Fig 2 through 31 comprise a separate curve sheet

CtI I he'" N-,. ~5;)4,

for each material, with separate curves for each specimen. The materials have been stamped from A-i, 2, 3, to Z-l, 2, 3 and A'-1, 2, 3 to C'-l, 2, 3. The corresponding material name and number can be found in Table I where all other pertinent information is included. Of the materials tested, A'-1, 2, 3, AM355 stainless steel was found to be most resistant to cavitation and G-, 2, 3, 25CN carbon steelwas found to be least resistant. The factor between these extremes is about x5 in terms of maximurnMDPR/. The materials are rearranged accordingly to resistance ranking in Table III. The materials have been numbered 1 through 30 according to increasing order of maximum MDPR, i. e., volume loss rate. The most resistant is No. 1 (AM 355 Stainless steel) etc. This numbering system has been used throughout all the Tables and Figures. The raw data has been plotted on each of the individual material curve sheets (Fig. 2-31) as weight loss vs. time of exposure. For each specimen, the test has been continued until the maximum weight loss rate had been reached, as determined by subsequent reduction in rate. Normally, seven hours sufficed for all the materials. Hourly measurements of weight loss were made. The maximum weight loss rate and MDPR are taken from these averaged curves. Individual incubation periods are found for each specimen by extrapolating the maximum damage rate portion of the curve to zero loss. The reciprocal of the average maximum MDPR (or weight loss rate) considering all specimens tested is taken as the unit of merit for each material on which the individual listing of the material from 1 to 30 is based. The pertinent individual specimen values and averaged values are listed in Tables I and III. As is well known, the damage rate usually follows a characteristic S-type curve for tests of this sort, characterized by an initial period of small or zero measurable weight loss followedby a period of relatively constant weight loss rate, and then It is interesting to note that there is a factor of more than 3 in MDPR between the various typesof stainless steel themselves (excluding carbon steel).

a period of decreasing weight loss rate. Eventual fluctuations of the weight loss rate may occur,. or the rate may continue to decrease with additional exposure. It is our belief, generally shared by most investigators at the present time, that the maximum volume loss rate is the most significant parameter for comparison of specimens. The incubation period may also be of prime importance in applications where it is more desirable that little or no cavitation damage be incurred than that an eventual minimum damage rate exist. Hence, incubation period has also been tabulated. The most and least resistent materials are the same according either to MDPR or Incubation Period. Some of the relative rankings are quite similar as #6 and 8, #21, 22, 23, and 25 for example, and perhaps others. Others, however, are very different. The reasons for these differences at the present time are unknown, but perhaps later more detailed study of the photomicrographs and test results may shed some light (Tables I and II). Fig 32 to 37 are photographs of typical specimens of each material at or near the conclusion of the test. The MDP value and time of exposure at the time of the photograph are shown in the figure legends. Some differences in uniformity and pitting and damage patterns are evident from an examination of these photos, though a direct comparison is not possible, since the accumulated volume loss is less for the more resistant materials. Fig. 38 through 61 are photomicrographs of the grain structure for each material supplied by Birdsboro. One classical goal of cavitation damage research is to find a usable correlation between cavitation damage resistance (1/MDPRW and easily measurable mechanical properties of the material. This goal appears elusive, perhaps because cavitation attack is on a micro-scale and involves very high rates of loading (duration is order or one microsecond) whereas the conventional mechanical properties involve macro-failures of the materials, and the loading is relatively very gradual compared to cavitation attack. Due to the apparent lack of a good correlation with standard mechanical properties, it appears that a more detailed consideration of the surface reaction to cavitation must be made if an ability to predict cavitation resistance is to

be attained, or the capability of designing materials specifically for this purpose. A more detailed study of the grain structures (Fig. 38 —61) may be useful for this purpose. Of course it may well be more feasible to simply test the cavitation resistance directly as was done in the present instance. C. Data Correlations Computer correlations have been made wherein the present materials, as well as a group of tool steels and another of miscellaneous metallic alloys which we had previously tested are included. The results are shown in Table IV (A. B. C.) and in Fig. 62- -63. Table IV-A is for the Birdsboro materials alone, IV-B for all materials (including Birdsboro) and IV-C for all materials excepting Birdsboro. The best correlation of damage resistance for the Birdsboro materials alone is with Brinell hardness (BHN). This parameter has often been used in the past for predicting purposes and has the strong advantage of simplicity. Recent tests have often shown that ultimate resilience (UR) or a combination between JR) and strain energy (SE) or (BHN3 was the most successful (4, e.g.). It is noted (Table IV-C) that this is still the case for the materials we have tested excluding the Birdsboro materials, i. e. a set of predominently stainless steels. It is also interesting to note that while the correlation coefficients for the Birdsboro materials are not particularly impressive, the scatter is very small (factorial standard error of estimate = 1. 26), compared with the other data sets, i. e. the total material set and that excluding the Birdsboro materials (Tables IV-B, C). Finally, it should be mentioned that Strain Energy (SE), which has often been suggested in the past as a correlating parameter, is considerably worse in all regards than the other possibilities which are included in these t able s. Area under conventional stress-strain curve

III. CONCLUSIONS The minimum cavitation volume loss rate (MDPR) was found for material AM 355 Stainless Steel and the maximum for material 25 CM Carbon Steel. The factor in MDPR between these materials is about 5. The same relative ranking for these two end materials is maintained for incubation period, and the factor is about 6. The relative rankings for some of the materials with either of these two merit parameters is quite similar, and for others it is quite different (Table III). Although the mechanical properties of these materials cover only a relatively small range, the reciprocal volume loss rates can be quite accurately correlated in terms of Brinell Hardness. Ultimate resilience, which had been quite successful for other material sets, is much less so for the present set which is composed predominently of stainless steels. The reason for this difference is not known but may be disclosed by further study of the results along with the photomicrographs. This may allow the development of an even more useful grading parameter for these materials, perhaps involving grain size as well as hardness.

A CKNOWLEDGEMENTS The authors would like to acknowledge the assistance of Mr. Edward Timm for designing the test facilities, Mrs. N. R. Bhatt for performance of the tests, Miss Nancy Parsons for the preparation of the report, and Mr. N. Orlandea for reduction of the data and Dr. Y. C. Huang for the computer correlations who are all employees of this laboratory. REFERENCES 1. Timm, E. Eand F. G. Hammitt, "Cavitation Vibratory Damage Test Procedure using Baffle-Plate Configuration." ASME, Cavitation Forum p. 5-7, 1969. 2. Hammitt, F. G., Chao, C., Kling, C. L. and Rogers, D.O., "ASTM Round-Robin Test with Vibratory Cavitation and Liquid Impact Facilities of 6061-T-6511 Aluminum Alloy, 316 Stainless Steel, Commercially Pure Nickel," ASTM Spec. Tech. Publ. 474, 1970. 3. Garcia, R. and F. G. Hammitt, "Cavitation Damage and Correlations with Materials and Fluid Properties," Trans. ASME, J. Basic Engr., D. 89, 753-763, 1967. 4. Hammitt, F. G., Huang, Y.C., Kling, C. L., Mitchell, T.M. and Solomon, L. P., "A Statistically Verified Model for Correlating Volume Loss Due to Cavitation or Liquid Impingement", ASTM STP 474, 288322, 1970.

TABLE I U of M Material No. Hardness Hardness Tensile Yield %/Elongation %Area Density3 Elastic Weight Loss MDPR Incubation Av. L No. and Name (Rockwell-C) (Brinell) Strength Strength 2 n Rdcto gm/cm ouu aeml/rPro v.MP R BHN T. S. psi Y. S. psi at 7Q0 E psi mg/hr hr. C A-i Grad CF 8 23.00 0.7728 1.00 A-2 Heat E - 4012 150 82700 52600 5 3%0 7. 75 19. 00 0. 6384 1. 00 2.8 A-3 A-i, A-2, A-3; 23.50 0.7896 1.00.73 A-4, A- 5, A- 6, A-7, A-8,A-9, A-10. A4 Grad CF-8 19.50 0.6552 1.00.A-5 150 82700 52600 5 3%0 19.00 0.6384 1.00 203 A-6 22. 25 0.7560 1.00.63 A-S Grad CF-8 21. 75 0. 7308 1. 00 A-9 150 82700 52600 5 3%0 7.75 23.50 0.7896 1.00 2.6 A-1O 22.75 0. 7644 1.00.71 C -1 CA, 7M, 14.347 0.4670 0.9 C -2 Stainle ss 160 66800 33150 44. 0% 8.00 15. 642 0. 5091 0.65 153 C -3 Heat # C-808 16.071 0.5231 0.35.49 Sol. quenched from 2000 0 CA15#1 CA-iS 19.90 0. 6808 0. 70 CA15#2 7. 612 20.80 0. 7116 0.65 203 D-i CA 6NM 12.666 0.4329 0.35 D-2 Stainle ss 241 118950 105950 18. 0%01 53. 8%6 7. 620 8. 783 0. 3001 0. 90 10.0 D-3 Heat IkE-4967, 8. 712 0.2977 0.70 033 E-1 CF 8 22.00 0. 7392 0.70.E-2 Stainle ss 150 73220 39850 63. 5% 7.75 29.60 0.9906 1. 25 237 E-3 Heat # E 4957 19.50 0. 6552 1.00 7S F-i CF 8 22. 70 0. 7627 0. 75 26 1 F-2 Stainle ss 150 77750 41150 5 7. 0%0 7.75 30.32 1.0188 0.9.80 F-3 Heat #88406 - -- G-1 25 CM 42.62 1.4121 0.5 G-2 Carbon Steel 140 76450 43500 33. 0% 51. 3%l 7.859 34.60 1.146 0.00 382 G-3 Heat # E 49 45 37. 42 1.2365 0.25 1.6 H-i 45 A7 10.40 0. 3445 1.00 H-2 Carbon 311 1SOO8SO 121250 12.S5% 41. 2% 7.86 15.02 0.4976 1. 35 127 H-3 Heat # F-5144 11.00 0. 900 0. 80.42 I-i CA -iS 230 18.00 0. 6158 0.8S 1-2 Heat #F-5144 220 103200 83500 2 1. 0%0 43. 3% 7.612 19.40 0. 6637 0.SS 186 1-3 18.SO 0.6329 0.65 67 8

TABLE I (cont. _ J-1 CA-15 - 14.00 0. 5097 0.65 3-2 LO CR, LO ST 187 91550 75300 29. 0% 60. 3% 7,612 12.68 0.4338 0. 75 15. 22 J-3 Heat F-5264 14.09 0.4820 0.00.4751 K-1 CA-15- 12. 10 0.4139 0. 875 K-2 CO. CR,. LO SF 285 133950 120900 17. 00 51.1%o 7.612 11.33 0. 3876 0.95 11.37 K-3 Heat E 5036 10.70 0. 3660 0.5 0. 3891 L- CF 8 15.74 0. 5288 0. 85 L-2 Stainless 150 80000 45000 42.5% 7.75 15.20 0. 5107 1.25 16.44 L-3 Heat # F-5580: 18.40 0. 6183 0.95.5526 M-1l CF-8 18.46 0. 6202 0.5 M-2 Sol. oquench. 150 7.9000 49950 45.0% 7.75 17.32 0.5819 0.65 18.26 MY-3 2000 F 19.01 0. 6387 o. 70.6136 N-1 Arcos Stainle-nd 14. 72 0. 4946 0.-30 N-2 13-4 Ni 240 145550 115850 3.5% 10.6% 7.62 16.36 0. 5497 0. 5 15.79 N -3 (For welding GAGNM 16.30 0. 5477 0.00.5306 as-weld. 0.-1 Arcos Stainlend 18.24 0. 6223 0.5 0-2 13-4 Ni 240 132550 70650 17 0% 45. 3% 7.62 16.38 0. 5598. 75 16.29 0-3 Stress Relieved 14.26 0.4873 0.60.5564 P-1 304-L SolJ 17. 60 0. 5800 0.40 P-2: Quenched 2050 F 156 72700 43800 68.0% 7.90 17.50 0.. 5767 0.00 17.60 P~.,3 17.70 0. 5833 0.60.5800 Q-1 304-L 0. 25 Q-2 Sensitized 156 77450 37450 64. 00% 7.90 20.20 0.6657 0. 25 Q-.3 1250F. -- 0. 25 R-1 CF1 8 M: 16. 00 0. 5376'0. 70 R-2 Sol. -quenched 160 78200 47950 50. 00% 7.75 17.00 0. 5712 0.55 0.5514 R-3 2050 16. 25 0, 5456 0. 75 16.4-1 S-1 CF 8 M 16.10 0. 5409 0.80 S-2 As cast 160 78250 44250 36.00% 7.75 16.10 0. 5809 0.625 16.3i S-3 15.75 0.5292 0..625.5370 T-.1' CE 30. 14.80 0.5025 0. 75 T-2 Water quenched 225 91700 60600 24. 5%0 7.67 14.80 0. 5025 0.75 1.441 T-3 2000 F- 13.65 0.4635 0.75.4903 U-1 CE 30. 15.15 0.5144 0.60 U-2 As cast 225 88. 250 52600 28.0% 7.67 15.70 0. 5331 0.50 15.42 U-3 Broken -- -- 0. 5230 V-1 308-L 17.00 0. 550 0. 51 i9.00 V-2 Water quenched 160 72850 42350 54.0% 8.00 20.00.650 0.00.616 V-3 2000 F -20.00.650 0.60 Z oooO. 0.650o. 60 W-1 308-L 16.50.5439 0.49 16.50 W-2- As welded 160 73900 52500 49. 0% 8.00 16.50.5439 1. 00. 543 W-3 16.50.5439 0. 75 9

TABLE I (cont.)%. X-l 308 Wire 17. 50.552 0.75 18.25 X-2 As welded 160 90250 66650 34. 0%1/ 8, 00 19. 00.620 1.51.585 X-3 Broken Y- 1 308 Wire 18. 50.6010 0.60 18.50 Y-2 Sol. quenched 160 83500 53050 44. 0% 8.00 18.50.6010 0.60.6010 Y-3 20000 F 18.50.'6010 0.60 Z -1 E 410'Sta inless 10. 00.340 0. 75 10.40 Z - 2 As welded 230 150000 92250 2.5% 7. 0%6 7.70 10.50.340 0.50.337 Z -3 10. 70.348 0.60 Z -1 E 410 20.00.679 0.40 17.50 2 Z -2 Stress Relieved 230 112200 95750 18. 0%D/ 52. 7% 7. 70 19. 00.645 0. 60.593 z23 1300 F 13.50.457 0.40 2 Al-l AM 355 7.50.247 1. 00 7.66 A'-2 Stainle s s 350 179900 154300 17. 0 %/6 52.2 7.92 6.00.198 1. 75.253 A'-3 (ultimate) 9.50.314 1. 50 B'-l CF 8 C 18.50.665 0.90 B'-2 Sol. -quenched 150 77550 43450 50. 0%/6 7.75 16.00.555 1. 00 16.66 B'-3 Heat 20500F 15.50.539 1.10.586 C'.1 CF 8 C 13.00.437 0.75 C'-2 As cast 150 77050 39400 47.0 %o 7.75 13.00.437 0.75 13.00 C'-3 13.00.437 0.75 0.437 10

TABLE II TEST PROCEDURE 1. Baffle-plate installed with axial clearances so that baffleplate and specimen surface are flush with power off. 2. 4-1/2" distilled water depth, fresh each day with a 30 minute deareation run (with dummy specimen) before start of actual tests to achieve equilibrium air content conditions for actual tests. 3. 120~F + 3~F water temperature attained. 4. 1. 69 psig (16. 69 psia) air pressure in vessel. 5. Run at power settings to attain 2 mil double amplitude at 20 kHz. 6. Run in 1 hour increments to a cumulative time of 7 hours, or at least until maximum damage rate is attained. 7. Wash in acetone, then in methanol, then dry 5 minutes in vacuum at ambient temperature. 8. Torque applied to specimen is 90 in. lb., to achieve uniform and snug fit.

TABLE III NUMBERING SYSTEM Relative Ranking Material Name MDPR WLR Incubation MDPR Incubation and No. (mils/hr) (mg/hr) Period Period (hrs) 1 1 A'1, 2,3 0.253 7.66 1. 625 2 18 Z1-1, 2,3 0.337 10.40 0. 500 3 15 D-l, 2, 3 0.3435 10.05 0.65 4 27 K-l, 2,3 0.3891 11.37 0.625 5 19 H-l, 2,3 0.4221 12.71 0. 715 6 28 C'-1,2,3 0.437 13.00 0.750 7 29 J-1, 2,3 0.4751 15.22 0. 700 8 6 T-1, 2,3 0.4903 14.41 0. 750 9 8 C-1, 2, 3 0. 4997 15.35 0. 632 10 13 U-1, 2,3 0.5230 15.42 0.550 11 5 S-1, 2, 3 0.5306 15. 79 0.673 12 7 N-1, 2,3 0.5370 16.31 0.400 13 24 W-1, 2, 3 0.5439 16.50 0. 746 14 26 R-1, 2,3 0.5514 16.41 0. 625 15 11 L-1, 2,3 0.5526 16.44 1. 070 16 3 0-1, 2, 3 0.5564 16.29 0.616 17 9 P-l, 2, 3 0.5800 17.60 0. 500 18 4 X-i, 2,3 0.5850 18.25 1. 130 19 14 B'-1, 2, 3 0.5860 16.66 0. 950 20 16 Z2-1,2,3 0.5930 17.50 0.460 21 23 Y-l, 2,3 0. 6010 18.50 0. 600 22 21 V-1, 2, 3 0.6136 18.20!). 550 23 25 M-1, 2, 3 0.6160 19.00 0.613 24 10 I-1, 2, 3 0.6374 18.36 0.683 25 22 Q-1, 2, 3 0.6657 20.20 0. 600 26 2 CA15 0.6962 20.35 0. 675 27 17 A-l-10 0. 7250 21.60 1. 000 28 20 E-l, 2,3 0.7950 23.70 0.950 29 12 F-1, 2,3 0.8907 26.511 0. 825 30 30 G-1,2,3 1.264 38.21 0.250 Average Values of several Specimens 12

TABLE IV (A. B. C. ) Correlation Relation Sample Correlation Coefficient Factorial Standard Constant Exponent On Log Scale On Linear Scale Error of Estimate C n A. Birdsboro materials only 1/MDPR = C (UR)n 0.439 0. 378 1.33 1. 087 0.146 1/MDPR = C (URxE )n 0.439 0.378 1.33 0. 73x102 0.145 n 1/MDPR = C(URxBHN) 0. 511 0.446 1.31 0.530 0.142 1/MDPR = C( BHN)n 0. 672 0. 718 1.26 0. 238x10-1 0. 876 1/MDPR = C(SE)n 0. 224 0. 203 1.36 0. 744 0.113 B. For all materials (U of M, Tool Steels and Birdsboro) )n - 1/MDPR =C (UR) 0.636 0.006 3.05 0.478x10 0.795 2n 06 1/MDPR = C(URxE ) 0.677 0.041 2. 90 0.453x109 0.576 1/MDPR = C (URxBHN) 0. 701 0. 063 2. 76 0. 52x10 0. 576 1/MDPR = C (BHN)n 0. 748 0. 364 2.61 0.38x10 0.602 1/MDPR = C (SE)n 0.072 0.174 4.20 0. 964 4.08 C. For all other materials (excluding Birdsboro) l/MDPR = C (UR) 0. 743 0. 077 3. 75 0.11x10 1.11 1/MDPR = C (URxE )n 0. 771 0. 139 3.51 0. 25x10 0.72 1/MDPR = C'(URxBHN) 0. 780 0.127 3.43 0.16x102 0.74 1/MDPR = C (BHN)n 0. 761 0. 338 3.60 0. 32x103 1.76 1/MDPR = C (SE)n 0.188 0.100 6.95 0.114 0.35 UR = Ultimate Resilience E -= Elasticity BHN = Brinell Hardness SE = Strain Energy

BRANSON 250 WATT POWER SUPPLY ULTRASONIC DRIVER HORN STABILIZER FLANGE SUPPORT BAFFLE SUPPORT PLAT EXPONENTIAL HORN -CONTAI NMENT VESSEL BAFFLE PLATE TEST SPECIMEN - _~.-~-c-~ _ A|WATER BATH TEST FLUID LEVEL 2691 Figure 1. Schematic of Baffled Test Configuration

Weight Loss Rate (mg/h'; Incubation Period 1 hour for all specimens A-1 17.50 mg/hr (A-1 to A-10) - 160 A-2 19.00 mg/hr 0CP A-3 23.50 mg/hr E A-4 19.50 mg/hr 140 A —5 19.00 mg/hr Grade CF8, Heat E-4012 A-6 22.25 mg/hr o) ~ A-8 21. 75 mg/hr. 120t A-9 23. 50 mg/hr A3 oIO0A-10 22. 75 mg/hr L10 A0 80 w - A9 > 60 _ 40 A6 o 20 0I 25 2 3 4 5 6 7 TIME (Hours) Figure 2. Weight Loss vs. Exposure Time 3.265

16 100 CA7M STAINLESS Weight Loss Rate (mg/hr) Incubation Period (hr\ 90 - [3 C-1 14.347 mg/hr 0.9 ( C-2 15.642 mg/hr 0.65 C-3 16. 071 mg/hr 0.35 80 - 70 050~/ 70 / 50 0 1 2 3 4 5 7 3266 Time;(hrs)

17 CA15 200 Weight Loss Rate (mg/hr) Incubation Period (hr) 0 CA-15 #1 19.90 mg/hr 0. 70 180 180O CA-15 #2 20. 80 mg/hr 0. 65 160 140 120 80 10 60 20 / Figure 4. Weight Loss vs. Exposure Time 0 1 2 3 4 5 6 7 3267 Time (hrs.)

18 100 CA6NM STAINLESS Weight Loss Rate (mg/hr) Incubation Period thr. 90 _ El D-1 12.666 mg/hr 0 35 ) D-2 8. 783 mg/hr 0. 90 80 t n D 3 8. 712 mg/hr 0. 70 70 60 0' 4. 50 / / 40 30 _ 20 Figure 5'. Weight Loss vt. Expbsure Time 1 2 3 4 5 6 7 3268 Time (hrs)

19 CF8 STAINLESS Weight Loss Rate (mg/hr) Incubation Period (hr.) 180 J E-1 22.0 mg/hr 0. 70 0 E-2 29.6 mg/hr 1.25 160 A E-3 19.5 mg/hr 1. 00 140 0 120.4 / / b / ~o 100 40 20 0 ~1 ~ Figure 6. Weight Loss vs. Exposure Time

20 200 CF8 STAINLESS Weight Loss Rate (mg/hr) Incubation Period (hr) 0 F-1 22. 70 mg/hr 0. 75 180 - O F-2 30.32 mg/hr 0.9 160 140 - / o I0 U 8021 60 40 20 Figure 7. Weight Loss vs. Exposure Time 0 1A___________ 3270 0 1 2 Time (hrs)

21 200 25 CM CARBON STEEL Weight Loss Rate (mg/hr) Incubation Period / 1 G-1 42.62 mg/hr 0.5 (hr) 0 G-2 34.60 mg/hr 0.00 180 J A G-3 37.42 mg/hr 0.25 160 140 1120 CI) oCi 0 100 0 0 6O0 40/ 20 3271 Time (hrs)

22 100 45 A 7 CARBON Weight Loss Rate (mg/hr) Incubation Period (hr) 0 H-1 10.40 mg/hr 1.00 9 H-2 15.02 mg/hr 1.35 L H-3 11. 00 mg/hr 0.80 80 70 w / 60 // 50/ 40 30 20 10 Figure 9. Weight Loss vs. Exposure Time -'1 2 3 4 5 6 7 3272 Time (hrs)

23 200 CA15 Weight Loss Rate (mg/hr) Incubation Period (hr) W I-1 18.00 mg/hr 0. 85 180 0 I-2 19.40 mg/hr 0. 55 |* I-3 20. 50 mg/hr 0. 65 160 140 0 120 > 100E IJ 80 60 40 20 /~ Figure 10. Weight Loss vs. Exposure Time 0 v / _1.._1... I _._ __ _L__ 0 1 2 3 4 5 6 7 3273 Time (hrs)

24 100 CA15 Weight Loss Rate (mg/hr) Incubation Period (hr) O J-1 14.90 mg/hr 0.65 // 90 - 0 J-2 12.68 mg/hr 0,75 80 L i\ J-3 14.09 mg/hr 0.00 // 70 60 4. Titne (hr / -450 / 40 30 20 10 Figure 11. Weight Loss vs. Exposure Time 0 1 2 3 4 5 6 7 3274 Time (hrs)

25 100 CA15 Weight Loss Rate (mg/hr) Incubation Period (hr) O K-1 12. ]0 rng/hr 0.875 90 0 K-2 11. 33 mg/hr 0. 95 A K. "3 10. 70 mg/hr 0. 5 7() 60 no 5 0 0 1 2 3 4 5 6 7 Time (hrs)

26 200 CF8 STAIN LESS Weight Loss Rate (mg/hr) Incubation Period (hr) t3 L-1 15.74 mg/hr 0.85 180 a L-2 15. 20 mg/hr 1. 25 4 d L-3 18.40 mg/hr 0.95 160 140 i_ i o 120 0 10 6 i VM i 40 20 7, Figure 13. Weight Loss vs. Exposure Time 3276 1 2 3 Time (hrs) 5 6 7

o200, CF8 Weight Loss Rate (mg/hr) Incubation Period (hr) Q M-1 18.46mg/hr 0.5 180 - ( M-2 17.32 mg/hr 0. 65 Q M-3 19.01 mg/hr 0.70 160 140 120 0 100_ or4 80 40 20 Figure 14. Weight Loss vs. Exposure Time 01 2 3 4 5 6 7 3277 Time (hrs)

ARCOS STAINLEND 28 200 Weight Loss Rate (mg/hr) Incubation Period (hr) [a N-1 14.72 mg/hr 0.30 180 - ~ N-2 16.36 mg/hr 0.5 a N-3 16.30 mg/hr 0.00 160 140 o 120. 100 80 60 40 80 - 20_ Figure 15. Weight Loss vs. Exposure Time 0- 1 2 T3 4 5 6 - 7~ Time (hrs)

29 200 ARCOS STAINLEND Weight Loss Rate (mg/hr) Incubation Period (hr) 0 0-1 18. 24 mg/hr 0.5 180 C 0) 0-2 16.38mg/hr 0.75 0 - 3 14.26 mg/hr 0. 60 160 140 _ 120 0 80 20Figure 16. Weight Loss vs. Exposure Time 0 1 2 3 4 5 6 7 3279 Time (hrs)

100 30 304 - L SOLUTIC-ON Weight Loss Rate (mg/hr) Incubation Period (hr) 90. P- p 17. 60 mg/hr 0.40 O P-2 17.50 mg/hr 0.00 A P-3 17. 70 mg/hr 0.60 80 70 60 /1 / i/ 00 ~/ 4. / 40 / 3020 - 10 7/Bu~ ~Figure 17. Weight Loss vs. Exposure Time 0 1 2 3 4 5 6 7 3280 Time (hrs)

31 200. 304 - L SENSITIZED Weight Loss Rate (mg/hr) Incubation Period (hr) o Q-1 20. 20 0.25 180 O Q-2 20.20 0.25 4 Q-3 20.20 0.25 160 140 8060 40 20. Figure 18. Weight Loss vs. Exposure Time 0 1 2 3 4 5 6 7 3281 Time (hrs)

32 200 CF8 M SCLUTICN QUENCHED Weight Loss Rate (mg/hr) Incubation Period(hr) 0 R-1 16. 00 mg/hr 0. 70 180 R-2 17.00 mg/hr 0.55 R-3 16.25 mg/hr 0. 75 160 140, 120 - 0 t 120 (/ s 100 - 80 20 / Figure 19. Weight Loss vs. Exposure Time O 1/z 1 1-1/z z z-1/z 3282 Time (hrs)

CF8 M 50r Weight Loss Rate (mg/hr) Incubation Period (hr) 0 S-1 16.10 mg/hr 0.80 O S-2 16.10 mg/hr 0.625 $ S-3 15.75 mg/hr 0. 625 40' 30 20 10 i/' Figure 20. Weight Loss vs. Exposure Time 02831/21.1/ T____L _ __..1 3283 0 1/2 1- 1/2 Time 2 (hrs) 2-1/2 3 3-1/2 37283

34 CE 30 WATER QUENCHED 50 Weight Loss Rate (mg/hr) Incubation Period (hr) ~ T-1 14.80 mg/hr 0.75 0 T-2 14.80 mg/hr 0.75 A T-3 13. 65 mg/hr 0. 75 40 / / - / // 30 1 _284 U 20 / 10 3284

CE 30 AS CAST 50 50 ~ Weight Loss Rate (mg/hr) Incubation Period (hr) 0 U-1 15.15 mg/hr 0.60 0 U-2 15.70 mg/hr 0. 50 40 U E / 20 / 11 30 3285 1/Z 1 1-1/2 Time. (hrs)

36 308 - L WATER QUENCHED 200 Weight Loss Rate (ng/hr) Incubation Period (hr) Io: V-2 17.00mg/hr 0.51 180 O V-1 20.00 mg/hr 0. 00 A V-3 20.00 mg/hr 0.60 160 140 bb E0 n: 120 10 0 S 80 60 40 20 Figure 23. Weight Loss vs Exposure Time 3286 1 2 Time (hr 5 6 7 3286~~~~~~~~~ie hs

37 308 - L AS WELDED 20( Weight Loss Rate (mg/hr) Incubation Period (hr~ 0 W-1 16.5 mg/hr 0.49 180 0 W-2 16.5 mg/hr 1. 00 L^ W-3 16. 5 mg/hr O. 75 160 - 140 0-, 120.,, bo 100 80 6040 20 Figure 24. Weight Loss vs Exposure Time 3287 5 6 7

38 308 WIRE AS WELDED Weight Loss Rate (mg/hr) Incubation Period (hr) o x-1 17.50 0. 75 O X-2 19. 00 1. 51 0 /8 / Figure 25. Weight Loss vs. Exposure Time 3288

Weight Loss Rate (mg/hr) Incubation Period (hr) 200 — Y-1 18.50 mg/hr 0. 60 o Y-2 18.50 mg/hr 0. 60 180 0 Y-3 18.50 mg/hr- 0. 60 308 WIRE SOLUTION QUENCHED 160 140 e) 0 120 40 0 / 100 0 1 2 3 4 5 6 7 3289 Time (hrs)

40 E 410 STAINLESS AS WELDED 200 r Weight Loss Rate (mg/hr) Incubation Period (hr) z I-11 l0. 0 mg/hr 0. 75 o Z -2 10. 50 mg/hr 0. 50 1 180 A Z1-3 10.70 mg/hr 0. 60 1 160 140 - 0.4en o 8120 40 _20Figure 27. Weight Loss vs. Exposure Time 0L I w2 1 2 3 4 5 6 7 3290 Time (hrs)

E 410 STRESS RELIEVED 41 200 Weight Loss Rate (mg/hr) Incubation Period (hr! 0 Z2-1 20.0 mg/hr 0.40 180 _ O Z2-2 19.0 mg/hr 0.60 Z2-3 13. 5 mg/hr 0.40 160 - 140 120 0 100 80 60 40 20 Figure 28. Weight Loss vs. Exposure Time 0, 0 1 2 3 4 5 6 7 3291 Time (hrs)

42.100 - AM 355 STAINLESS Weight Loss Rate (mg/hr) Incubation Period (hr) o A'-i 7.5 mg/hr 1. 00'90 A'-2 6.0 mg/hr 1. 75 O A'-3 9.5 mg/hr 1. 50 80 70 60 0 50 U 40 30 20-f 10 Figure 29. Weight Loss vs. Exposure 0. 1 -2 3 4 5 6 3292 Time (hrs)

43 CF 8 C SOLUTION QUENCHED 200 Weight Loss Rate (mg/hr) Incubation Period (hr) 0 B'-1 18.00 mg/hr 0. 90 180 0 B'-2 16.00 mg/hr 1.00 B' 3 15. 50 mg/hr 1.10 160 140 120 100 80 /L z;Figure 30. Weight Loss vs. Exposure Time o ~ 7/ 0 -I 2 3 4 5 6 7 3293 Time (hrs)

44 CF 8 C AS CAST 200 Weight Loss Rate (mg/hr) Incubation Period (hr) o C'-1 13.00 mg/hr 0. 75 180 - C'-2 13.00 mg/hr 0.75 O C'-3 13.00 mg/hr 0. 75 160 140 02 o100 80 60 40 3294 Time (hrs)

A-2 Grad CF 8 A-4 Grad CF 8 WLR 23.00 mg/hr WLR 19.50 mg/hr 7 hr. exposure 7 hr. exposure A-10 Grad CF 8 C-2 CA7M Stainless WLR 22.75 mg/hr WLR 15.642 mg/hr 7 hr. exposure 7 hr. exposure Figure 32. Photographs of Damaged Specimens A-C 3319 45 45

CA 15 #1 WLR 19. 90 mg/hr. 7 hr. exposure D-1 CA6NM Stainless E-1 CF 8 Stainless WLR 12. 666 mg/hr. WLR 22. 00 mg/hr 7 hr exposure 7 hr. exposure F-i CF 8 Stainless G-2 25 CN Carbon Steel WILR 22. 70 mg/hr WLR 34. 60 mg/hr 7 hr exposure 7 hr. exposure Figure 33. Photographs of Damaged Specimens CA -G 46 3320

H-2 45 A 7 Carbon 1-3 CA 15 WLR 15.02 mg/hr WLR 18.50 mg/hr 7 hr. exposure 7 hr. exposure J-3 CA 15 K-3 CA15 WLR 14. 09 mg/hr WLR 10. 70 mg/hr 7 hr. exposure 7 hr. exposure L-2 CF 8 Stainless M-2 CF 8 WLR 15.20 mg/hr WLR 17.32 mg/hr 7 hr. exposure 7 hr. exposure Figure 34. Photographs of Damaged Specimens H-M 47 321

N-2 Arcos Stainlend 0-2 Arcos Stainlend WLR 16. 36 mg/hr WLT 1P 28'n-g/hr 7 hr. exposure 7 hr. e':x'vs~e P-3 304-L Sol. Q-2'0O L Sensitized WLR 17 70 mg/hr WI.R 20. i< rn/hr 7 hr. exposure 7 h. exwpos'ure R-3 CF 8 M Sol quenched S -2 7 A t W LR 16. 25 mg/hr V i<i "? it- it} ic-t /h r 7 hr. exposure?. x.,:.pos'ure Figure 35. Photographs of Damaged Specie-,>i< 7KS<3322 48

T-2 CE 30 Water quenched U-1 CE: 31 As cast WLR 14. 80 mg/hr W LR... c( n/hr 7 hr. exposure 7 hr. x;1. sre V-2 308-L Water quenched W-2 I; eded WLR 20.00 mg/hr VrLt }.;'h./r 7 hr. exposure,,-r. X-1 308 Wire as welded Y-2 -3: -. -.nched WLR 17. 0 mg/hr: - 7 hr. exposure: l -;:.-,: iFigure 36. Photographs of Damagedc-i -;','e:,:.'i 3323 49

Z —3 E 410 Stainless as welded Z -3 E 410 Stress relieved WLR 10. 70 mg/hr WLR 13. 50 mg/hr 7 hr. exposure 7 hr. exposure A'-1 AM 355 Stainless B'-2 CF 8 C Sol. quenched WLR 7. 50 mg/hr WLR 16.00 mg/hr 7 hr. exposure 7 hr. exposure C'-2 CF 8 C As cast WLR 13.00 mg/hr 7 hr. exposure Figure 37. Photographs of Damaged Specimens Z1- Ct 50 3324

U of M No. C-1 CN7M - Stainless Heat # C-808 C-2 Solution Quenched - 2000 F C-3 Y100 Electrolytic Etch U of M No. D-1 CA6NM (12 Cr 4 Ni) Heat #E4967 D-2 Normalized and Tempered D-3 Y 500 Ferric Chloride Etch Figure 38. Photomicrograph of material C-1, 2, 3, and D-1, 2, 3 3295 51

' - 2 Souto qunce from200 i:::.iii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii:?iii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~~~iiii~~~~~~~~~i'i~iii~ii!:::~i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiii':,iiil~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii~~iiii~iili U of M No. E-1 CF8 S~~~~~~~~~~~~~~~~~~~~~~~~~~~~ainless (Air Mel~~~~~~~~~~~~~~'~~-sr~~ed)~-i F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~igure 39. Photomi~icrgah o aeiaF-1,2,3 and tE-i,.2 3296N / 5Z'i C~~~~~~~~~~~~~~~~:::: ~ ~~~~/~~~~~~~~~/~~~~~~~~~~iiiiy,)\ i:::::::i:i-ic: U~ ~, Vf'4o - F Sanes(acu et ON~~~~~~ F-2 Solution quenched from2000 2' F-3~~~~~- /70EetoltcEc':::::-:-:-:::::'':':: iiiiiiiiii-i'"~ii ilii~i~": --—: ——:-:-: —-i-i —'i::iiii:-ii~i~ilii — N, /:ii —ii~~i liiii~-iiiiiiiiiiiiii:ii ~- lili:ii:ili iii'N':::::::::;-:')':;:::i:::: N'::-::-NN':: 4 2i~-~~i~~ii;iijji:i Zii -;ij~iiiiij:iji;:-:- j i:ii iiiii~iiiiiii -i -~ ~i-i:- l:~~:i:::~ i-i iiiiii: -::::::::~ (N':~_::9::::ii::::i: 2 (, —,: ~i:ii:iii:::,:_:::: ~~~~~~~~~~~~~~~~~~~NI~~~~~~~~~~~~~~~~~~~~~~~~~~~::::j~_j: N"',:::::::-: 2::::i:::I:j: 2::::;::::::::: ~::: _-_- __::::::::, i-l-i-iii i~~~-iiiiiiiiiii-i~.,a:ii:~i-i:i:,,,:iii ~'iii~~-~-:iiijiiii, NNNN\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:::::~~~E~::::::_j::i:~~j:;j::::iiiili 1/~ ~ ~ ~~~~~~~~~~~~ /, -V:::-::~~_::::ii:~i~-::ii:i (2 /2 7/ —ii,:.,,,,,5~''~-':':I ~'ii- ii-il?-::-'~i'i''-ii-:-:~i~:'-:~~" ii~~~-~i —-ii-:~ _:~ii U of M No F 1 GF8 Stainless (Vacuum Melted)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,.,, ii-i-' i~iiii ~il:iii —~i-~iii -i::::: —-: —::':-i'~-i —iii —-::,,,:,,, i~i,, iiiii F 2 Solut~~~~~~~~~~~~~~i::::ii'i-"''Pi5 i on~i:l quenche~-'"~'''':d'i-" from'ii 2000,::iiiiii: —-,,,,, -~~~i:::::i: -- F 3 lOOEletrolticEtc N(N\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.,:: —::::::~.::l::iii -iiiii —iiii~::::::::::-: —— ~ —- i-iiiii~iii N: (N-::-::iiI -~i0z — ~ — iii~ii iiii::ii N~ ~ ~~~~~~~~~~~~~~~~~~~~~~-i9lll~': 4'':''::::ri~ N-,,:,,_~~_, N (N' <N 2~~~~~~::::-iiiiiil~iiiii —:::: ~:-ic:_,,,,,,,iiiiiiii~~~~~::ii ii-iiiii:-: NY:::- N'/-: / / N —: — N'NNN ~ ~ ~ ~ ~ ~:-:::::: (2/ —-::::-:-: - c.'N. -:: ——:-:::::- -.i —:ii:iiji-ii i-i-ii,,._-~-~~ i~,::-:ii:i-~ii.,, i'i-iii iiii ci:l 1;'~~~~~~~~~~~~~~~~~~~~ieiii~ii-ii —-iiiiie 4 iiii- JiiiiiBii-iIi (YNNZNi —:~ ".'~~:~ ~ ~ ~~~-~:~ -T i lii( iiil'iii:-ii-i-::::ic —;:-:-: N'~~~~~~~~~~-:-~:-$l:~;cl_:"'-'':;N /22: j:~- Nj \ N'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::::::::i:::::-::: -::"::''''i~~-:i-, —-i'':iiiii~i:::i;_i-;:~- —,, (2)'"''N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-l:'-'- -":'-'''-: —-~: "::9:i~'~i__ _-,::I -.,, --- i'. —:: ll,,,iiiiiiiii~iiiiiiiii:ii:-i:-:-::_,/ 2 N -: -: i.:::::::::::::::::.::2::::iiii-i ij~iii-i~ii,,,,,NNli~iii N~:j'-:-:: —-::::j::::-r:, N1-:~:'N:a~;- ~:ii:~i i:-,i-:l:::i:-_:__:::-_:, N/N'~~~~~~~~~~~~~~~~~~~: —:, N'N 6/~.,-,::iiii iiii — - i::~-:: iii5 iii-~:g-;i~i~~i~iiiiiii:,,- -::,,, N~ ~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiii~aii~i~'(2i~jii N N N (2 N: —:,,,i-:-_-i:-~ii'''' —:-::.::_:_::_:_i:::iiiii'~iiiiiiii-i-iiii N:,~~~~~~~~~~~~~~~~~~~~~,: (2:~i:'N, ~ i 4: —:ii::: v::::::::: N' (2 N N 2::::::'':' —~,:,.-.,:_.;::I? —-:::::iii —:i-i:' —-:ii:lii,.,,.,iiiiii:iiii N -: —-i:ii:ii-~-: —:- NN:-: NN:' N,-~,:::::,,,:::,, \k r'N'N~~~~~~~~::: ~ --,::_::-i:::~::::; _~_~ ili-i:- 4'N~~:-: -,-,- ------: p N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pi::::~i _;:::~-:: —~-_ __::::-::-::::::- -:::::::: —': —::::::::::: c- Ni U~~~~~~iiiiiiiiii~kii~I~ ofl:::, M No E: 1: GF8-: Stainless (Air Melted)~::, -i::E~~~~~~~~~~~: —- 2-::,::: Souto quenched-i fromii 2000 E~~~~~~~~~~~~~~~~~~~:-~:::-~ii~ii —i:: 3::: XlOO: Elctolti Etch::::::: ~ ~ i~i:;i~~: Figure~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiiii'i —iix:- 39: Photomicrograph::: of-::::: mater:::::::::::~;i-:_iali-i~_: F-12, and.. E-l.2.3i 3296~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r::::-::::::::::l:::-::::::::::.x:::::::

U of M No. G-1 25CN (Carbon Steel) Normalized G-2 and Tempered X100 27% Nital Etc G-3

U of M No I- CA-15 High Cr, High Si, structure conI~-2 taining Ferrite. Normal propertiE ~-3 ~ X500 Ferric Chloride Etch................. /......

U of M No. K-1 CA15 - Low Cr, Low Si Structure con K-2 containing no Ferrite. Heat treated K-3 to 248 - 302 BHN. (A. C. and BLH Impellers) X500 Ferric Chloride. Figure 42. Photomicrograph of Material K-1,2,3 3299

L - 2 ( 1 7%).As Cast X100 Electrolytic~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..... U of M No. L-1 CF 8 Stainless -High Ferrite L-2 (17%) As Cast X1500 Electrolytic L-3 E tch r~~~~~i Fgr v4. ht 3300~~~~~~~~~~~~~~,-,

U of M No. M-1 CF8 Stainless - High Ferrite M-2 (17%) Sol. Quenched X100 M-3 Electrolytic Etch U of M No. M-1 CF8 Stainless - High Ferrite M-2 (1720) Sol. Quenched X500 M-3 Electrolytic Etch Figulre 44. I&hotomicrograph of Material M-i, 2, 3 3301 57

U of M No. N-1 Arcos Stainlend 134 Ni As welded N-2 Deposit X100 Fe C1 Etch N-3:E~~~~~~~~~~~ U of M No. N-1 Arcos Stainlend 134 Ni Deposit N-2 As welded X500 Fe C1 Etch N-3 ~3302~ Figure 45. Photomicr/graph of Material N-l, 2. 3. N33058 58~~~~~~

U of M No. 0-1 Stainlend 134 Ni Weld Deposit 0-2 Stress Relieved 1175 F A. C. 0-3 XlOO1 FeC1 Etch U of M No. 0-1 Stainlend 134 Ni Weld Deposit 0-2 Stress Relieved 1175 0F A. C. 0-3, X500 FeCl Etch Figure 46. Photomicrograph of Material 0-1, 2, 3 3.303 59

U of M No. P-1 Type 304-L StaInless Solution P- 2 Quenched 2050 X100 i )- 3 Electrolytic Etch 3 0 Fgre47 hooicrgrp o atra 7' 1,"2 60 7 4! ~iI!iiiiiiiii I / ~ ~ ~ ~ ~ ~!~iiii~i~iiiiiiiiiii i~~~~ U of M No. P-i Type 304-L Stainless Solut~~~~~~~~~~~~~~~ion U of M No. P-l Type 304-L Stainless Solution P-2 Q.uenched 2050 OFX500 P- 3 Electrolytic Etch 3304 Figure 47. Photomicrograph of Material P-i, 2,3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~, 60~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~iii

U of M No. Q-1 304-L Stainless Sensitized Q-2 1250~F 25 Hours X100 Q- 3 Electrolytic Etch U of M No. Q- 1 304-L Stainless Sensitized Q-2 1250 F 25 Hours X500 Q- 3 Electrolytic Etch 3305 Figure 48. Photomicrograph of Material Q-1, 2, 3 61

U of M No. R-1 CF8M Stainless Solution Quenche R-Z from 2050~F X100 Electrolytic -3 Etch U of MA No. R-1 CF8Mi Stainless Solution Ouenched R-2 from 2050 F X500 Electrolytic R- 3 Etch Figure 49. Photomicrograph of Material R-1,2, 3 ~~~3306~~0 62 ~ ~ ~ 0

U of M No~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. S-1 CF8MH~i'i~P-tailinlssAsCat 10 S~ ~~ V-3 ~ii~~~~~~~~~~~~~~~~~i~~~~~~~~~i;~'ii, i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~iii-i~!i~i'i:i-iiii?ii~~~~~~~i~~~~i?!~i.............~~~~~~~~~~~~~~~~~~~:l~iii U of o. S- 1 f 8 Stils As CatX0 S- 2 E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'ilecrlyiii;;"tic Etc-h-iii f S-3i Fig r 0hicrogap fMaeial/S-1,.2~3. 3307 63- i\ i(fj 4)8: —iiii:-~ii~:-jll *1 -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I <1 2~~~~~~~~~~~~~~~~~~~~~~~~~-ai:::l~_i-ii U of M No. S-i CF8M~~~~~~~~~s~-r.- Sta~IH~~inlssA Cs XO S-2~~~~~~~~~~~~~~~~~~~~i~~i~'iW:iii Electrlytii~i c Etch S-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iNiiii~ii ii /~iiiii-~i, ~ ~ ~ ~ ~ ~~~~~:::::i:i:::~:: ~ — a —ici::ii ~ iiii~cir:-siil:i —'4/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-':::::::'::: iii:iifii:i~iiiii::::-::: ii:iiii 4iiiiiis:ii-~-~-ii ~'''i:ii j: — ~:::::i::::::I: Al!~~~~~~~~~~i;:-i-:~iiiiaii )ii U of M No. S-l GF8M Stainless As Cast X500~~~~~~~~~~~~~~~~~~~~~~~~~~~~i:I?:~:::-i~:i:::,i~::::: S-2 Electro~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i-i-lyici:i Etch~iiiiiii S-3~~~~~~~i-'iiii-ii:i- i —iiiiiiiii — ~ i:c~f —-~ —~ 3307 Yigure 50.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiii-~~iii~i~~ P o micrographi::: ofi:i-i~i~iiii*i-: Ma e ial S l,2~i63~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-: —-------- -

iiii iiiif U of M No. T-l CE3O Stainless - Sol. Quenched T-2 2000 0F XlOO Electrolytic Etch T-3 iiiiliiiiiiiiii~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~iii~ii~,~i~i~iFtii~'~ *'' /i~: =iiiiiiiiii-ii:i!:iiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ii'~iiii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~' —iii~~~~~~~~iiiiiii~~~~~~~~~~~~~iiiiiiii!-iiii;ii~::::: iii~~~~~iiiiiiiiiiiiiiiiiiiiii!=iiii~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~iiri-ii~ 0 /4~6.2-:::i~:'.I. -:- iQ(/ ~ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::: —_ Uii,~ic C ~~~~~~~~~~~~~~~~~~C C f~~~~~~~~~~~~~~~~~~~~~~~~~:~:::::-::r:~~~~~~~~~~~~~~ U~ ~ ofMN.TlC3 tines-SlQece T-2-:: 2000::~::: 0F XOOEecrlyi Ec T-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:~ 3308 Figur 51. Photmicro~rap of Materal T 1,2, iil~~iii:,*:6 4:

U~~~~~~~~~~pi - ii'i:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-ii-iihi si~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ir ~ ~ ~ ~ ~ ~ ~ i!iii iiiiiiii ~ ~ ~ ~ ~ ~ i~iiiiii'ilil;i~~ii~.iii'-i-:-.................... ~:!iii~~~~~~~~iii ~ ~ iiiiii~~~~~~~~iiiii!i::Uf of M No. U-1 CE-'30 Stainless -As Cast X100 U- 2 Electrolytic Etch U-3::: -i~~~~~~~~~~~~~~i- i: -.-~~~~~~~~~~~~~~.................B:: ~~ ~,?ilii i:-~iii-,:i?,?iii i~ii,,iii - ~!i:ii"ii:ii i~ii iiiiiiji U of M No. U-1 CE30 Stainless - As Cast X500 U- 2 Electrolytic Etch U-3 3309 Figure 52. Photomicrograph of Material U-1, 2, 3 3'309 65

U of M No. V-1 Weld Deposit 308 Stainless Solution V-2g Quenched 2000 F X100 Electrolytic V-3 Etch U of M No. V-1 Weld Deposit 308 Stainless Solution V-2 Ouenched 2000 F X500 Electrolytic V- 3 Etch 3310 F'igure 53. Photomicrograph of Material V-l, 2,3.. 66

U of M No. W-1 Weld Deposit 308-L Stainless W-2 As Welded X100 Electrolytic Etch W-3 U of M No. W-1 Weld Deposit 308-L Stainless W- 2 As Welded X500 Electrolytic Etch W-3 311 ~~Figure 54. Photomicrograph of Material W-1,2,.3 67 -W - 3~~~~ 44:;~~~~~~~~~~~~~~~~~~~~a a ~~~~~~~i~ i:%*:~' \\ ~gb A~~~~~~~~~~~~~~~n:~- iii \444\ r:~I~:-i;-;i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B'~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i % >7*-s-;j::4:~4::z~:i~ —.i~ ~ p-:\? ~~~~~~~~~~~~~2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iiiiiii~ ii V W- 3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i ~~~~ L ~~~~~~~~~~ N~~~~~~~~~~~~~~~~~~~~. -- 1-i -'a.#%Zi E 4% 4% U of M N. W-l Wed Depost #4f L 4a44l * I- sWle 50 lcrltcEc 4w- 311Fiur 5. Potmirora~ o MteialW-,, 67~

8921'2'1-X 1B12 aaeqe jo id -ead oaI to Eu4od'SS 9tf1J qp1a o-RAio qoaia OOX papiaM Sv 2 X SSaaJUIEWe 80L adAL 7IsodaCI p1aW I X'nO IN JO fl qz)4a o-Eq~~~~io-lioa::-a oo-i-K —:ap iam sv:-::-X /~i H:: _:-;iri —:i- i k", "K.- i:94 31 4- -fruit~~~~~~~~~~~~~~~~~:~:-:: -:: I~~~~~~~~~~~~~~~I i~~~~~~~i~~~~~~i ~~~~~~~~t;Aio ~~~~~~~~~~~~~~~~~~~MI OOIX P0PPIW S\T 2 X~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:i~i i:iii-~~iii~iii(IT,!R::::k a: ) Vi 1~~~~*~ ii:-:-i-i I~~i~ i_~ii4~* I ~'':iiiiii: h'::,::: i-~ii~iis-:~i' A' -- ~ ~ ~ ~ ~ ~ ~ 9-~~~~::%::~~~~~~~~~~~I..

U of M No. Y- 1 We ld De po sit 3 08 - LStainles s Y-2 Solution Quenched 2000 OF X100 Y- 3 Electrolytic Etch U of M No. Y-1 Weld Deposit 308-L Stainless / i~~~~~i y_/ Y-2 ~Solution Quenched 2000~F X500 ~~~Y —~3 Electrolytic Etch~~33~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~13 iFigure 56. Photomicrograph of Material Y-,2,3 69 U of M No. Y 1 Weld Deposit 308 L Stainless Y 2 Solution Quenched 2000F X100 Y 3 Electrolytic Etch U ~~ Nf M o - edDpsi 0- til'42 Souto Cunhd200FX Y-:~3~ ~~~7 4lcrltcEc 3313 ~ ~~~~~~~~~~~~~~ Fiue5.Phtmcor "'o aeia -,2 1 I~6

OL'Z' -Z BI-.aaINe jo jdezSoz.IDtuo4o qd'LS atl:n. -I_ tPa" IDae OOSX I-_Z papTIWA sV 41sodaC plw si S-Omt so:D. 1I-[Z'ONI IA JO fl /.... 4 i{l)ers 4;; IF -P:a Doad OOIX Z Z pa p la s~ V isodaCI PlaAW SI-Olt, soaiV I Z'OK v JO f'i~~~~ ~~- Z::-' o N IA ~ f ~.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~::-:-~__ V.4 t W$_ N~~~~~~~~~ -' 7 AM ~ ~ I 1Kuwait ~ ~ ~ ~ ~ ":. N 4, S-:;::~:*i:_i~! ~~~~~E i~~~~~~~~~~l a~~~~~~~~~~~~. V~~~~~gv r:4:5~~~~~~~~~~~~l~ N~~~~~~~~~~~~~~~~~-i::~:i:it ~~~~si~5,~ ~ ~ ~ ~ a~

U of M No. Z -1 Arcos 410-15 Weld Deposit Stress Z 2 Relieved 1300 0F A. C. X100 FeCl Zv-3 Etch U of M No. Z2 -1 Arcos 410-15 Weld Deposit Stress Z2-2 Relieved 1300 F A. C. X500 FeC1 Z2-3 Etch 3315 Figure 58. Photomicrograph of Material Z2-1, 2, 3 71

U of M No. A'-1 AM-355 Stainless YX100 Ferric Chloride A'-2 Etch Sample by Carpenter A'- 3 Technology Corp., Reading, Penna. U of M No. A'-1 Am-355 Stainless X500 Ferric Chloride A'-2 Etch Sample by Carpenter A'-3 Technology Corp., Reading, Penna. 3316. Figure 59. Photomicrograph of Material A'- 1, 2, 3 72

U of M No. B'-1 CF8C Cast Stainless Steel Sol. B'-2 Q~uenched 2050 F X100 B'- 3 Electrolytic Etch U of M No. B'-I CF8C Cast Stainless Steel Sol. _' - 2 Quenched 2050 OF X100 B'- 3 Electrolytic Etch B'-2 Q~uenched 2050 OF X500 B'- 3 Electrolytic Etch 3317 Figure 60. Photomicrograph of Material B'-i, 2, 3 73

U of M No. C'-i CF8C Cast Stainless Steel As Cast C'-2 X100 Electrolytic Etch C'- 3 Figure~~~~~~~~~~~~~~~~~~~~~~~....... 1......cogap...............,2, ~~~~~4.............. / j/ I............./.... /',,,,. / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......'I".~~~~~~~~~~~~~~~~~~~.......... U of M No C' 1 CF8C Cast Stainless Steel As Cast~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~................ C' 2 XlOO Electrolytic Etch~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~..... C'3~~~~~~~~~~~~~~~~~~~~~~~............................ \ (Pt 1/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~............................. 4'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~........... p................. U of M No C' 1 CF8C Cast~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.............. Stils Steel..As..Cast C' 2 X500 Electrolytic...... Etch....... C'3~~~~~~~~~~~~~~~~~~~~~~...... 3318 Figure 61 Photomicrograph of Material C? 1 2 3~~~~~~~......................................... 74...................

BIRDSBORO SPECIMENS ONLY 7 0 6 5 / / // 8/ // /0 / o 0//o~ 0 0 /0 0/00 0 0/ 100 200 300 400 500 600 700 C a(BHN) (BRINELL HARDNESS) 62. Best Fit Correlation and Standard Deviation for 98 Samples 3319

ALL MATERIALS * Common Points O Birdsboro Materials Tool Steels O U of M Materials / / A 7E / /1 ~ 6-, /A /3 0 /~ a~~ 0000 0 A,-.0 0 / 0 /000 00 / 0 r~ ~~0 I4 ~33 ZO~~ 76 /f o2 A4/

-77 APPENDIX r; /A~.M ATERIAL DAA"GE SHEET... -'...' —>.... --............ - i~ -....,. - -- -~.......?tlr CA-A f m1 RUNNING ( ITIONS:. persture Z..G?: Power z-, Pressure /4 C9 O - Approx Date 1 Z; Torque O 6 _ Prerei p,,,, (5/ T-ec'..... Surface Preparat.n ton I ASIS FOR CALCULOATIOIS tnsiey?7 6/a2 3 a Area iDP Factor 4A t'..L.C: Cornents 77 z-7........"............: DATA i_>: -. i _. _.. Timr~e wmnuiatlve WtQ CurwJsat ive HP Curmulative Intervwal Tme Loass Wt. QLXoss MDP.___ - _____ 7.... (..0 | Z4 7~ Zz9 -........................ | t-L /4R2.. (GC) _____ | n(9v F O47 ~4.7G'f7 4 - I )/ _;n l — s06 Zl453C~ ~a sgsl~ 7~1 3,'.2w6'' 4 — T7 1 3. 7-..

MATE.RIAL DWCE SHEET'er cv ( z A Az6, G 12 G ltS RUNNING ( ITIONS,'orn S. |-,..np erature ZCG~ X. Pbwer'j< 5 | Pressure | _'Prprox, Date 6 Torque C e'rerum Surface Preperation r%-7Sz L:.CzC*C: BASIS FOR CALCULATIONS.Density Area?iDP Factor z./".... __,~ Cor.ents DATA Time tumulative Wt Cumwlative MDP Culatve Interval Tinme Loss. Wt: Loss t DP... _.......... _.... _ _..... -Ci -I:, SO -"- "" G958 /-r 5 a| c:..., I 13 5.-~-| 6'l,. C, 17 _. __:l,.(.o -, 73 G'- G...........- C| 11 |': 6 7 |/ ~L~~'7. ~9...., 7.+..... _ ____a6 - _______ z~~~~~~~e~~ ~~~ i & J 7~~~~ 3-~~-5

mjNThSirnxqAL DiWGIt"4134 SIlS!T Number RUN-NING CO'NIrTLO:'iiS 7. Po.e r - 0 Pre. s s./0 u _.pprxo Deae /_._l....._._ Proerum Surface Preparation B3AS ES SR CAL CU AT xTONS Ueni ty Area,"DP Factor Comments OATA..Time Cu -7.u atve Wt1 Cm.uu1iI ffat i Ve C.. tms at ve Inuterval T I Me., Loss't., Loss, DP I,' * _ _ I..... _.....I ____ __ - _r

ur- Nur /nbe-2 - - f. 6.. * - t..)/ RUNNING CONDITIONS HtCornu a. Ti'-~rne Cumliatire Weight Curlttat rtve MD? C.n um.r we& T L:e o Poss Weiht P Loessure, A ipp - Dite 2 6 70 Torque r.S erlatc Preparatiaon,,} i fJ O BASIS FOR C;LCULATIONS'JDP Fsctor Tilwno C<::umulative Welight ||&muflative Cumsuatwe Interwsai Time'os Wetght Lose MP r rv -3 ~7g /' 9 76~ 47~ _ *i3~9 aa z.-. 69.// 1 -_F38~ - ~_zd':- - tr | 7 X /7~~~. / 5 -5 — 05

MAT,,R IA.l. /r.AMA,.E SH,. T Nvumber z'... RUNNING CONDITIONS Power Pressure /A7 7'; Approxo Date Torque Prerun LI Surface Pre aration BASIS FOR CALCULATIONS MDP Factor Comments: DATA Time Cumulative Weight Cumulative Cumulative XInterval Time Loss lWeight Loss MMDP -— _ __/ 4: 7i_.., _,,_. ZI / 2'? "~/j 3K.' I./. 2,., q'7 n, "73 1 1- / 7 6/.,?7 /: /7:'s / _ __ I L]l_ I1 j__ _ 1 I 1. 1 1~~~~~~~~ — ~~ " --................... I -

MATFRIA.T. D dAMAAIv HEVT -Number RUNNING CONDITIONS % Power.:: Pressure, -'.,. Approxo Da te.s- -. f Torque..,,. Prerun Surface Preparation BASIS FOR CALCULATIONS IDensi ty Area Comments: _' _- __ __ _ DATA; Time Cumulative Weight Cumulative Cumulative Interval | Time | Loss Weight Loss- MP MDP ~ 2 I i -- -- -- L ~;- 1 7,: 3~,! 7 _____ 7.... _ - f-' -_ -— _ _ q,.+... _ _ _,:'":' "::/' -__:-i.....':':'-.:-..-.-::-.: -..:'.:",_-L8i. >.~ ~ ~' "._._/c,,,-,:_?', i~-_a.~ —-:':.... o-.-eA,

RUN;NG CONDITIONS`It:rp7 Temperature JF/E; Ptwe r 4 Presessure!.-App.row.... Dt............. N-_ * _T_...................... __. /' _____PI'____________a___ BASIS FO R C ALCU'LATIONS Trime C urxlativltwe W|eight| CCe'tymXlets e interval Tnme Loses We;ight goa _ V __3. ___ II / ___.___._,,:._ _..3. O Q /' —S _______ ___ 161.2fr I ____

MAT;.RLtJT D.MAAF.*iET ~A.R P. M... NuMbe r i RUNNING CONDITIONS Hora 7?' Tem.perature z'O ~ - _' Poawr rj a -' Pressure.. _. < t>~S._., ——. BASIS FOR CALCULATIONS. COeP Jt."tr lTPpo Cumulative Weight C>auitn tive T -Cuiu1&tt Interval Time Lose Wetght Loss.'- -4..... —. 2' ___~_ 4 -3.1.6 __. _ _ _ ID 5- 2.3 _____ IJ jI / _6 3.______i~. 6

MATP.RIAT.D.MA'. HE-T. Number -'' RUNNING CONDITIONS Horn Z TeMnerature Power Pressure OPIF IPS;:._ Approx. Date 3,' c ~.. P. Torque; f - Prerun Surface Prep aration BASIS FOR CIALCULATIONS Density Area MDP Factor Comments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss MDP /'/ -"" 7)9".......... 857 1? 45-~~; ____________ | 47 | D / I _ _ _ _ _ __-__. _ _ _ _ _ _ __I'4, a i --..../.... - If~l... n. a. 2.'' / c3 __ 7_ _; u / I6 a _________ ______ hV /6~~~~~~~~~96,79Y ~ ~ 9 ~

MATERAL t MA' I aIITT RUNN!NG CONDITIONS I~f-c ~ T _-P rt... BASIS FOR CALCUL.ATIONS DP Fctor DATA Tie cHum rautie Weight Cumurlative Cumulatvtv. Iltervl Time Lose Weght Loss' -'........-__ __-__ _f. -/QV..e J a _ _ _'7 J: 9 ~ 2.97 ___ __ _ __9 F _________________ ______________________ i~~~~~~AI /O i co IrcUd: / T~i O391.

7MATIRRAT. DAMSq4- We"t:V 3Numbe;r,8 / - RUNNING CONDITIONS Powerr 43s Pressure Lo9 S _Appro_:...tet' Torqat, -. 5 r. /. /~? 4 /62w 30.8 _ BA;SIS FOR C:ALCULATTIONS Int Jorto MDP ~!r [ Tiea. -Loss Weight Lose t~,DP Illt.. /0.~ 5':.o /._._ - -. -.,, __ ___-_...... -. ~~~~~~~~Ol..

-MATPRA.L. D. MAMI. SHIZET. Number RUNNING CONDITIONS Hora _7, I Temnerature / ~, Power... Pressure Approx. Date.;-. Torque Prerun Surface Preparation BASIS FOR CALCULATIOqNS Densitir I Arca MDP rFactor Comments: ___ ________DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss CMDP "~29.. 5 —. __ _ _ f. /cF. zo 5~'.2,7, o3 1, R3 _7__ /4 / 1 69__ __ _. O T E8Z5Z I.4~3~ 1 8~. /5 1 (~-1 I f sr4

MATERtA V,M.4 Mt4a. X.E!~T Nwuber. RUNNINO CONDITIONS Harn 7e P T............ -_ _Temnteraturo _/2.6.' Cowmer to - Prre / ________ _______ DATA_ _ ATime Cumlative WeiDtght C' -.latre c nu......v lPrer Time Los -...__._...._ -.__.4 ____-_____ 37.' _'_ en itm.....: Area:. /MDP _ ~tor_........: _____.....___-___..... __ -.,. - r_ Time I z:;unautIve We ight I Cmula ttve C umul tv we: I i wI /ZI Sz~.? /I/ - o ---' ~ _....:,.. /.. ].... - ~,'..

RUN"ING CONDITIONS Heorn C;r Tetne Wegnhue 1 C tieF. [AI.O..............R C...... DPrer~nst~~~:, Are / __._-_ _______ _ _ _ _-__ / 7 /L2~r5 9X 26. 90

MATFoRTAL Y).'MAGV 1HK'T..RUNNING CONDITIONS HTornt_ T z - Temperature % Power c/O ) I Pressure?.. s', Approx, Date 3.,,,,~'-, /:.. [> Torque:- ": Prerun Surface Preparation...' BASIS FOR CALCULATIONS Densitry I Area MDP Factor Comments: _-_ ______DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss MDP./../r.. [7I ___ __ ___ ________/. I ~ /~, 8. 7_?.' _ ~ = I -7::......A........ ~. _ -:_ 4'~ ~ _...

,T'," TAL DmTSGS SHlEET Number _ RUI-XtlNG CONDITIONS_ ibm _ __ __ F ___ ______ lorn r, i 7, Pow'er._ __ O.-'/o _ Pressure 1 0 C. App.^ox* Date j Tornue __ Surface Preparat ion.....___~ - _' —---— B -~r,.tSFO C.CUF — lATO _ __S Dlnsif ity f Area 1.DP Factor Con-.nenr; 5 DATA. f P i_ _.. __ —__.1_- -—,.. *_ 1_'' _............__.____.._ I_-, _. j.. _,z L_* _ —:- -- L-_ _

MATPERIA.tL.)A.MArIV SHET Numbe r RUNNING CONDITIONS Horn h f Temlerature 2a @ ePof0:: -p o P.ressure /?0 /... Appro. Date 3/3 -.... Torque Prerun Surface Preparationu..:'<' c B ASIS FOR CALCULATIONS Densitt - I,^r MDP Factor Comments: _ DAT A Time Cumulative Weight Cumulative Cumulative Interval Time Losa Weight Loss MDP / 2o___2___ _h,_.o_.__ i _,,,l T9 I,'0 - f /5. __ k5 ~O _.... j f /9j oos 95. __ T 20 2i 1 __________ _ ____ / _20 =_ _ __.... _:.,O.... G _ _.___ _,

MATER.ALtr.. D ).AMGtAF HE T Ntumber r "- -. RUNNING CONDITZONS.Horn 1 Temperature /:::_ fipower -.J t-s { Pressure Approxo Da t e W eig h- 2 OC 7u Torque C'a t. Prerun Surface Prepration. r / /...,- __~__-_, h_____ Desit 6 rea MDP Factor Comments: Time Cumulative We ighe Cumulative Cumulative Interval Time Lona Weight Loss D MDP...... 2 t7,/........ - 3 1 6 0_ 1 12 7- 1 9 13 72,5 2 _ l L

R UNNING COTNDITIONS BASIS FOR CALCULATIONS. DATA_. Inter v'a' Ttme Loss W'eght Losrs - 4.. ~.2, _ __.:._/ o_ / jb /~k~O /f-D -................i~~~~ /:; 1 6 J i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.

MATRT.AL DAMA9"F.,8EVT Numbeor..-:1/ RUNNING CONDITIONS Horn -/ Temerature i: P.. %O Power 4/ - -. Pressure,/. ~* /b A rox. Date C,. o -?.2.,?/ Torque z,e/,/ Prerun Surface Preparation k c /',/': BASIS, FOR CALCULATIONS Denity Area;MDP Factor Comments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss DP MDP, - /'..,,,,.-,

MATP.RXA.L D).AMAQEr JSETT Number - Ll RUNNING CONDITIONS.Horn 7'. I Temnerature _,,c=, 3 % Power 40 I Pressure /7 P4'. ApproxoDte -//. 3 I -'/' 3 Torque../.c'-' Prerun Surface Preparaton /.: BASIS FOR CALCULATIONS MDP Factor Conments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight L.osS MDP -. ___._ _ _ _ _ / //63,? / _ 3 2..54 ~/.//.0o 57.79.

i HStr / Tn feratufre /Z ~ Pow er Presure A _pprox Da_ __ Torque _____ Time Curmulatdve We'ight Cunmulative CDd' int.erw&l Time Loss Wt.tght Loss a t/7f1 3 R b' J_ __T____T__................_ ___ __ _______ __ _____ ____ L —Ik/.....: -'-" _.'1 _1..- 7.F -':..............,...............:........-...::~,~:': _....e __';~_:..-.._;~......."I -,...:....... [-.........,-...,.t.................................................

;~~:',~':.".LI *.-.;~ ar' *,.. MATirERWt, )$MA'F WHI;TT Nabe r Z................. RUNiISNG CONDITIONS | Power.16, P Pressure. 5 74/c~. Aprowt. Date 3.7 Torque Pr~,':. BASIS FO)R CALCULATIONS a.79etb j. %9Are MDP Va~oF' }~MDtor-P.Iie/r~,,a} Titme. Loss Weight Loss ____ ___ c._ ___ 6. __ _ _ _ _.__ _./......;;. 1 _L~~~' I 02 1 57~ 1 _n /818 s. 05 L''47/ J_3i.'.24S20 9

MATPRIAL DAMA GE 8)IMLRT Nmber Z -2 - -RUNNING CONDITIONS Horn, TeMnerature to " fo Power 4Co S Pressure / 7 / C- ~ Approx. Da te4/5/2 4/)/0-. [ Torque.. -:' f Prerun Surface Preparation /A /""4' e/... BASIS FOR CALCULATIONS Denstzr. I Area Comments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Lose Weight Loss MDP / I /;,~/,,, /9... 8 1 78. __ ___ 2. - /. /7Zo,,577....57 / 3 /?.7 <,/ -.P7........ -. / C........... -3.. 13 f 1 —7 1:1'9/90 0

MATERTA.L., Df. MA'.. HETM Number — 3 c~ —:'<;?:o.... RUNNING CONDITIONS -.. Power'C2 -Pressure /7e.S.:' BASIS FOR CALCULATIONS Dgenity Area MDP Factor Comments: DATA _ Time Cu mulative W-eight Cumulative Cumulatuive Interval Time Loss - Weight Loss M DP ____ c __ __..22. —: _ /. _ _ _ _/ _ _ _ _ _ _ _ _.. 9 /[~ 6 /. D L.. A r.. / 7 ts: I. 90 99.k4~ Time Cuuat Wi g h Cuuaive Cumlaiv

MATERA.l., Y)AM.Af IS=IMUIT Numb er / RUNNING CONDITIONS [ Horn / f Temperature /120 o Power - I Pressure / 7 P, Approx, Date -'7-'...'C..._. iTorque -:C i'C Prerun Surface Preparation'- BASIS FOR CALCULATIONS MDP Factor Comments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss | MDP A I~t r /A1r | ~' -- MI m-,,.' _ _ __ _ _ _ _ _ _ _ _:_. -:-/zd S. - s_ _ —/78 6-__ — 30___ L &?84t

MATERIA.L.3ADM.)AAF. ~HKET -.,.. - I.. Number -S RUNMNG CONDITIONS IHorn: 7-/ T- I 1.:Temp7erature /?: %Power 4', Pressure / Approso DateS. 3 —9-'.:'~,, Torque /t i —' Prerun Surface Preparation BASIS FOR CALCULATIONS Density Area MDP Factor Comments: DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss MDP L. n r _!,." _ I. I _ 5 __5 _ 5 5.SS 1.7' ) 62 -~O I rS) - - /... /00_ —"=.... _ _? / 3 30 0 /.,5 |,4 47 |

MATEZRIf L - D.AMAF ~ 1E1.MT - Numbe r RUNNING CONDITIONS Hor - Tem e mturl %o Power,::). Pressure?'::: Approx, Date:._.._ _Torque, Prerun Surface P.rafn'on'. - "BASIS FOR CALCULATIONS Density AJjrea Comments: / _................. Time Cumulative Waighe igtCumlative V Cumulative Intervasl Ti smre Loss W X~eight L os|s MDP IDp' -T ~ 72_ _____.,... _ -_,.,: / ~ _____ i___ __ — e~~~~~~~~~~~~~~~~~~~~~~~

iRRUNNING CONrDITfTONS — -lorn w?-..'.!t ~em~,~'/ c:! re, ir t..... Time cumlule~~~;"~J~iT~J~Y~,c T' rl-~.- l - ~~ i...... -.. —-.-........c....:!'I..... I A..7ii t'5~j~fo ~ j:''~-')). 2.,~ ii I,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i i _'! ~. -.~_:~~:;.._l_~~i ~-~_ _p,.u;- ~.-....i-.~r.~L-~._.,).. _~:.~.-.::......i ~:. ~ ~I......h n, ~' _ ~ i - IL I)6 -.......!:,, ~...........................................f...........................................i'.....................~..................i

~itbet 4W2 W-EV._Pre tun _____,_ 2............. _ A _ g / _ _ ___J J2un' Time Cumulative Weight Cumulative Cunulatve, MDP intervalf Time Los Weight Losse' _4.. / 5'3 / Is Aa3 e5 M __

Horn..... 12-. _ 7, d N- _ _ _ Pwessure Appr __ _Dae r DTo Surface 1r,1paKrat ion........________I -.BAS IS FOR CoCj%. SICs_.______ e nsit I_ Are I'.-P Cactor., CoPtert a Tinrae'.)IreD Iot Interval 1 Tirre J Loss Ss DP.............................. __._...,i | J es 7.a, Area I, ______: ( I — r I- J- --— 7.-__ 1___ _ _ _ _,-__.__- L _-__ —-- * 1 I_

L utnt MAr T1 — M MAql.. TT pprlo.. Date Wt rque BASISFR Y1 CALCULATIONS Cu!rru atle Wei.ght T)ATA mu at atervp 1 Time Loss Wighr, ___ _: 8/7.. __ _.. _ ~L __~&.. 3.h.. -7n 4 / - _- _.. _, _ _ _t _ _ - —:__. 5.li6re |0~3/3t~ egh tCm l. ie I ^u:^ uit BmevX| arn Lei r!i:z et~ i)2

RU.NNNG CONDITIONS HornIuat~ Weaght C Tmuiu t e T emperatu Prerun............. _: - -...... -..... _.. owe i. t Pre ssure.... L-. /prox! 2Dateprto ___c __A+i4lBAI$9 FOR CALLCULATIONS Denteaoifjr~F bf Area DATA lnterval Time Loe Weight Losns MU>;,,..,,,, _,.. 7.. 09. 6,.,L1 _... &-____.....__iii _ —-____ __ _ -_ _ _-__ _ _ _..... _-9 2.~........

:MATFoRIAL D.MAAGE 5EW T Number L - RUNNING CONDITIONS - Power 4.;,C Pressure,7 pprox. Date.../ o-......7 | Torque..... /: Prerun B ASIS FOR CALCULATIONS Density I.Area DATA Time Cumulativ We sght Cutmulatire Cumuattive Interval Time Loss |ih Loe MDP M DP J' S;,,, 2. 9' 8/. _. G~~ ~~./,..... 13' _ _ t fx i /ST~fi~ 1-93 3 1.Q36 C 6 39

t..AJEgT IAL De;GfIA SHEEET Nwumber. RUN.NISNG NCONDI.TIO..IS lorn / -'.n.perCure..~ ~' r7 P-ower (2 <',: Pressure, -s Approxo Date _ - ") ~ To. -';- T_ ___,.,_ P',rerun Sur:face Preparat ion BAS tS VGR CALCO.CUJA'i'LONS Dernsi ty -Aea —.---- ~_ —_., _.___... - _.. ~ ~_-* _ __ -_:t'.DP:'actor _.. Conunento DATA Timne fCtr-u Iative |jl si C nI attive CUutmllatvae Interval j Titr. Loss Wto Loss. |MDP.._______ ___ _ 1 ______ _____ ___...__l ___I___ IMF I _L__. __

r..... xiAL D,;,'G SlET RU_'NINXG.'ONIOtIoNS llorn a ture.. ~ %, P_ IPressure / Ap te,,Dte To rervi_' -'. Surfac e reperat ion * __________________ _ _.I; OASIS FOR CALCUL\TIONIS.en ns; ty Area 1'..~...t-~.-o T i.a. _ e Ca_ _,. _i__. a t' P Los "atvaC TP.11 i~r~r~ ~ vGs.uative lW't O Cut;r~tirative Cu.-msa lat ve In.C~rvatl T Tinr|. j Loss oss MDP....._:-._ __/,zJ........-.... 6-_ 8...A 4. DL LCL L2z I ib _____ =>7 __1___.j _____ - _ _

AT IZT. I IAL DW/EIGS SHEETT.nqber _ _ _________mberXs~C~__... _ _ __ONi -. —...iorn -.r..,~,~.~ture.! D D........ 7, Powe_ ~ P______ r Pessure' (O 9 A pp.oxO Date _ Toru _ Prerurn. _. __;,s~,a-v~'... _-' -' - ~ Sur'face Yreparat ion BAS IS FOR CALCULAJi'l'O4S Densi y Area IdDP'.actor _ _r. —-------....... Conarents DATA. Tine t.i-ulat ve:i'tQ Curit..lat ie- Cuiu'latIve itierv ja } Tiree I Loss IW,- Loss'.P.. r- ".,, U L2 _:. _ o_ 8 -_.' 4- I'-;;L.B-r_7- I.'L —2'C.... 3 0 1 70 4vz: _> _ I _ _-1-f32 ____~-3 t D I ~ I I I. _.~~~~~~~

MATFP;RJAL.1.MAWA r H3 1'ET et-*l7l 7 ~ y&,- SS,&| Number Ii RUNNING CONDITIONS % Power Pressare Approxs, Date Torque Prerun Surface Preparation.. BASIS FOR CALCULATIONS:MDP Facctor Comments: __. DATA Time. Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss MDP MDP 1 z/,4 1?z _ ___ _ / 7 7 _ ~ _ __, -.

,Vi.-R,,IAL D;IG-: SHlEET Num-,ber _,_ __.RUN:rIING CONDIToCVs~S.or _ _X tur BASISFORClOCLATI - TL ~S..ON 7. Pow;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ - - P Fsur. -"_ - -.t~it~~~d ty~ _-___ _ Area Connent s DATA time Co we.4 Ia t: Itve kyI Cuu a t atve In. erval,,{Titr. Loss P Loss 4 1~~~~~~~~~~~~~~1 ~J&.......1..... _4L~.... I ______ S._,_LLj~.~e _ ___ 3... _ ~__~~ _S__:T:-:;:1L- L..._.. _ _* w _<_ ____-_ ___I -t _ _ 5___

[in tv Wi at Number. ______ ___ _ RUI.IINXG OO STI(S tIorn __ - -.. -.nar e 7wer Pr gessure Appjo.l,-: Torqu SrugZace PrQ1)ration BASIS FOR CALCUI.AELONiS iJ e.ll C, u R c-. t I v e 1) CL =.-. I a t i v a Cul ve _:o~____a`;cc33 Al e 33.._____, _.__ ___.. _._.__... -__ — _ _.......-i...__'::. __,K-_i —_ —1- -..-_ ____ _.-.. _. _

11ATI > IL DP/S;Gi SUaET r ber _RUMIIXNG COr51T1ON1 S Ho't ~Trn Tt |_____ _..nrpe rture 7 2 _ 7, Poiwer <1 0 ___"__ Pxessure, - __ Approxo Date " Q Toeu2 2 -/ Sur'ace Preparatiou. nensifty _ 1 Area,..DP Factor Conn.ra~nt s ~_._________ _ _ __________.I~~~~~-~~~L~- I~ — _DATA.S i isC I' IaDI Tiene gmuruive C ui:u | Cun.avat ive p GP CuruuSlatve Intterval T irrn Loss!WZo Loss,-DP __", Is2. _ I Ai._.,_a______t._L B 2L I 1 L.sub22. L___ ___. ___ ",~~~~~~~~~- _ _ _ ____-____..__

1rATIJAL DA'1/rGI SHESET Pnmb eru.n KUINI.NG CONDI~tTIIONS Surftace Prcpara t on, Mco..? Fc....co _. 1Xn~i P zy A7# Jc;eoI rea: L C noc,nt s T i....aat Cuiv a CuIt.... lve 2 3 J. 5:' Li~'b 6.1. Ientervay - AreI t rte. Loss We.. Loss I P

.ATFs RIAL D,-5,GS S.lEr T _ _ _ o _ DXi~~~~~~ A * s —-- 6w - P6er_____ _-_/_7_ Presre _| PP:OX.O CDate J 7 T~ 0 Promn= SurEface PYreparat ion BAS IS ro CA O CUL Ai S I'{S LDaisi ty Area r~w_____.__w~__ ___ CC_ __U_ JEO_ __________S__ _ __.DP Factor DATA,'mie turt.ulative Wt Cu l;tlatise CLUTi t at vve ~Interval i Tirre Loss oWt L~oss Mia P L.Xl E wa 1 c3a~ -.23 1.0.1 LJ5#4ZZ I 41 3 - _ L. j 25 _ _ _ -i_7 T-_ — _ ____..,~ _. I 1. __- j______ ~~~L~~z~~zirnJ 7i~~~~~~7H7~~~,'

MAT RIAL D-,;,'G S. I.T: Number 5../...,...... _ __: ____,_ _,_..._ _,_,m.,_,,_. *-RUNNING CO't ITWNS' _ _ _ o- _ —,,,,,. -- - - _ — - -n _...., 7, Po..r _.. -To| P.esure A_ pOi, Date. c? 70 IToIrqu _ j* Surface Preparation BASIS FIS OR CI.SCUFLOAL.TtLO-I4S tD'ac:or CommenRt s t-. —._.,_, _. _ ______ -_ __..___^,, DATA T'ima tiCuruative | I WP Ctum..ti t vp Cuunslat ve Int.terval. I,; j Tirr.I I Loss Loss P 0 L 5-3 % - t _-*_____ __'______ j — " t ____-'* _o___________ __ _________ _ __1 - ____-__ — _ - IIIIIIIIL_;.-..'_.._' _ I..!._!...

MAuTZtr.AI. D41.RGS SME~ET (I'1a _ __la_____ ____________________ _ _ _ —' _ __ __ Number;;7 RUNIG CONITIONS______ llorn VMI..na jitr L C. %i\,P._ __.Iv1erPr essur-e Al__'' / P c__ure Appiroxo Date _ 7 0 | To1u1 3 g ~ -' Prettrn Surface Preparatio B.ASIIS OR CA,.l CUi4J..r"TNS ASE OR C _._ _ A'.._.-',._ ___ _-'____ ____ __ De"sity Area __ ___x_ __,/ f"i t"_ _.-~..-. lNDP Factor __ Con.-m lnit a DATA Time 1C maru avo Izf v C9 u Tau Vat i eva Cuuru:lat,ve Interva t T it /r P |Los Wt~0 LOSS I I;DP I o, a' II- / Lsa~~ I. 2 B_____ 15_c -,f 17 ~~____ _ ___ -/04 _.____ 9enArea....I..I.... _ _ _ 78__ 3 Cv k _ _____ __, __34__L._____ _ __

-tAAT1t,,lT.AL DiyrG.1Sn y SEIET Nunmber. - _________ RUNNINXG CONDITITONS lHorn v7..n=-L _ 1. /,. c Powe iv r- 9 P(ePressure u SuraP:Ice Preparat ion BASIS FOR CALCUL1.IO'S.Dea ~nd _.. -y -Area r.ac? 9 tor Co:'nr a DATA "ima Oveu P. t I P,' Ulto C ICtut la iva C 1,meh iv Int erval fjT i fr.j Loss. Loss I VDP r _t__DP_ ______ _ ___ ___-_ ________________________________- -__ _' -_ A__.__ _7I 7___A.__ __ _ __r**- r__s ____ _ *_ L M4_ 1 l_ 3 0. St —- _{._ /2_ F.-~~~~Z1. 0 33_

NAT.,,IAL " D'.~'G S'"= T " N, ber.._ _ _RU__IN_,G CONDITIONS 7ppi~ Per ~ 7 ~_____ ____ __ Ptes*e -)5' Proruin Surface Qreparataion'-'-'B — --- B AS.S FSOR CALCUiZi'IO.lS Dennsit y Area I~D9P Factor _____........' --'..... J' Con'nt;s DATA Interval Tirr. | Loss W'o Loss I [__ _,_DP................_ _ 0 I 3- -- {.. I _ — {: { I o __ >1 3 3 /, 3I j 7H7 5I ____ ___ 3 ___ 6 ~~~1-J_<

tMA R, IAL DA'iG SWEET Number. - aRUNNING CONDITIONS7 Poer,L Pressure A pioxo:Date Tco'.'' Tor Sur:ace Yreparation BASIS FOR CALCUL ti'ZO'iS lit~. t y - Area ___ _____-____________ _______ _ __-_____________ MDP Factor DATA.... -__. -__ — _.__.......,......____ __....'...... l'ime 7r[Ccru~r. ulaative Wto Ctur.ilal; ive Cumnilats ve Int~'erval j | Ti~rr, { Loss,',to Loss _|_MDP.........i. _ —- _.8__-a~z _.L_ _....._ —-L-7-...........-. I I -d.._ _.j.. Hz ___ ___ zizizzi /~to~S, ~ 5 ___ ___H ___I____ ___C

Number._.,* -_________ RUItX:NG CONDITIOS_____ 7. Poer _ Pressure C' - S Appx:ox* Date. _'" " / Surace C Prepara ion BAS IS FOR CA'LCUIlT ONS _ Deansti y f Area MD? Factor Coo.ment;s DATA Time 1CAwr.ulative f Wto Cun.iv CI ati v fcu atU ve.__._/ $t ~,...,. / s3,,",tqa > c I 4422.W I B 1 t 3.. _.~2. 32. o _-1 7 -/ _ _/ 3 1'.2,b./ 8 5 — ~~/ a25(,2 ______(.___ __ *~~.~~

IIAT RAL, D1tVIAP Sf'M3 T Number. RUNINmXG CONDtUIO,1TNS I'sHn Y_.n ture _ 7 Poer - Pressure Ap.o.:o Date'Toq Preru - Surace Prep rat ion r m~*~~r~~rrr~rurr L~rr u~ —-— l — _ 7= --,_ _- _. BAS IS Frv: C' i IC' ~TI S Llian~~~."z t ~y ~Area MDP Factor _. Conunent s DATA Time %Cut"i at Iu a1ve Cul-.uldative Cuirulative Interval Tire, 1 Loss.!,o Loss. | DP,.-... _ -,'__ _..... ~ j_

,reAhiWAL nvi.Iqrs US~ET..mbe r _. _:. s. _. _ _. -.KUBAStS FR CALCULATIONS P o wen I Itp y Area 1 Con. ents DATA t ____ _ __,z8 _ur~.rsca,, inerval.. _ —Ts Loss ISt'erum~,_ s I_____ ____ _ __ ____ rrrrrUOv~rcru+Wto o ___ Till!. iIln]__ ______ Ro_1 —~~ 1 Z,foIwa L -.3, 1 7 ~ -! 3 tt1 7eth 42; ( L__~~

lTIsrXIAL DASiGS SESET Numnber.: _ RUNNXIG CONDtTlONS 1Horn j.upe roi ur e 7, Porn,er Px'essure _____________________.-~see'Presure _;I~JO~e. Pfe sc;~lar _.~. 1BAStS IS C- F____________________ X _ o r?P ir';or __________ ___ _ PtEr.ce'r re 7:>avaon inuerva T me Loss lLoss rea tA FaYctr. -_...... —c...... " -1 —_. ____ 195 - F — --....... v - -- 1- -- 1- 1__-1_...-: {4__9 _ — _ _. i

t~T1RXIAL D'*iACGi SHEf"T Number V _ *_______RUORIX NG CO'f1I TLONS Itorn r. ture % Power Pr _essure _ _ Approx o Dete _ To,_' Surace@ Preparat ion BAS IS IS FOR CA..CU ATIO iJ S Dells t ty| Area tMIDP Factor_.. Com.nent a DATA Timae u Cruculative |W, Cut lI at I v- Cum sat v Int.erval, Tire., Loss W'. Loss. * M P 7 2 ____ _ _ ______ _. __-_- _ __-.____. ___/B5ko__ 001. ____ Li4L.~ ~..L _ _,._________ _ ~I — t- ----- -- ____

.MATI.,IAL DMbGs SISIET NuVber _-3 _, RUNW:NING CONEDITIONS l';3rlo -..roture % PoerI Pr-essure Appi:o-.o Date...... T__...r;_.... Surfcace UPrparatio: n BASIS IFOR CALCUrLATIOI'IS D-s y j 1 Area._ - _ - _- - _ — _ rJ - _. s._, [.'.,actor ~~u-ru~~ry~yra~~~* huIIY4U- I~C i —---— L~~~-~-. I I -~ -___ _ b _ C,.... DATA. T Krala aruLlr t Iav \l t Io C IuO.tati'va Cuuiulat? ve lt~erva ~ | Tirre Ios5s J W Loss [D MP.ll __L___LiiI-..... " ^ ^_. -=_r= -- -- ---- -=. - ---- i —... _. ___IIK- 7i(IJL

MAtI.IAL DWtIMGS SE=ET N ub. er RUNI.NG a~O'Nbl.TIO': S HIJorn -l__i__ ______ __ _______p RUN~4X. -.n1 tuSre _, Poier. Pressure np*_:6x. -- _ -. __:_, _____ —App,:ox o Date T Surface Prepat'ration BAS IS FOR C}AL Ct \~IOLi3JS 1zensi fy jAres rA.DP Factor -DATA Tiniem Czi~uaatIve: Ct:uI.i fat v a Cwmillat tve Pest ____ _ __ ___________ I nterval Tim. e Loss Wo | Loss 7.1 __ _..._. _ ____..%-/ —---- j I. I iA;i,;. 1 4 —- _ _ _ _. _ __ __ ___ Ii —

MM IDotAL- cS;;.^;G s~rs T.. llo rn.I-, _np. _ _ ure,_ _ 7, Po;er Pressure_ A~p!ioeTl.* Date Surfa-ce Pre paration BASIS FOR CLt, C LiLA ~I$Ml l~n~siat I.:y.n~Area' _..! t: y. ~~~. p f ~DATA ST~,ace Cr..paratto[W - li at~ VP, t'Cu taiv, Cuuttla;tive I- - - - - - - - - —' -I n- erval l T. Loss W. Loss Are.2A ~t. _ r____...L.... -.t_..._ *{-4 —`_ 1-13-.5 _- _ __ _ ___ ___ tt ____ ____ _ Z~~~~~~~~~~~~~~~~~~~~;~wll-UL-_w o b_* _.;5S"w

T AL D. AG SHEET tun'ber.3 I a. ~ RU'NtiXNG NODtIbTIONS Ho.rn |._.n=4tlte - -p.rature 7, oYwer Pressure Approxco Date o~ T ubu_' Pretum Surface Preparation BASIS FOR CALSCULATIOIfS Dens ty Area H1D!P Factor Co.mant: 5 DATA ______ I ____ I ______. ____ __ _____ interval T trie. Loss. Loss - *DP... _ f 4.. 1.. z 3 vj j. ji _ / _ _ 7->-..K.7-T. -:kS'-:~:, _ 1. ——: —, ~ -—: — -—.. -L~~-I —.,I - 1 7L-~-. _ L

A.,.........'...... o Da e'r.__oyqu a.u-............... F f.+- s.v Y ~hrrwY1W-r ~ X; >w i # PtY.v,. tNriq.G CS YT. r ( u gdA.S I rj:. CAG. fr:.; L,} {, }, X! tiVATA i.....:.....f..... D Pss,. IJ 2.................................,... --— i3z r3s~~i'~~ 0 L. -- /# dr/i~~k * - -1-......,.....St _w.4 eit-a vrv...r.. s.^ en s w s *<t'J ~ i;-b u f~Ii w 7< * rw

DMMt.GS SHEr.'c ber.. RUNMANG CONDnITIONS lorn % owt.er P.essure AppwXo Dx ee TDuat Prertu Surface P rparat ion BAS IS FOR CAI.'CUlAiTfILONIS., D-sfitY Are a IIDP F'actor.. -Conn.rment a..Tim.e 1-...O. Ctu r....../.:., aiv....ti C lCulatIve Intervoal TIt.re. Loss -- L-oss | IDP ___ __ 1v ______o 1 I._ ZIZII ____ I _____

METrn AL D3',iGE S$ElET l.mbr-,. RUNt ING CON[ITLONS % por Pr esure _l,,, r..._._e. tAirp.:c. Dater SuJric.,e P&repLrat ion - I3.~BASIS FOR CAL CUJ.LATIO'S Dens t: y Area MfiDP'actor _ _ - - - DATA ~T~.t2ma C.uat Ive P;. o C u.lat irv a Ctm'lIt ve Int.erval Ti.e Loss, Wo Loss MI DP I — _-_____ — __I ___ ____ I FIZZII 4

Ntumber RUNNING CONDITIONS e Power Pressure Approx. Dte Torque a Prerun Surface Preparatior BASIS FOR CALCULATIONS MDP Fac tor Comments: _____ __ _ DATA Time Cumulatite Weight Cumulative Cumulative Interval Time Loss Weight Loss MDP _' 1- 1 _67 _ _- 1 _ _. _ _......'[ s ~..-= 0 1 7 / /~ 0/ i: 1 _ x w s ~

M ATPRIA3 t YAMa'l 9HEWT Number RUNNING CONDITIONS ~-Horn'-.' Te.-mperature BASIS FOR CALCULATIONS _______________DATA __ Trne Cumultive Weight CumulativeW Cumulative Interval Time Loss Weight Loss MDP zz' — - ". i_.. i...t~ _________ ~1,,3,.

MATFPRTAL D#MA.rfi'Ekf]rT ENumber:. - - - RUNNING CONDITIONS Horn Temperature %Power Pressure Approxs_ Date Torque Prerun Surface Preparation BASIS FOR CALCULATIONS MDP Factor Comments: DATA Time Cumulative Weight Cumulative.v.- - Cumulative Interval Time Loss e MDP Z1/ _______ ________ 3..5...-/a 0 1 -.....1.f.- = -::... _ - -— _ -. _ |: _| — = ~~7-1 65.56~~~40

MATPRIA.T.,.D,MAAQG S~IEL.T Number RUNNINCG CONDITIONS Horn Tmner ature o.. Power Pressure Apprxo: Date Torque Prerun Surface Pre aration BASIS FOR CALCULATIONS lDeneity -- Area'MDP Factor Commnents: DATA Time Cumulative Weight Cumulative MDP Cumulative Interval Time Loss Weight Loss MDP.. / igt L o s I _ __..... I.. 1.. I. - -3 /1 E- - -.-i_ --.. - o-o-,-, — -.... I I _, 1' -'i 3 -- -- -. -'= _

MATFPRIAL )D.#AMAVUQ, SHtET RUNNING CONDITIONS fo Power Pressure Prerun Surface PreParation BASIS FOR CALCULATIONS Densityr Area MDP Factor Comments: _______. DATA Time Cumulative Weight Cumulative Cumulative Interval Time Loss Weight Loss MDPP /4 / 4.____ _.. _ __ _ /'. i d. -.-' - 7 /.. 3-_',,,- K i,,

- -AT, IAL -,.aG SWIEET N4iLmbermL RUNN'.r.ING COaNDITIO: S ll'n'7 16)'oier PA-essure:,p. D a T'."oD_ Suri.0ce P.-crparation DATA T mnt io L. atIve Wt o jCiu., l-tive C,-la.L1ve I' ierva Tirre Loss f Loss D _ t~ilP!~''?.ctor - 4 --- -'_-4 L1 i: ____ __ F _______l _ ~ ___[ _ ________ _. _._........................... _ _ _ _l...................................................................................

MAuNTs RIaL DA1jGC.. SHEET _Nu.nber. — __ _2_.,._ __ _________ RI~UNNING CONtDINTIONS Horn -. ture 7, Po1,er Pressure App-oxo Date *____ _ Prerun Surface Preapration BASIS FOR CAL CULATIONS Ire;2si ty { Area t'.DP Factor - - - Co-nnent s DATA Time Cur. u1lat vie Wt o Q C Iuatr. iY a'ivaP Cumulat lve Initervoal Tir!. Loss t ofis iDP' —: -. — --- --- - -" W' I... __, jji __?:::_ ______ j —--... —..- - -5

M*ATLRIAL D- A,,G Si."sT. t __w _P____r Pessure.,.,- A-~e.q'' _Cx o ~ -D _-' —- — _ —- — _ —-- — " -_ — Sur%'lacc Prceparrtion" _N,~..................BAS IS FO. C.CUL. MIS DATA Suar fu Catce c-p -:. io.. ~ 7 C.rsi~ ~'rc~parat lo.,o iw__ F_. _._. __________ _____ ________ _u:_ A,_n.en1 s.... - I ATA..__....Li...... i:______________.__._. I_.AQ,' L SA7'_

MATERIAL " D('tGG S'EllT ~ Number. -..... RUINN4ING COt4ITONS _.ocn -. e......~rture ~ 7, Paoer. -.Pressure AppOxo Date Torque Preruna Surface Prepartiaon BAS IS FOR CALCUJLATIONS Densit y Area. O.DP Factor. - Coun.mntsa DATA -~ I-,... —_Y - ----- - _ — - - - DATA__ Y __. ______ Time tulIatIV,e Wt'o " CT..Iat i.ea Curilatlyve Int.cerval Tine. Loss 0,. Loss..P { _ _..o. __ _2I.Wz.L.....f.. {.....I. I _!IlIlLIi - }-4 — -"-. I -< I~fi 11- __ __ f__ __gb _ r.,l _ -—....__ _____ ______s.. _ I ___ L l gr-1 - - -!~~~~~~~~~~~~~~~~

,-'tE, XAL D~J*',.GG S'E1T M, ATgR IA L SHSET Nu.imber ____,____ __,__,__._- - J _... __ _-__ _ 7, Power P' essure AXpi:oxo Date?_o__.__..__ T..a......___. _ _- Dat Surzace FPrepaPration BASIS FOR CALCULlTIONS Ds nsi t_ Area Int'erva rrE I IteLoss 4 It L o ss 11....L._ _ T~aza gC8R~tie | t~t0 fi~u.:~tv -'P{Caua~ Illeral J Tsr | Los Z,< oLos ||,{

tMCRiAL DA1 AGE SHElET unmber RUN.,N3G ONDTIOTLONS 1Horn. -..n 3rature 7. Pote- Pressure App:.oxe Date - ~e Preru~n Sur-face Preparation 3-AS IS FOR,CALCU.ATItO4'{S Dens e ty Area t;DP Factor..__ ___ -- =-..... Com.ment s - DATA Timne 1Ca.ulstiva It l Cwur.itjlative Cumr slat ve Isterval Tir |. Loss j.o Loss DP _ _ _ 11 _ _ _ _ _ _ _

IIAT RIAm1: DAV; AGE: S'HEET Nmnber. RUNNING CO'MNITLONS lHorn t..n ure... * T e Pr Pressure Appi:oxo Date T________ Sur-.; ce Pr p-rat ion BASIS FOR CALCULATIO'IS )ansit ty _ Area ADN Factor..... C',Or.n:nt a DATA _*__ *........ _' —........ _ L__ ___F?true'rJ,,u.uat ve ~ Cum:.tlaQtive I f DP Cumulative I nterval Tirre Loss Wt, Loss I"K HDP L.21-L —---—: —!....L _ j1 ______ _ _______:-I: - - _:: T |.....

jMVCRIAL DS4tAGS SHElET';2tecria. _ ~ C. -. _ _ _ RUNNIXNG CONtTIONS Horn.r.r...apereture % Po-:er Pressure A-_pr:ox. Date ___que Prerum -..- -Z - --: nsrsF~a 3 B ASIS FR CAL CU TI3O$.'_ns t~y Are Cor.r. nt s OATA Tisme CTr:Uative f Wto oCu"-D iv Curtflat ve Interval | Tirre. Loss ['.M LSs MjDP.- j /&.~ L o..L __.....__ _____-___ _ _ 5 _____ I_ __ I __.' V _ 1i:~ 1'-.........:....' i - -i- --: --. - -._..__... - _. _ [ I __...... ______:- - -

-r't r91,AL D'VGI,,SE SHE1ET Number. _ 3 _3 ~____~__ ~__ ~RUNNING CONTLS A~j-f~~c. r;__ __ sfow a....p.rat ioni t!~jr~~______ ASIS FOR CALCUL w D C. C-n st. Pessre _ -_ -.. - -— ~ AOp t,.:s e! -T-acut S7 rnc1 Iatv IV 4QI t v a Clondatlve Interval Tirre Loss, Loss iin~t j J2 EE AfH -- _O__ MDP Fac:tor _....... ____...... Cov.e{nt; s DATA..__.. __ __I_____________ — ~......L_ —1 -_I__-__. — n I S3o L _ --— 4_,, w_1E_1_ irCI.,

PATR IA.I. DWIGS SHlET Number < / RUINNING CONtITIONS _-..- -, _., Horn _,.re, Power Pressure Appi-o.x Date T......... Prerunn Surface?r.pcarationh BAS tS FOrR CALcLLATiOLNois DATA Tietn U I C a tIve Wt CyuiuI at iva Curuulatve Interval TTitre. Loss WtQ Loss j,,,,D P _ _.....I! L.___ -i4. _.I

~AT1~IJL DAAG9 SHISEPT Number -_____ -____ _ RU. rNG CONDITLONS. % P-er -Pessure Appr.oxo- Dat e Torque Su'facce lreparat ton BASIS FOR CALACULATONI 9armns!t iy eaI Area I,4DP Factor - - Counent s DATA. T Lm, a!Cmu. Uat I' ve;t oC. tC -tiJgt i Cv ulmnatlve Int~erval T i o lLoss i S"XO Loss INI;DP A..... ___ I _-__________ MIMI__

feNLinr, f StClt,,,-w 7: C ~~ i Q A I _ SUS!?T ______ Nuwrber RU!NING XNBIOTIONS 1Iorn..er.ture % Power I Pressure. Apito o-.- Dte Tor. Prerun Surface Pretparat. on -'".......- - BS~~~1AS IS L. C, LCUI L e.. ~ l- Density y Area vsDP F.actor DATA~ Tie. ZatrI.utave t t Cuve, Iatm I DP I Cu-ilat1ve IntCerval Tirrne. W Loss | S LossDP ________L - __- 1 ____... -, —--- i-.............-.._ — i.. _ _ ~~~~~~~~~~~~~~~~~~

UNIVERSITY OF MICHIGAN II II9I0 11111111 1 111111111111111111111 3 9015 02229 1440