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ABSTRACT

We compute the scaled variogram (the variances of successive long differences
scaled by the variance of first differences) for the log of annual per capita real
aggregate output as measured by a) the long series on US GNP and UK GDP; b) Maddi-
son's [1982] long series of GDP index numbers for 12 countries; and c) the postwar
IFS data on GDP (GNP) for 32 countries. We use simulations to show that, contrary
to previous results for the US alone, the scaled variograms are consistent with
the presence of a substantial unit root component in fhe univariate representation
of these series. We also show that the power of the variogram to discriminate be-
tween parsimonious trend (TS) and difference stationary (DS) processes in the IFS

data is somewhat greater than that of a Dickey-Fuller-like F test.

KEY WORDS: Variogram, unit root, stationarity, time series analysis, GNP,

simulation



1. INTRODUCTION

Whether the univariate time series representation of real GNP contains a unit
root instead of a linear trend has been much debated of late. The straightforward
application of Box-Jenkins identification techniques strongly suggests the
presence of a unit root, in that the autocorrelations of the first differences of
the log of real GNP are all smaller than 2 (asymptotic) standard errors after the
second lag or so. The tests derived by Dickey and Fuller concur in this
conclusion.* The classic reference is of course Nelson and Plosser [1982], who
find that a unit root dominates a linear trend in nearly every long US
macroeconomic series they examine. Similar conclusions, for US GNP alone, have
also been reported by Harvey [1986], Rose [1986], Stock and Watson [1986], Deaton
(1986], Campbell and Mankiw [1987], Campbell and Deaton [1987] and Schwert [1987].
Finally, Kormendi and Meguire [1984] found that postwar M1 and real GDP from 47
‘countries contain unit roots.

In a stimulating paper that uses a radically different technique from these
authors, Cochrane [1987] reaches a contrary conclusion. He finds that less than
207 of the variance of the growth rate of the log of annual real per capita US GNP
(henceforth simply GNP) over the period 1869-1984 can be attributed to the
presence of a unit root.? Cochrane contends that previous evidence in favor of
the presence of a unit root in US GNP is misleading. He argues that the evidence
from the autocorrelation function of first differences has been misinterpreted
because the high-order autocorrelations are ignored. These are all small but
mostly negative, which may be is consistent with overdifferencing. As for tests

of the Dickey-Fuller type, Cochrane restates the well-known objection that they

3 See Dickey, Bell and Miller [1986] for a discussion and review of these tests,
with references and applications.

2 Watson [1986], applying an unobserved components decomposition to US data,
reaches a similar conclusion.



lack power against stationary but highly autocorrelated alternatives. More
generally, Cochrane argues that it is invalid to infer, using what he terms "ad
hoc identifying restrictions," the long run dynamics of a series, such as the
presence of a unit root, from the short run dynamic information revealed by
standard parsimonious Box-Jenkins identification procedures. His preferred in-
sample model for US GNP among those he considered is a stationary AR(2) about a
deterministic linear trend.

Cochrane’s procedure for detecting a unit root in a time series is quite
simple, and derives from the following property of random walks. For any time
series {X.}, let o2(k) ® 02(X. - Xe-x). Then if (X.)} follows a random walk,

o2(k) = ko2(1) holds in population for all positive integers k. We will call the
successive overlapping quantities X. - Xe-x the kth differences of the series
{Xc}. We will call the sequence V(k) = o2(k)/k, k=1,...,n the variogram of {X.}.?
Borrowing from the frequency domain, we call the single term o2(k)/k the kth
ordinate of the variogram. Likewise, by analogy with the time domain, we call the
degree of differencing k, the lag of the ordinate. A plot of the variogram of a
random walk against its lags is then a horizontal line. More generally, the
variogram of a series with a unit root tends to some fixed positive value as k
grows large.

Cochrane's estimated variogram for US GNP over the period 1869-1984, k =

3 The variogram as defined here is a one-dimensional (time) special case of a more
general technique, known for some years in the geostatistics and meteorological
literatures, used to analyze spatial nonstationarity and autocorrelation in 2
and 3 dimensions. We have appropriated the term variogram from this literature.
See Cressie [1986] and references therein, especially Matheron [1971]. We thank
Noel Cressie for bringing these historical matters to our attention. Cochrane
credits Robert Lucas with the insight that the variance of kth differences of a
time series with a unit root should be k times the variance of first
differences. While use of the variogram is quite new in economics and finance,
it is spreading rapidly. Cf. Lo and MacKinley [1987a,b), Fama and French
[1986], and Huizinga [1986].



1,...,30, is shown in Fig. 1. For lags 20 through 30, the estimated variogram is
roughly flat at a value of about .402(l). He also reported simulations showing
that the variogram of US GNP was consistent with GNP following either a
nonstationary ARIMA(15,1,0) or a stationary AR(2) about a deterministic trend. In
the former case, the unit root would cause the variogram to asymptote to .1l8c2(1l).
In the latter case, the variogram would asymptote to 0 because, as k increases,
the variances of the long differences would tend to 0. Cochrane concludes "...the
AR(2) about a deterministic trend best replicates the behavior of the variance of
k(th] differences of GNP in a large class of ARMA models." Cochrane does not
articulate the precise metric implied by the term "best replicates." However if
imposing a unit root requires 15 AR terms in order to fit the actual variogram as
well as 2 AR terms with a trend, then mere parsimony militates against the
presence of a unit root.

Our interest in whether or not GNP possesses a unit root is more than merely
statistical, but derives from a need to understand the time series properties of
output (income) and other aggregate time series in order to address a number of
macroeconomic questions. One such basic question is the relationship between
measured income (GNP) and measured consumption. If GNP has a unit root, then
innovations in GNP have a permanent effect on future GNP, and hence on rational
forecasts thereof. The effect of innovations in GNP on consumption then &epends
crucially on the presence or absence of a unit root, so that a proper
understanding of the time series properties of income is essential to testing
capital-theoretic models of the aggregate consumption function.* A properly

specified consumption function is also needed to analyze aspects of fiscal policy

“ This point is central to the approach in Mankiw and Shapiro [1985], Deaton
[1986] and Kormendi and LaHaye [1986]. See also Kormendi, LaHaye and Meguire
(1986], Campbell and Mankiw [1987] and Campbell and Deaton [1987].



such as the possible substitutability between public and private consumption, the
differential effects of tax and deficit financing of government outlays, and the
aggregate effects of transfer payments.® Whether or not income and money have
unit roots is also important in estimating the demand for money (Fama [1982],
Mankiw and Summers [1986]), and the effects of monetary policy under rational
expectations (Kormendi and Meguire [1984], Rush [1986]).¢

In section II, we define our estimator of the scaled variogram and study its
sampling distribution under the null of a Gaussian random walk. In section III,
we estimate the scaled variogram for a number of series on per capita real output:
US GNP (NIPA extended using Romer [1986]) and UK GDP (Feinstein {1972]) back to

1870; the GDP indeces for 12 countries from Maddison [1982], again extending back

S Cf. Kormendi [1983], Kormendi and Meguire [1986]), Kormendi, LaHaye and Meguire
(1986]). Brunner [1986] proposes that any regression test of fiscal policy using
aggregate time series data should be run in differences as well as levels,
because of the adverse statistical consequences, discussed in the next paragraph
of the text, of estimating regressions over levels data containing possible unit
roots. We would apply Brunner’s specific recommendation to any statistical
analysis of data where unit roots could be present. This is consistent with
Plosser, Schwert and White’s [1982] advocacy of differencing as a Hausman-type
test of specification.

¢ Independently of any particular economic hypothesis, the failure to account for
possible unit roots by differencing may be a fundamental specification error
with serious statistical consequences. Regressions estimated from levels data
with unit roots can have nonstationary residuals, and inferences drawn therefrom
can be fraught with Type II errors (the "spurious regression" phenomenon; cf.
Granger and Newbold [1974], and Plosser and Schwert [1978]). A deeper problem
with such regressions is that the usual estimators may not have asymptotic
sampling distributions, especially when the regressors are not exogeneous, as
the required matrix probability limits may fail to exist. This insufficiently
appreciated point is well articulated on p. 48 in Brunner [1986], who references
Grenander ([1954], Meese and Singleton [1982] and Stulz and Wasserfallen [1985].
For a recent analytical discussion of this point, see Phillips [1986], who shows
that, for spurious regressions, the usual t and F statistics do not possess any
limiting distributions. Stock [1984] and Engle and Granger [1987] argue,
however, that economic time series with unit roots may be cointegrated. Under
certain conditions, regressions relating cointegrated variables and estimated in
levels may in fact be well specified. Finally, Nelson and Kang [1981] show that
detrended data with unit roots contain spurious periodicities.



to 1870; and the postwar IFS data on GDP and GNP from 32 countries. In section
IV, we fit both a trend stationary (TS) AR(3) and a difference stationary (DS)
ARIMA (3,1,0) to these series. Conditional on the estimated parameters, we simu-
late the sampling distribution of selected ordinates of the variogram, and use
these distributions to compute the relative probabilities that the actual vario-
grams could have been generated by such parsimonious TS and DS models. In section
V, we compare, again using simulations, the relative power of the variogram and an
F-test in the manner of Dickey and Fuller to discriminate between TS and DS. Sec-

tion VI offers a brief summary with concluding remarks.

II. THE SCALED VARIOGRAM AND ITS SAMPLING PROPERTIES.
1. The Scaled Variogram
Let Xo,...,Xn bDe a realization from the stochastic process {X.}. We then

compute V(k) as follows. For any positive integer k, first let

n
o2(k) 3 I [Xe - Xe-n - I—kl'(xn - Xo)]? ¥ (n-k) (1)
tek
be an unbiased estimator of the variance of the kth-difference of {X.}. Cochrane
multiplies o2(k) by n/(n-k) as a tacit adjustment for the finite sample bias
caused by the overlap in the differences. He then divides o2(k) by k so that a

plot of the variogram as a function of k has, in the case of a random walk, slope

0 instead of 1. V(k) is then?

n
k(n-k)

V(k) ot(k) . (2)

We go one step further and scale each variogram ordinate by the variance of first

? The variogram can also be defined in terms of the variance of (linear) filtered
first differences, where the filters are of successive length k and have equal
weights.



differences, V(1), to obtain the scaled variogram, with typical element R(k) =
V(k) + V(1).°®

The scaled variogram should be a fundamental addition to the time series
analyst’'s tool box, and one of the purposes of this paper is to explore its
properties and to advocate its (proper) use. The scaled variogram is a
dimensionless quantity independent of the units in which the underlying data x.
are measured. It is a function only of the length, n, of the series, and of the
autocorrelations of its first differences. 1Its sampling properties do not depend
on any other nuisance parameters. The scaled variograms of all series of length n
can be readily compared, even plotted together along the same set of coordinates.
The population value of R(k) computed from a random walk is 1, for all k. As
stated in section I, if a series contains a unitroot, then the scaled variogram
flattens out to an asymptote. If this asymptote lies in the [0,1] interval, it
can be interpreted as the fraction of the variance of a series due to shocks whose

effects are permanent.®

8 Equations (1) and (2) are equivalent to (A-3) in Cochrane [1987], except that
Cochrane multiplies the sum of squared kth differences by the incorrect factor
n/(k(n-k)(n-k-1)), forgetting that n is the number of first differences.

Instead of multiplying the sum of squared kth differences by n/(n-k)2, Fama and
French [1986] derive the factor, 1/(n - 2k + ((k? -1)/3(n-k))). According to
their simulations, the resulting estimator for the variogram is also mean
unbiased. We will not evaluate here the relative merits of these two methods of
ad justing the degrees of freedom for bias.

® If {X.} has a more general ARIMA representation of the form ARIMA(p,l,q), then

the variogram will still possess an asymptote, at least for values of k large
enough for the effects of any AR and MA terms to have died out. This also holds
for a series following a general ARIMA(p,d,q) if the variogram is computed over
the d-1 difference of the original series. A series that requires d differences
in order to attain stationarity should be differenced d-1 times before having
its (scaled) variogram computed; the resulting variogram can then be interpreted
as usual. Hence the variogram can, with suitable qualifications, serve not only
as a diagnostic procedure for determining the presence of a unit root, but also
as an a an aid to identifying the degree of differencing needed to transform to
stationarity any time series with a canonical ARIMA representation.



The variogram summarizes the covariance properties of a time series. Hence
it is related to the correlogram and to the sample spectrum. Cochrane emphasizes

that lim V(k) is a consistent estimate of the power of (1-L)x. at frequency 0.
k >

Also

k-1
Rek) = 1+ 23 LI rhock) (3)
=1
holds in population, so that R(k) is a linear combination of the first k-1

autocorrelations (the rho(k)) of the differenced series.*°®

2. The Sampling Distribution of R(k) Computed from a Pure Random Walk.

Since R(k) is a ratio of variances divided by their degrees of freedom, it
would appear that R(k) is distributed as F(n-k,n). This happy result does not
obtain because ka) and V(1) are not statistically independent, as the kth
differences are linear.combinations of the first differences.** Nonetheless, the
sampling distribution can be easily explored by simulation, as it has only two
parameters, n and k, both of which take on discrete values only. Table 1A shows

the sampling distribution of R(k), k = 3, 5, 10, 20, 30, 30 and 75, computed from

10 The variogram is not as directly informative as the correlogram and sample
spectrum about the detailed correlation properties of a time series. When unit
roots are present however, the interpretation of the correlogram and sample
spectrum are not straightforward; in fact the spectrum of a series with a unit
root is not even defined in population. Only the variogram remains easily
interpretable in the presence of a unit root. The variogram is also defined
for stochastic process for which the autocovariance function does not exist,
e.g., the Wiener process (see Cressie [1986]).

11 Ag is well known, the overlapping kth differences are not statistically
independent, even when the first differences are. 1In fact, the kth differences
follow an MA(k-1) when the first differences are white noise. At a later time,
we intend to examine how well R(k) conforms to F(n-k,n) in spite of the lack of
independence of the numerator from the denominator.



1000 simulated random walks of length 117, corresponding to the period
1869-1985.22

The skewness of R(k) is blatant—for instance, note how the third quartile is
considerably wider than the second one—and increases with k. Whereas the sample
means of the R(k) are essentially 1, so that the formula in (2) is unbiased, the
sample medians are biased downwards. Although the median of any skewed
distribution is necessarily less than the mean, this bias increases with k. The
dispersion of the estimates, as evidenced by the interquartile and interdecile
ranges (not shown), is also increasing in k. Taking FRAC5 and FRAC95 as the lower
and upper bounds of a 90% "confidence interval® under the random walk null, this
interval is quite wide, especially for the larger k, e.g., about [.4, 1.9] for k =
15, and about [.2, 2.5] for k = 50. For k 2 30, ordinates as small as .1 and as
large as 5 can be observed in 1000 replications. This large sampling variability
limits the power of the scaled variogram in testing for a unit root null.:2

Lo and MacKinley [1987a] derive analytically as well as simulate the

properties of a statistic very similar to the scaled variogram.*“# However they

*2 The innovations are iid Gaussian, with variance, drift parameter and starting
values all set to their actual values for US GNP. Again, this is immaterial
because R(k) is invariant with respect to such parameters. With the exception
of the calculations underlying Figs. 2 and 3, and Table 2, which were done
using version 5.1 of Minitab, the simulations and estimates reported in this
paper were performed using version 2.05 of RATS on a microcomputer. The
Minitab and RATS programs, as well as the data, are available upon request in
machine readable form from the authors. We have been unable to determine the
exact algorithm embodied in the RATS function RAN that creates random normal
deviates.

*3 Note that R(k) and R(k+l) (where 1 is an integer such that k+l 2 1) are
definitely not statistically independent, so that it is not obvious how to
distill the variogram into a "portmanteau® statistic like the Box-Pierce Q. In
section V, we will use R(20) as a test statistic for making power comparisons.

14 R(k) differs by 1 from their M-(q), as can be seen from their eqs. (9) and
(14c) when k is substituted for q and n for nq, q=1,...,nq-1. They also number
the first observation 1 instead of 0, so that they have n-k-1 instead of n-k
kth differences. Their simulations confirm the presence of a unit root in
several broad aggregates of US stock prices [1987b], for differencing intervals



fail to recognize the strong right skewness of (scaled) variogram ordinates
computed from finite samples.** This skewness means that it is misleading to
evaluate (as Cochrane and Lo and MacKinley do) theoretical, simulated or actual
(scaled) variograms by means of symmetric standard error bands. The resulting
"confidence" intervals do not have maximum posterior density, and hence do not
possess the natural Bayesian interpretation as intervals in which, under the null,
estimates of R(k) will be found with probability «, as would be the case with a
symmetric sampling distribution. For these reasons, we will summarize our
simulations by reporting means and selected fractiles of the empirical pdfs. All
inferences will also be based on fractiles rather than on sample means and

standard errors.

III. THE VARIOGRAM OF REAL OUTPUT
1. The Long Series on US GNP and UK GDP.

All data sources and computations are described in the Data Appendix. For
the US, we use the new and less volatile data for the period 1869-1928 recently
computed by Romer ([1986], [1987])). Fig. 2 shows that for lags 1 through 30, the
shape of the scaled variogram computed from US GNP is quite similar to that of the
(unscaled) variogram in Fig. 1 taken from Cochrane [1987]. Substantially above 1
at low lags, the variogram slopes down more or less continuously after a peak at

lags. Variogram ordinates for those lags appearing in Table 1 are shown in the

up to 16 months long. Their results do not address the findings of Fama and
French (1986, Table 3], who found that the R(k) computed from similar data were
substantially below 1 for differencing intervals in the range of 5 to 10 years.

1s The extensive simulations (20,000 replications) of Lo and Mackinley (see their
Tables 2a,b) do reveal skewness and excess kurtosis that are several standard
errors in size, especially when k/n exceeds .l or so, even for n as large as
1024. This skewness is also suggested by the F distribution with finite
degrees of freedom.



10

first row of Table 2. This variogram is certainly not the one expected from a
pure iid Gaussian random walk, but instead appears consistent with Cochrane’s
preference for modelling US GNP as a stationary process about a deterministic
trend. The evidence is not conclusive, however. The R(k) for k £ 30 in Table 2
are generally greater than those implied by Fig. 1, and fall outside of the first
decile shown in Table 1A. Moreover, R(50) lies at about the 251 fractile.
However the levelling off of the variogram at about .4, which Cochrane assumed to
begin around k = 20, is not borne out; by lag 75, R(k) declines to .15, the 5%
fractile in Table 1A.

The variogram of the long series for (log real per capita annual) GDP in the
United Kingdom, mainly due to Feinstein [1972], is shown in Fig. 3.*¢ While it is
questionable whether this series can be described as a pure random walk, the
scaled variogram strongly suggests the presence of a unit root. 1In fact, R(k)
never falls below 1, although only the values for lags 3, 5 and 50 exceed the 902
fractile shown in Table 1A. We have also plotted in Fig. 3 the 95 fractile from
Table 1A, from which it can be seen that this fractile almost forms an upper

envelope for the estimated variogram.

2. Subperiod Sensitivity and Deflation by Population.

Table 2 also explores the sensitivity of the variogram to the choice of
sample period and to the use of per capita data. We believe that per capita data
are not unambiguously preferable, because annual population estimates are largely
interpolated from vital statistics between census benchmarks. For each subperiod,

the second row in Table 2 gives variogram ordinates calculated from raw data. The

¢ In view of a) the existence of personal and corporate income taxation in the UK
throughout the later Victorian era; and b) the non-trivial assumptions needed
to estimate US GNP for years prior to 1909 (Romer [1986]), it is possible that
the long data for the UK are of better quality overall than those for the US,
especially prior to World War I.
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per capita series generally have smaller ordinates, so that raw ouput appears more
nonstationary than per capita ouput.

Table 2 also shows that the variogram is highly variable across sampling
periods. For both the US and the UK, the pre-1914 period yields lower values than
the other periods. The sample period used by Nelson and Plosser [1982], 1909-70,
yields the largest ordinates of any subperiod shown except at lag 20. This may
explain their unambiguous conclusion in favor of a unit root. Also note that only
those periods which include the Depression and World War II yield high values
of R(k) at low lags.*?

Table 2 also sheds new light on recent work by Campbell and Mankiw [1987].

In a paper that is cognizant of Cochrane’s work but reaches an opposite
conclusion, these authors propose to measure the persistence of an innovation to a
time series in two ways: as the sum of the coefficients in the (possibly infinite)

moving average representation of the differenced series, and as V(k) estimated by

17 The following summary statistics show that significant positive serial
correlation in the growth rates of real ouput characterizes only those
subperiods that include the Great Depression and one or both World Wars.

Summary Statistics by Subperiod for Log Growth Rates of:

US GNP UK GDP
Period SD ra Period SD Y
1869-1985 .053 .37 1870-1985 .033 .23
1869-1929 .039 -.03 1870-1913 .026 -.27
1930-1954 .096 .57 1914-1947 .048 .40
1955-1985 .024 .16 1948-1985 .019 .02

NOTE: SD = standard deviation. r, = first order sample autocorrelation.

As Cochrane [1987] and Lo and Mackinley [1987a) have recognized, the
sampling distribution of the variogram for a random walk may be sensitive to
departures from homoskedasticity in the random walk innovations. The above
standard deviations by subperiod reveal such departures. Note that the high
variance periods are also those with large positive serial correlation.

The effects of the pattern of heteroskedasticity shown above for the US on
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substituting sample autocorrelations into (3). Both measures, when applied to
quarterly US GNP (not deflated by population) over the period 1952:1-1984:3, yield
estimates that are at least as great as the means of their respective simulated
sampling simulations under a pure random walk null. Table 2 shows why these
results favoring a unit root could be expected. First, the raw series is always
more nonstationary than the per capita one, at least for the US. Second, their
sample period is close to the period 1953-85, when the R(k) are fully consistent
with a random walk. Note, however, that including the 5 year period 1948-52
substantially lowers the variogram estimated over the postwar era. Finally, their
maximum value for k of 60 corresponds to a k of 15 with annual data, and for
(annual) k in the range of 3 to 15, the R(k) for most US subperiods are consistent

with a unit root.

3. Maddison’s Long Series.

These radically d;fferent results for the data from two selected economies
‘suggest two competing explanations. One is that the time series properties of
aggregate output in the US and the UK are fundamentally different. The other
explanation is that the US and UK series are different realizations from the same
class of stochastic processes, e.g., TS or DS. 1In particular, the sampling
dispersion of the variogram is so great that both US and UK real output could even
be realizations of random walks. These possibilities motivate an exploration of
data from more countries.

We turn, therefore, to the index numbers for real GDP in 12 countries

the sampling distribution of the scaled variogram, again for realizations of
length 117, are shown in Table 1B. Relative to the homoskedastic case, the
lower fractiles decrease, and the dispersion increases, but both only slightly.
Overall, allowing for the observed heteroskedasticity does not materially
change the probability that US GNP or UK GDP has a unit root.
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computed by Maddison [1982].*® We have used every country with continuous data
for the period 1900-79, with 10 out of 12 series extending back to 1870. These 12
countries include the US and UK, but Maddison's data for the period 1870-1947 are
not identical to those already analyzed.2*® Maddison also made a serious effort to
assure that these data were as comparable as possible across countries and through
time. The real output data are deflated by Maddison’s data on annual population
at midyear.

Values of R(k) at selected lags are shown in Table 3. Two facts immediately
stand out. First, about 752 of the ordinates reported are greater than 1, with
only 4 being below .8, three of these being for the US. Second, the US is not
typical in that i;s variogram ordinates at longer lags are clearly the smallest of
any country in the sample.2° Viewing these data as a whole, however, it is likely

that these 12 series contain significant unit root components.

4. IFS Postwar Data
The final data we examine are the postwar annual series on real output (GDP

or GNP) for 32 countries, taken from the International Monetary Fund’s data

18 These countries do not make up a representative sample from all over the globe;
instead they consist of the four current principal Europeean economies, the
Scandinavian nations and the Netherlands, and the three major English-speaking
former colonies of the UK. Further details on data and sources are given in
the Appendix.

19 A puzzle in Romer’s [1986] data is the 16.6% increase in GNP for 1872. This is
the largest one year increase in the long US series except during World War II.
Maddison’s series only increases by 7.3% in 1872, a value we find more
plausible.

20 We discount R(50) = .35 for the Netherlands because k/n exceeds .5. The US
ordinates in Table 3 are somewhat smaller than those given in Table 2. For the

UK, Maddison's data yields a variogram with a less marked peak between lags 20
and 50.

23 A country was included if it had continuous annual data on real output and
population for the period 1950-83. The countries in our sample include most of
the industrial/OECD countries (the exceptions being Japan, Belgium-Luxembourg,
Spain and New Zealand) and a number of developing countries, especially in
Latin America. Further details on data and sources can be found in the Data
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base.2*These data are likewise deflated by the IMF's annual data on midyear
population.

Given that this data set includes at most 38 (annual) data points per
country, one could question how such short series can address a long run dynamic
property such as the presence of a unit root. In particular, Cochrane [1987]
states that

"The number of nonoverlapping ’'long runs’ are a rough guide to the

number of degrees of freedom... With a 10 to 20 year ’long run’ there

are no more than ... 2 to 4 observations in postwar data. Obviously,

using more frequently observed data doesn’t help."

While we agree with this quotation when the focus is on a single country, we
nevertheless take the view that by treating the postwar data on real output from a
panel of countries as multiple realizations from either the TS or DS class, these
data can shed light on whether real output contains a unit root. This is because
the scaled variogram is free of all country-specific nuisance parameters. This
approach was implicitly taken with Maddison’s data, where short data length was
not an issue. The added power from such cross-sectional pooling depends on the
degree of interdependence among the country-specific growth rates. In the case of
pure independence, an ergodic property should hold whereby the pooling of many
short series may be as informative as one long series with the same number of data
points. In the case where growth rates are perfectly correlated across countries,
there is no benefit from pooling. More generally, the greater the dependence
among countries’ growth rates, the smaller the effective degrees of freedom and
hence the lower is the power of cross-sectional analysis. We plan to investigate
the extent of this dependence in future work.

Table 4, which should be compared to Table 1A, shows the sampling

distribution of R(k) for a series of length 36 under a pure random walk null. The

Appendix.
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length was chosen to correspond to the period 1950-85, the typical period for
which real GDP is reported by IFS. The dispersion, left skewness, and downward
bias in the median are all more pronounced for n=36 than for n=117. This is to be
expected because the sampling distribution of R(k) is further from asymptotic
normality when n=36 than when n=117.

Selected variogram ordinates computed from the annual postwar IFS data on 32
countries are given in Table 5. The findings here are even stronger than those
that emerged from Maddison’s data. The vast majority of ordinates shown are
greater than 1; in fact, for several countries, the R(k) all lie above 2, the 902
fractile or better in Table 4, and are increasing in k. Once again, the US has
the lowest variogram among all countries considered, which now include nearly all
of its industrial peers. Recall from Table 2, however, that the R(k) for the US
over the period 1953-85 are close to 1, and hence are much more consistent with

the R(k) for the other countries in Table 5.

IV. DISCRIMINATING BETWEEN THE TS AND DS CLASSES.
1. The Simulation Methodology
Dramatic as the results in Tables 2 through 5 are, we wish to draw more

formal inferences about the presence of unit roots in our data, while also
entertaining hypotheses richer than the simple random walk. To this end, we
define two classes of univariate models: a trend stationary class (TS) consisting
of parsimonious ARMA deviations from linear trends, and a difference stationary
(DS) class consisting of parsimonious ARIMA (p,l,q) models. By parsimonious we
mean at most a half-dozen or so parameters to be estimated. We simulate each
estimated model from the TS and DS classes with iid Gaussian disturbances and
compute selected ordinates of the scaled variogram for each simulation. Our

estimate of the sampling distribution of R(k) is the empirical distribution (pdf)
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of the simulated R(k).

To compare any two estimated models, we first use the empirical pdfs to
determine the corresponding fractiles of the R(k) computed from the actual data.
The distance of these fractiles in probability units from the medians of their
empirical pdfs forms our basis for comparing alternative models; the greater the
distance, the less probable the model. Let the fractile of the empirical pdf for
R(k) that contains the actual R(k) (conditional on some model Q), be F(R(k)!Q).
Then our measure of the probability that R(k) is a realization from a series whose

univariate model is Q is
P(R(k)IQ) = 1 - 2|F(R(k)IQ) - Med(R(k)IQ)| (4)

where "||" denotes absolute value, and Med(R(k)!Q), the median of the empirical
pdf. If F(R(k)|Q) equals this median, then P(¢IQ) = 1. If R(k) lies outside the
range of observed simulated values, P(¢|/Q) = 0. Thus the area under that part of
the empirical pdf for R(k) that lies at a greater distance from its median than
the actual R(k), is our measure of the relative probability that a particular
model is true. Note that this probability is akin to a two-tailed test of the
null that R(k) was computed from a series generated by the model 2, with
parameters set to their (approximate and Gaussian) maximum likelihood estimates.
For simplicity, we restrict ourselves to just one model from each class: an
AR(3) about a linear trend, and an ARIMA (3,1,0). For the data used in this
study, three AR terms generally sufficed to yield white noise residuals. For the
TS class, an AR(3) about trend subsumes an AR(2), Cochrane's preferred model for
US GNP. With respect to the DS class, preliminary estimates of low-order ARIMA
models with MA components, revealed results similar to the ARIMA(3,1,0) case, at
least for those countries where the estimation converged successfully in 100

iterations or less. In addition, models with two unit roots typically showed
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evidence of overdifferencing. Using standard diagnostic methods, no low order

ARIMA model seemed superior overall to the (3,1,0).

2. Empirical Results.

Estimates of the TS and DS models for the US and the UK are given in Table 6.
Table 7 gives the actual R(k) (from Table 2), and the corresponding simulated
Med(R(k)!Q) and P(R(k)IQ). For the US, a model with a unit root fits the
variogram better through lag 10, but worse thereafter. Remembering that in
population, the R(k) are linear combinations of the first k-1 autocorrelationms,
this finding is consistent with Cochrane’'s observation that the identifying
restrictions implied by low order ARIMA models fit the low order autocorrelations
at the expense of higher order ones. Even for k < 10, TS does not perform all
that badly. Overall, if the objective is to do equal justice to high as well as
low order autocdrrelations, these results do not by themselves overturn Cochrane’s
preference for modelling US GNP as stationary AR deviations about a deterministic
trend.

For the UK, the pattern of the probabilities is the opposite of that for the
US; the TS model fits the variogram better at lags < 10, while DS generally
genrally does so at lags greater than 10. Except at lag 10, P(+I|DS) roughly
equals or exceeds P(e«ITS), so that the presence of a unit root seems likely. Even
TS suggests a unit root, as the sum of the estimated AR coefficients from the TS
model in Table 6 is .97, which is very close to the value of 1.0 characteristic of
a unit root. Correspondingly, Med(R(k)ITS) is near 1 for all k.

For Maddison’s data, Table 8 repeats the estimated R(20) and R(50) shown from

Table 3, and gives the corresponding simulated medians and probabilities.?2 At

22 For the Maddison and IFS data, the estimated TS and DS models from which the
P(+1Q) were computed are available in a separate Appendix available from the
authors.
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lag 20, the.DS model dominates in all but the United Kingdom (where both models
are tied at 907) and the United States. At lag 50, DS is superior in all
countries except the US and the Netherlands (about whose low value of R(50) we
have reservations). In fact, although the probabilities for the other lags shown
in Table 4 are not exhibited, the bottom of Table 8A shows that DS yields a higher
probability than TS in at least 9 of the 12 countries at all lags.

Table 8A also contains a frequency count of these probabilities over a richer
set of lags. At lag 3, both TS and DS seem to fit the data equally well, but at
all higher lags the superior fit of the DS model emerges. This result is
different from Cochrane’s finding for the US that the superiority of a
parsimonious TS model emerges when fitting the higher-order lags. Furthermore, TS
has low probability at all lags in Norway and Germany. On the other hand, DS
never does very badly in any country, although it does worst in the US. For these
data, DS is a clearly superior model for aggregate output.

Table 9 shows that the results for the postwar IFS data are even stronger
than those from Maddison’s data. Table 9 focuses on lag 20 because longer lags
may yield too few observations for efficient variance estimation given sample
sizes around 35. DS dominates in all but 3 countries, one of these being the
United States.23 Table 9A contains a frequency count of the P(¢I1Q) for thg richer
set of lags shown in Table 5. The superior fit of DS at all lags is clear,
especially at longer lags.2?“ This is again dramatically different from Cochrane’s
finding that the superiority of TS as a model for US GNP emerges at the higher

lags. The fit of TS also steadily deteriorates with increasing lag, e.g., the

22 Table 2 shows that the high-order ordinates for the US rise substantially when
data for the years 1948-52 are omitted from postwar sample.

24 The only country where the P(+1DS) are uniformly very low is the Philippines,
where TS performs almost as poorly.
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number of countries with P(+|TS,k) < .1 going from 5 at k=3 to 15 at k=20. Again,
the DS overwhelmingly dominates the TS as a parsimonious model for aggregate
output during the postwar era.

Under a given null, the right tail areas (Marginal significance level (MSL)
or p-value) under each country’s empirical pdf for R(20) corresponding to that
null should be uniformly distributed between 0 and 1 across countries. The two
middle columns of Table 10 give a frequency count of the MSL (= 1 - F(R(20)IQ) in
the notation of (4)) for R(20) from the 32 countries in our panel. While the MSL
under TS are clearly not uniformly distributed over [0,1], DS also yields too many
MSLs in the lower half of [0,1]. Thus, as Cochrane argues, restricting the DS
class to a parsimonious subset such as ARI(3,1) does not do justice to the longer
run properties of the data. However, instead of being "too nonstationary", as

Cochrane found for the US, parsimonious ARIMA models appear insufficiently

nonstationary to simulate the large R(k) actually observed in our panel. In other

words, the data show some "excess" nonstationarity relative to an ARI(3,1).

V. THE RELATIVE POWER OF ALTERNATIVE TEST STATISTICS

1. A Dickey-Fuller Type F Test.

To this point, we have used only the variogram to shed light on the presence
of a unit root. An important alternative class of test statistics designed to
elucidate the same question has been proposed by Dickey and Fuller (see Dickey et
al. [1985]). We now compare the power of an F test in the spirit of Dickey and

Fuller, with that of the variogram. Given the regression equation

xt. = g + boT + b;_Xf_-;, + bng-z + ban-; ’ (5)

where T is a time trend, the null hypothesis that X. contains a unit root is

equivalent to the joint hypothesis bo = 0 and by + bz + ba = 1. Since this
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hypothesis is a pair of linear restrictions on the coefficients of (5), it can be
tested by means of an F statistic. We call this F statistic "DFF" (short for
Dickey-Fuller F). As with other Dickey-Fuller statistics, the sampling
distribution of DFF under the null is not a standard F; hence its distribution
under both TS and DS will be simulated.

In this section we examine the relative ability of DFF and the variogram to
distinguish between DS and TS alternatives in simulations of the IFS data. We
also examine an estimator of the variogram derived by substituting sample
estimates for population quantities in (3), as suggested by Cochrane [1987] and
Campbell and Mankiw [1987). All three statistics are computed from data simulated
under both TS and DS.23 For each set of N(0,1) deviates used to simulate €., the

following two series are simulated:

Xe = boT + b1x=-1 + bzXe-z + baxc—a + €e.

X'e = a4+ (1+B1)X’c-2 + (B2-B1)X’c-2 + (Ba-P2)X’c-3 - PsX'c-s t+ Ee.

The bs are derived by estimating TS, while the B. and « are derived by estimating
DS.

The results of comparing DFF with the variogram are shown in Tables 11 and
12. As before, these Tables exhibit results for lag 20 only. The restriction to
one lag biases the comparison in favor of DFF in that the information in the
remainder of the variogram is being ignored. V20 is an estimate of R(20) computed
from the rhs of (3). For each pair X. and X', DFF, R20 and V20 were computed and

the empirical pdf of each was tabulated. The P(+IQ) were computed from (4) as

25 Tn the case of TS, the intercepts of the simulated series are all set to 0. On
the other hand, the intercept estimated from the ARIMA (3,1,1) model, «, has
been included in the simulated DS series, because under TS, this intercept is
an estimate of the trend coefficient.
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before and are tabulated in Table 11.2% The bottom row of this Table reveals that
all three statistics find DS to be more probable than TS. However, the variogram
estimates R20 and V20 reveal this by the overwhelming margins of 29 to 3 and 27 to
5, respectively.2? In contrast, DFF shows DS to dominate TS by a margin of only
22 to 10, which suggests that DFF is somewhat less powerful than V20 and R20.
Finally under TS, the P(+1Q) for all three statistics tend to cluster near 0,
which is highly unfavorable to TS, while under DS this measure is more or less

uniformly distributed over [0,1].2®

2. Assessing Relative Power.

A final question is the extent to which the empirical pdfs of R20, V20 and
DFF differ under TS and DS. In classical statistics, questions of this sort comes
under the heading of the "power function." There is fortunately no need to study
whole power functions because TS and DS are both point hypotheses by construction.
We shall instead start by measuring the extent to which the simulated empirical
pdfs for each statistic differ under the two hypotheses. We then define the power
of a statistic as the probability that the statistic will correctly identify
whether a series was generated by TS or DS. If the empirical pdf of a statistic

is the same under both TS and DS, then it cannot distinguish between TS and DS.

26 The actual values for each country are available from the authors.

27 The only countries that favor TS using R20 are the Philippines, Turkey, and the
US. The P(+|Q) value under TS for the Philippines is only .12. The estimated
AR coefficients under TS for France and Venezuela summed to more than 1, so
that the corresponding simulated series were "explosively" nonstationary.

28 The marginal significance levels (MSL) for the three statistics under DS and TS
are tabulated in Table 10. All three statistics exhibit under TS a sharp mode
at that end of [0,1] which is least favorable to TS. Note that for R20 and
V20, the MSL under DS also tend to cluster towards 0. This is not evidence
against DS; rather this is consistent with the finding of "excess"
nonstationarity discussed at the end of section IV.2.



22

Since the classification of a series would then be a toss-up, the probability of
classifying a series correctly, i.e., the power, is then .5. If the smallest
simulated value under one hypothesis is greater than the largest value under the
other, so that there is no overlap between the empirical pdfs under the two
hypotheses, the power is 1.0, conditional on a given finite number of
replications.

More generally, let ¢(nl8,Q2) be the nth order statistic from the empirical
pdf of 6 computed over data generated under Q. Also let MED = [(NREP+1)/2], where
NREP is the number of Monte Carlo replications (in this case, 1000). Now solve

the following implicit equation for x:
¢(MED + x16,0.) = ¢(MED - x10,Q2)

where Q. = DS when 6 = DFF, and TS when 6 = R20 or V20. Qs is the other member of
the pair (DS,TS). This is because when TS is true, R20 and V20 should be lower
than when DS is true, and vice versa when estimating DFF. Let the (parametric)
solution to this equation be x(6,2). We now posit the following decision rule:
Classify a series as DS (TS) if the value of 0 calculated from the series lies
closer to the median of the empirical pdf of 6 under DS (TS) than it does to the

median under TS (DS). The probability of misclassifying a series is then

MED - x(6,0)
NREP (6)

w(6) =

The probability that 6 will correctly classify a series, i.e., the power of 0, is

then w(0) = 1-u(0).2°

2% Our use of the term power is related to the conventional one, namely the
probability that the null will be rejected when the alternative is true, if the
probabilities of Type I and Type II errors are equated, so that DS and TS are
on an equal footing.
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The frequency count of the w(8) across countries is given in Table 12.2° 1In 20
or more of the 28 countries for which a comparison is possible, w(V20) or w(R20)
is higher than w(DFF), with two ties at the second decimal place (Norway and the
US). These frequency counts modestly favor R20 and V20 over DFF, in that the
powers of R20 and V20 have medians and modes between .6 and .7, while those for
DFF lie between .5 and .6. Yet only in 8 cases out of a possible 90 is m more
than .8. The median value of w(R20) - w(DFF) is .04, and that of w(V20) - = (DFF)
is .06, with only 8 and 7 values, respectively, out of 28 being negative. The
median value of w(V20) - w(R20) is .03, with the largest absolute difference being
.1 (the Philippines). Out of 30 values, there are only three negative ones and 4
ties at the second decimal place.

Viewed as a whole, w(R20) and w(V20) are neither all that close to 1 or all
that far from w(DFF), while V20 appears marginally more powerful than R20. All
three statistics evidently lack power to distinguish between TS and DS in the
context of a single country. In the context of classifying as a set the data from
a group of countries, however, the modest incremental power of R20 and V20 over
DFF may prove beneficial. At any rate, Table 11 shows that DFF, R20 and V20 all

have sufficient power to distinguish DS from TS in the actual IFS data.

20 The actual values for each country are available from the authors.
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VII. CONCLUSION.

We have defined the scaled variogram and computed it for the series on annual
real output from a number of countries to determine whether they contain a unit
root. In contrast to Cochrane’s previous estimates for the US, which we confirm,
we find that the variograms of nearly all the 14 long and the 32 post-War real
ouput series examined were consistent with the presence of a unit root. Among
both long and short series, the variograms of the US data were the least
consistent with a unit root. Confirming Campbéll and Mankiw [1986]), however, the
post Korean War US data do reveal a unit root.

We use Monte Carlo methods to show that an ARIMA (3,1,0) (DS) was almost
always a more "probable" model for the data than stationary AR(3) deviations from
a linear trend (TS). We also show that neither the variogram nor a parametric
Dickey-Fuller type F test have much power to discriminate between TS and DS in a
single country, although for the bulk of countries in both the long and short data
sets, DS dominates TS using either procedure. Hence, looking over a number of
countries and time periods, our answer to the question "How big is the unit root
in GNP?" would be "Rather substantial."”

Although our results for other countries do not concur with Cochrane’s for
the US, we agree with Cochrane on a number of theoretical points. In particular,
we agree that parsimonious ARIMA models tend to sacrifice goodness of fit at the
lowest frequencies in exchange for a better average fit over the entire spectrum.
Therefore such models, while doing justice to the short run dynamics of time
series, may well misrepresent the long run behavior. As it turns out, however, the
data do not bear out Cochrane’s concern here. DS outperforms TS not only at the
short lags, but even more so at longer lags. In fact, for a number of series, the
estimated variogram is too large to be captured by an ARIMA (3,1,0), i.e., there

appears to be "excess" nonstationarity. We wish to point out that parsimonious



25

ARIMA models do not nessarily do violence to the economically relevant part of the
dynamics of a series. This is because the part of the impulse response function
of a series implied by its long run dynamics can have negligeable impact on
economic behavior, given "reasonable" discount rates. We plan to elaborate on
this point in our future work.

We conclude by highlighting the implications of our results for the
consumption function. As Mankiw and Shapiro [1985] have shown, if income has a
unit root, then the usual finding (e.g., Flavin [1981]) that consumption is "too
sensitive" to innovations in income is spurious. In fact Deaton [1986] (for the
US) and Kormendi and LaHaye [1986) (for a panel of 30 countries), using
differenced specifications, found undersensitivity of consumption to income
innovations. More generally, a significant unit root component in output
increases the potential for regressions that include output and are estimated in

levels, with or without detrending, .to be misspecified or "spurious."



DATA APPENDIX

The basic variable of this study is the log of annual real output per capita, com-

puted from the output and population data described below.

Abbreviations:

IFS

NIPA

SCB

Long US Data

Output:

1983-85
1929-82
1909-28
1869-1908

Population:
1983-85
1929-82
1869-1928

International Financial Statistics monthly publication, Yearbook and
computer tape.
82: Statistical Tables.

Survey of Current Business.

Annual real GNP in 1982 prices, rounded to the nearest $100 million.
Data for the 1869-1908 segment in 1929 prices waere ratio spliced;
all other data are in 1982 prices. '

Series 1.,2.1, July 1986 SCB.

Series 1.2.1, NIPA.

Column labelled "Revised Estimates," Table 8, Romer [1987].

Table 3, Romer [1986].

Data as of mid-year and rounded to the nearest 100,000:
Last column, Table 8.2, July 1986 SCB.

Last column, Table 8.2, NIPA.

Col. 5, Table 4.8, Friedman & Schwartz [1982].

Long British Data

Ouput: Annual real GDP in 1980 prices rounded to the nearest £100 million.
Data segments ratio spliced to a 1948-85 base.

1948-85 IFS series 99bp.

1920-47 Col. 8, Table 5, Feinstein [1972]. 1In 1938 prices; excludes Ireland.

1913-19 Col. 8, Table 5, Feinstein [1972]. ‘ " ; includes Ireland.

1870-1912 Col. 8, Table 5, Feinstein [1972]. 1In 1900 prices; "

Population: Data as of midyear and rounded to the nearest 100,000. Data segments

ratio spliced to a 1948-85 base.
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1948-85 IFS series 99z.
1920-47 Col. 1, Table 55, Feinstein [1972]. Covers Great Britain and Ulster.

1870-1919 Col. 4, Table 55, Feinstein [1972]. Includes all of Ireland.

IFS Postwar Data _

The main source is the IFS tape dated August 1986. All available data were used.
Some additional significant digits were obtained from the IFS Yearbooks for years
1979 to 1985. Data for the 1980-5 period were checked against the April 1987 is-

sue of IFS.

Output: Annual real GDP (series 99b.p or 99b.r) or real GNP (99a.p or 99a.r),
whichever is available, in 1980 prices. The numerical difference between IFS nom-
inal GNP and GDP is always very small; the difference between their real analogues
is assumed small. US data cover the period 1948-85 and are as described under

"Long US Data". 1Israeli data for 1950-3 are known to only one significant digit.

Population: Midyear éstimate (series 99z). Data for Venezuela over the period
1975-85 were multiplied by .95 to correct for an apparent discontinuity starting
in 1975. (The published data show an 8.6 increase over 1974-5.)

Maddison Data

Output: Index numbers for annual real GDP (1913=100), taken from Appendix Tables
A6-8 in Maddison [1982) and ratio spliced to the available IFS real output series,
using values for the first overlap year, usually 1950. The US series was spliced
to the NIPA data for the period 1948-85 described under "Long US Data". Maddison
constructed his series from a variety of government and historical sources, ad-

justing them to conform as much as possible to present boundaries.

Population: Mid-year estimate rounded to the nearest 100,000. Data taken from
Appendix Tables B2-4 in Maddison [1982] and ratio spliced to IFS series 99z, using
the first overlap year, typically 1948. To enhance the conformity of the data
with postwar boundaries, further ratio splices were performed using overlapping
data for those years in which boundaries changed. The US data are as described

above under "Long US Data," and cover the period 1870-1985.
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FIG. 2

PLOT OF SCALED VARIOGRAM FOR LONG SERIES ON US GNP
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FIG. 3

PLOT OF SCALED VARIOGRAM FOR LONG SERIES ON UK GDP
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TABLE 1

SIMULATED SAMPLING DISTRIBUTION OF SCALED VARIOGRAM FOR RANDOM WALK
1000 REPLICATIONS OF LENGTH 117

1A,
HOMOSKEDASTIC DISTURBANCES
LAG FRACTILES
K MIN 5 10 25 50 MEAN 75 90 95 MAX
3 .57 .79 .84 .90 .99 1.00 1.09 1.17 1.23 1.49
5 .49 .68 .73 .85 .98 .99 1.11 1.27 1.33 1.72
10 .35 .55 .62 .76 .95 .99 1.15 1.40 1.58 2.65
20 .16 .37 .46 .64 .87 .97 1.21 1.62 1.89 3.85
30 .12 .29 .36 .53 .81 .97 1.25 1.78 2.18 5.31
50 .10 .21 .28 .45 .76 .99 1.28 1.96 2.52 6.01
75 .07 .17 .25 44 .75 1.06 1.45 2.22 2.77 5.27
1B.
HETEROSKEDASTIC DISTURBANCES

LAG FRACTILES

K MIN 5 10 25 50 MEAN 75 90 95 MAX
3 44 .71 .76 .86 1,00 1.01 1.15 1.26 1.36 1.75
5 .40 .61 .67 .80 1,00 1.02 1.19 1.43 1.57 2.23
10 .29 48 .58 .72 .94 1,05 1.28 1.67 2.03 3.24
20 .19 .36 .43 .61 .90 1.09 1.37 1.97 2.54 4.77
30 .12 .29 .37 .52 .87 1.13 1.45 2.20 2.82 5.64
50 .07 .20 .26 42 .81 1.11 1.43 2.36 3.19 6.16
75 .04 .11 .15 .26 .54 .83 1.06 1.96 2.56 6.1l1

NOTE: The model simulated is Xe = 8 + Xe-1 + ke€e, where €. is a simulated
draw-ing from a N(0,1) distribution. 1In 1A, ke = .054 for all t. 1In 1B, k. is
set to the standard deviation, given in footnote 17, of US GNP for the period
that in-cludes t. For each simulated random walk, 8 and Xo were set equal to
their estim-ated (actual) values using the log of US annual per capita real GNP.
The same se-quence of disturbances was used to generate both 1A and 1B, so that

none of the difference between them is due to sampling variation.



TABLE 2

LONG DATA FOR THE UK AND US

SELECTED SCALED VARIOGRAM ORDINATES OF AGGREGATE REAL INCOME FOR VARIOUS SUBPERIODS

FIRST ROW: LOG PER CAPITA SECOND ROW: LOG RAW
K
PERIOD 3 5 10 20 30 50 75
US GNP

1869-1985 1.54 1.51 1.15 .55 .50 .43 .15
1.56 1.53 1.19 .62 .63 47 .39

1869-1913 .81 .79 .80 .23 —— —— —-
.82 .80 .88 .35 — —— —

1909-1970 1.82 1.87 1.53 .98 .62 ——- ——-
1.81 1.84 1.47 95 66 m—— —

1948-1985 1.14 .89 .65 .35 —— — ——
1.20 .95 .75 .61 —— — ——

1953-1985 1.10 1.02 .95 1.17 —— — —-
1.11 1.04 1.19 1.07 — ——— —

UK GDP

1870-1985 1.43 1.57 1.41 1.68 1.85 2.71 1.26
1.41 1.53 1.28 1.36 1.29 1.57 58

1870-1913 .56 .57 .51 .34 — — ——
.55 .58 .54 .27 — —- —

1922-1985 1.49 1.59 1.22 .59 .41 ——- —
1.50 1.62 1.28 64 42 ——- -

1948-1985 .92 .76 .71 .82 —— ——- ——

1.03 1.03 1.30 1.57 -—- - ———



TABLE 3

MADDISON'S DATA
SELECTED ORDINATES OF THE SCALED VARIOGRAM

SAMPLE K
COUNTRY _PERIOD 3 5 10 20 30 50
AUSTRALIA 1.05 1.09 1.17 1.45 1.62 2.35
CANADA 1.05 1.06 .88 .82 .82 .95
DENMARK 1.01 1.09 1.19 1.27 1.48 1.30
FINLAND 1900-85  1.12 1.07 .93 .96 .96 1.09
FRANCE 1.55 1.68 1.44 1.63 1.61 1.12
GERMANY .98 1.04 1.19 1.50 1.77 1.72
ITALY ' 1.39 1.44 1.52 2.17 2.34 1.55
NETHERLANDS  1900-85  1.14 1.06 .95 1.09 1.32 .35
NORWAY 1.08 1.26 1.35 1.85 2.24 2.49
SWEDEN 1.15 1.21 1.06 .94 .89 1.11
UNITED KINGDOM 1.55 1.50 1.20 1.33 1.43 2.01
UNITED STATES 1.34 1.28 .95 .50 48 .30

NOTE: Sample period is 1870-1985 unless otherwise noted.



TABLE 4

SIMULATED SAMPLING DISTRIBUTION OF SCALED VARIOGRAM FOR RANDOM WALK
1000 REPLICATIONS OF LENGTH 36

K MIN 5 10 25 50 MEAN 75 90 95 MAX
3 .33 .62 .68 .82 .98 1.00 1.16 1.35 1.43 2.13
5 .21 47 .56 .72 .9 1.00 1.21 1.53 1.71 2.84
10 .12 .31 .38 .55 .86 1.00 1.30 1.83 2.15 3.75
20 .08 .23 .31 47 .80 1.01 1.34 2.00 2.59 5.06

NOTE: The model simulated is X. = Xe-.1 + €., where €. is a simulated
independent drawing from a N(0,1) distribution. For each simulated random walk,
Xo was set equal 0 and o2(€) = 1. The €. were identical to those in Table 1;
hence none of the difference between these Tables is merely due to sampling

variation.



POSTWAR IFS DATA:

TABLE 5

SELECTED ORDINATES OF SCALED VARIOGRAM (RK) FOR

LOG PER CAPITA AGGREGATE OUTPUT

COUNTRY R3 _RS R10 R20 V20
AUSTRALIA .80 .74 1.14 .82 .63
AUSTRIA 1.56 1.83 2.10 3.29 4.13
CANADA 1.03 1.14 1.26 76 .72
COLOMBIA 1.88 1.87 2.56 2.05 1.88
DENMARK 1.04 1.49 2.38 2.76 2.21
DOMINICAN REPUBLIC .97 .99 1.21 .80 .85
ECUADOR 1.65 1.83 2.09 1.56 1.30
FINLAND 1.20 .92 .67 .87 1.02
FRANCE 1.94 2.77 4.35 7.14 8.73
GERMANY 1.59 2.00 3.01 4.12 7.66
GREECE 1.51 2.08 2.94 4.21 5.20
GUATEMALA 1.33 1.24 1.59 4.28 2.72
HONDURAS 1.28 1.05 .55 .81 .89
ICELAND 1.16 .91 .67 1.15 .95
IRELAND 1.46 1.45 1.63 2.30 1.74
ISRAEL 1950-85 1.66 2.03 3.18 4.74 5.28
ISRAEL 1953-85 1.88 2.50 3.55 4.4 9.79
ITALY 1.69 1.95 3.43 4.08 7.52
MEXICO 1.43 .84 .69 1.40 1.70
NETHERLANDS 1.47 1.88 1.95 2.56 3.75
NORWAY 1.28 1.28 .56 1.13 .83
PANAMA 1.41 1.35 1.60 2.12 1.79



NOTE:

COUNTRY R3 RS R10 R20 V20
PARAGUAY 1.40 1.85 2.65 2.62 3.53
PHILIPPINES 1.67 1.67 1.17 .95 4.30
SOUTH AFRICA 1.07 1.18 1.63 1.71 1.76
SRI LANKA 1.12 1.60 2.29 2.06 3.88
SWEDEN 1.59 1.90 3.45 3.89 4.12
SWITZERLAND 1.04 1.15 1.62 1.96 1.95
THAILAND 1.10 1.44 1.41 2.27 2.24
TURKEY 1.06 .95 .70 .50 .63
UNITED KINGDOM .92 .76 71 .82 1.05
UNITED STATES 1.14 .89 .65 .35 .43
VENEZUELA 2.05 2.59 2.13 3.74 8.02

V20 computed from (3) in text, with k = 20.



TABLE 6

LONG DATA FOR THE US AND THE UK

ESTIMATED COEFFICIENTS WITH T STATISTICS

AR AT LAG TIME SEE Q
COUNTRY MODEL 1 2 3 (MSL)
United Kingdom 1870-1985:
AR(3) 1.17 -.10 -.10 .0005 .0320 28.1
12.15 -.70 -1.05 2.04 .56
ARI(3,1) .21 .11 -.02 .0083 .0325 30.1
2.13 1.08 -.24 2.44 46
United States 1869-1985:
AR(3) 1.26 -.44 -.01 .0032 .0464 19.5
13.25 -2.97 -.14 4.04 .93
ARI(3,1) 42 -.08 -.10 .0128 .0479 27.0
4,58 -.85 -1.04 2.56 .62

NOTE: T statistics are given beneath their respective coefficients. AR(3) models
were estimated with an intercept (not reported). Intercepts (with their t sta-
tistics) of the ARI(3,1) models are reported under TIME. SEE is the standard
deviation of the residuals from the corresponding estimated model. Q is the Box-
Ljung statistic computed over 32 lags of residual autocorrelations. Beneath Q is

its marginal significance level under a white noise null.



TABLE 7
LONG DATA FOR THE UK AND US

ESTIMATED R(K) WITH SIMULATED MEDIANS AND PROBABILITIES,
CONDITIONAL ON THE ESTIMATED TS AND DS MODEL IN TABLE 6

K

3 S 10 20 30 50 75

United Kingdom: 1870-1985
Actual R(K) 1.44 1.58 1.41 1.69 1.86 2.72 1.26
TS Median R(K) 1.36 1.50 1.50 1.33 1.16 1.01 .98
Probability .65 .78 .87 .54 .38 .15 .89
DS Median R(K) 1.31 1.53 1.73 1.74 1.65 1.63 1.60
Probability .45 .88 .53 .96 .87 .49 .78

United States: 1869-1985
Actual R(K) 1.54 1.51 1.15 .55 .50 .43 .15
TS Median R(K) 1.50 1.38 .82 .45 .35 .28 .34
Probability .74 .65 .18 .46 .20 .23 .06
DS Median R(K) 1.53 1.53 1.40 1.25 1.22 1.03 1.10
Probability .95 .92 .58 .08 .16 .22 .01

NOTE: The actual R(k) are repeated from Table 2. The model simulated undgr TS is
Xe = aT + baXe-1 + b2Xe-2 + baXe-3 + €., where T is a time trend. The model simu-
lated under DS is Xe = @ + (1+B)aXe-2 + (B2-B2)Xe-2 + (B3-Bz2)Xe-3 + PaXe-a + Ec.
The b:s and a were taken from the rows of Table 6 labelled AR(3), while « and the
Bs were taken from the rows labelled ARI(3,1). Both models were then simulated by
generating 1000 sets of 165 N(0,1) deviates for €.. Start-up values of 0 were
then assumed and the first 50 or so values of X. were discarded. Hence for each
country, none of the differences among the various probabilities reported re-

flects sampling variation. For each lag K are shown the medians of the simulated



TABLE 8

MADDISON DATA

ESTIMATED R(20) AND R(50), AND SIMULATED MEDIANS AND PROBABILITIES,

CONDITIONAL ON THE ESTIMATED TS AND DS MODELS.

Actual ; Simulated
TS DS
K R(K) Median P(+ITS) Median P(+IDS)
COUNTRY R(K) R(K)

AUSTRALIA 20 1.45 .99 42 .96 49
50 2.35 .77 .14 .87 .24
CANADA 20 .82 .65 .63 1.04 .72
50 .95 .45 .26 .90 .97
DENMARK 20 1.27 .69 14 .91 46
50 1.30 .49 14 .82 .46
FINLAND 20 .96 .49 .21 .79 .73
50 1.09 .38 .11 .72 .62
FRANCE 20 1.63 1.13 .39 1.55 .94
50 1.12 .70 .50 1.28 .88
GERMANY 20 1.50 .65 .03 .83 .18
50 1.72 .46 .02 .69 .24
ITALY 20 2.17 1.09 11 1.27 .23
50 1.55 .88 .34 1.15 .66
NETHERLANDS 20 1.09 .56 .16 .80 .56
50 .35 44 .75 .74 27
NORWAY 20 1.35 .66 .01 1.17 43
50 2.49 .54 .01 1.11 .30
SWEDEN 20 .94 .59 .23 1.01 .91
50 1.11 .37 .05 .85 377
UNITED KINGDOM 20 1.33 1.24 .90 1.24 .90
50 2.01 .84 .20 1.01 46
UNITED STATES 20 .50 .39 46 1.14 .10
50 .30 .25 .63 .97 .10



NOTE TO TABLE 8

The R(k) are repeated from Table 4. The TS and DS models are simulated as des-
cribed in the Note to Table 7, except that the estimated parameters are available
from the authors, and 250 sets of 165 N(0,1) were generated for €.. Start-up val-
ues of 0 were then assumed and the first 50 or so values of X. were discarded.
Hence for each country, none of the differences among the various probabilities
reported reflects sampling variation. Probabilities were computed using (4) in
the text, from the empirical fractiles of variogram ordinates derived from the

simulated series.

TABLE 8A

MADDISON DATA
FREQUENCY COUNT OF SIMULATED PROBABILITIES AT ALL LAGS

LAG (K)
3 5 10 20 30 50

INTERVAL TS | psS | Ts!I DS | s |1 DS | TSI ps I TS| DS | TS | DS
.0 1 1 1 2 5 3
.1 2 1l 2 3 2 3 2 3 1
.2 .3 2 1 2 1 1 2 3
.3 A 1 1 1 1 3 4 1 1
A .5 1 3 1 2 3 1 2
.5 .6 3 2 1 2 1 1
.6 o7 6 1 1 2 1l 1 1 2
.7 .8 1 6 1 5 4 2 2 1 1
.8 .9 2 4 2 1 2 1
.9 1.0 2 1 3 2 3 1l 3 1 1l
Number of
countries where
P(eIDS) > P(e¢ITS): 9 12 9 10 12 10

NOTE: All intervals are half open in that they include the lower but not the

upper bound. All columns sum to 12.



TABLE 9
IFS POSTWAR DATA

ESTIMATED R(20) AND SIMULATED MEDIANS AND PROBABILITIES,
CONDITIONAL ON THE ESTIMATED TS AND DS MODELS.

Estimated: . Simulated: \
TS _Ds |
Median P(eITS) Median P(IDS)I

COUNTRY _ R(20) R(20) | ___R(20)
AUSTRALIA .82 .39 .23 .51 b4
AUSTRIA 3.29 74 .04 1.56 .29
CANADA .76 .52 .54 .91 .80
COLOMBIA 2.05 1.02 .46 1.27 .53
DENMARK 2.76 .64 .03 1.15 .21
DOMINICAN REPUBLIC .80 47 .54 77 .97
ECUADOR 1.56 .89 45 1.85 .86
FINLAND .87 .56 .56 .88 .97
FRANCE 7.14 14.21% .09 4.07 .30
GERMANY 4,12 41 .00 1.39 .14
GREECE 4.21 1.55 .20 2.55 .40
GUATEMALA 4.28 72 .01 2.15 .27
HONDURAS .81 .46 .30 .90 .90
ICELAND 1.15 .41 .09 77 .53
IRELAND 2.30 .72 .11 1.02 .29
ISRAEL 4.74 1.24 .02 2.13 .20
ITALY 4,44 .90 .02 2.05 .34
MEXICO 1.40 47 .02 .87 .50
NETHERLANDS 2.56 .64 .05 1.91 .70
NORWAY 1.13 47 .15 .98 .84
PANAMA 2.12 .93 .26 1.24 42
PARAGUAY 2.62 1.12 .19 2.15 77
PHILIPPINES .95 3.91 .10 27.21% .00
SOUTH AFRICA 1.71 .67 .15 .84 .27
SRI LANKA 2.06 .29 .00 1.47 .60
SWEDEN 3.89 .81 .00 1.45 .10
SWITZERLAND 1.96 .63 .08 1.19 .48
THAILAND 2.27 41 .00 1.29 4b
TURKEY .50 .50 .99 .87 .39
UNITED KINGDOM .82 42 .26 .55 .58
UNITED STATES .35 43 .75 .62 .36
VENEZUELA 3.74 15.28% .07 4.81 .69

* The AR coefficients in the simulated model sum to more than 1.



NOTE TO TABLE 9
The R20 are repeated from Table 5. The TS and DS models are simulated as des-
cribed in the Note to Table 7, except that the estimated parameters are available
from the authors, and 250 sets of 85 N(0,1) were generated for €.. Start-up val-
ues of 0 were assumed and the first 50 or so values of X. discarded. Hence for
each country, none of the differences among the various probabilities reported re-
flects sampling variation. Probabilities were computed using (4) in the text,

from the empirical fractiles of variogram ordinates derived from the simulated

series.
TABLE 9A
IFS POSTWAR DATA
FREQUENCY COUNT OF CONDITIONAL PROBABILITIES
LAG (K)
3 \ 5 | 10 | 20
INTERVAL s I ps |_1s I ps | rsl ps | 7| ps |

.0 .1 5 1 9 1 11 2 15 1
.1 .2 6 4 9 1 5 2
.2 .3 1 1 4 4 4 6
.3 A 1 1 2 1 2 1 A
A .5 1 5 1 2 5 2 5
.5 .6 4 1 7 7 3 4
.6 .7 5 12 4 5 2 A 2
.7 .8 2 5 3 7 1 3 1 2
.8 .9 3 6 3 2 3 3
.9 1.0 9 3 4 6 1 1 3
Number of
countries where
P(¢IDS) > P(+ITS): 18 26 26 29

NOTE: All intervals are half open in that they include the lower but not the

upper bound. All columns add to 32.



TABLE 10

IFS POSTWAR DATA
FREQUENCY COUNT OF RIGHT TAIL AREAS, MSL(81Q) = 1 -F(81Q)

- . MSL(61Q)
0: DFF R20 V20
INTERVAL Q: Ts_|_Ds TS _|__DS Il TS | _ DS
.0 .1 4 4 18 5 18 3
.1 .2 1 1 ) 7 4 6
.2 .3 1 1 4 6 2 6
.3 4 6 5 4 5
A .5 1 3 1 5
] .6 1 3 1 3 1 2
.6 .7 1 1 1 2
.7 .8 3 4 2 2
.8 .9 5 7
.9 1.0 15 5 3 1 2 1
Number of
cases where
MSL(61DS) > MSL(OITS): 3 30 30
TABLE 11
IFS POSTWAR DATA
FREQUENCY COUNT OF P(61Q)
. PRQBABILITIES P(01Q) .
6: DFF R20 1 V20
INTERVAL Q: TS | _DS TS |_ DS ] _Ts | _Ds |
.0 1 12 4 15 1 13 3
.1 .2 7 5 6 5 7 1
.2 3 1 5 3 4 2 4
.3 4 4 2 2 3 2 2
A .5 1 2 3 8 2 7
.5 6 4 4 1 1 2
.6 7 1 3 3 5
.7 .8 3 1 2 3 1
.8 .9 1 1 2 2 2
.9 1.0 1 3 1 4 5
Number of

cases where
P(6IDS) > P(OITS): 22 29 27



TABLE 12

IFS POSTWAR DATA

FREQUENCY COUNT OF CLASSIFICATION POWER w(0)

0

INTERVAL __DFF R20 V20
.9 1.0 1 1
.8 .9 3 1l 2
.7 .8 3 5 5
.6 .7 3 16 17
.5 .6 20 8 5
Undefined 2 2 2
Median Value: .58 .63 .65
Number of cases where

w(0) > w(DFF): 20 22

(28 possible)



NOTE TO TABLES 10 THROUGH 12
The estimates by country underlying these Tables are available from the authors
upon request. All intervals except the last are half open in that they include
the lower but not the upper bound. All columns add to 32. The simulated model
under TS is Xe = aT + baXe-a2 + bzXe-2 + bsXe-s + Ec. For DS the simulated model
is X'c = @ + (1+B2)X’'c-2 + (B2-Pa)X’ec-2 + (Bs-P2)X’c-s - PsX’c-s + Ec. &, @, D
and B were set to the values estimated from the actual data and given in Table A2.
For each of 1000 replications, 85 N(0,1) deviates were generated for €., start-up
values were set to 0 and the first 50 or so values of X and X' were discarded.
Since the same vector € was used to simulate X and X', none of the differences
among the entries for a given country reflect sampling variation. DFF is the F
statistic for jointly testing a=0 and b. + bz + ba = 1 in a regression of X (X')
on a trend and three lags. R20 is the scaled variogram ordinate at lag 20. V20
is combuted by substituting sample estimates for population parameters into (3) in
text. F(081Q) is the empirical fractile of statistic 6 derived from simulations of
model Q. The probabilities, P(+IQ), were computed from (4) in the text. w(0) =

1-p(0), where w(8) is computed from (6).
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