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An Empirical Analysis of Productivity and
Quality in Software Products

Abstract

We examine the relationship between life-cycle productivity and conformance quality in
software products. The effects of product size, personnel capability, software process, usage of tools
and higher front-end investments on productivity and conformance quality were analyzed to derive
managerial implications based on primary data collected on commercial software projects from a
leading vendor. Our key findings are as follows. First, our results provide evidence for significant
increases in life-cycle productivity from improved conformance quality in software products shipped
to the customers. Given that the expenditure on computer software has been growing over the last few
decades, empirical evidence for cost savings through quality improvement is a significant
contribution to the literature. Second, our study identifies several quality drivers in software products.
Our findings indicate that higher personnel capability, deployment of resources in initial stages of
product development (especially design) and improvements in software development process factors
are associated with higher quality products.

1. Introduction

Computer software has emerged as a major worldwide industry, with an estimated annual
budget exceeding $370 billion [Keil 1995]. It is now widely recognized that computer software
accounts for a significant share of corporate information systems budgets [Humphrey, 1992]. Most
corporate information systems depend on computer software for accurate and timely information.
Software is also viewed as an important corporate asset in the 1990s. Yet, the software community
has long been faced with severe difficulties in delivering and supporting quality software products, on
time [Blackburn, Scudder and van Wassenhove, 1996a). Additionally, life-cycle costs of software
projects often turn out to be enormous and significantly over budget.

In order to overcome these difficulties, quality management and related principles (e.g.,

continuous process improvements and process management) have been applied to the development



and maintenance of software [Curtis, et. al, 1992]. Despite such efforts, the software industry
continues to be plagued by an inability to develop quality software products [DeMarco, 1995]. In
many organizations, productivity and schedules for software projects are largely unpredictable, and
product quality is often poor. Software vendors are therefore attempting to build quality into the
product by avoiding defects in the first place instead of removing the defects in the product through
rigorous testing. International standards for quality such as ISO-9000-3 and the Capability Maturity
Model (CMM) of the Software Engineering Institute have been adopted by many software
organizations over the past few years [Paulk, et al., 1993a; Humphrey, 1992]. However, the effect of
these new software development processes on productivity or quality has not been empirically tested.
Thus, from a research perspective, it is important to identify the drivers of productivity and quality,
and establish the relationship between productivity and quality. |

Our field study is based on primary data collected on commercial software projects of a
leading vendor. We analyze the drivers of quality and productivity such as personnel capability,
product size, software process factors and usage of tools. We test the efficacy of improved processes
and up-front investment in quality on life-cycle productivity of the projects. Our findings indicate
significant increases in life-cycle productivity with improvements in quality. Managerial implications
of our results are twofold. First, our results enable software product managers to assess cost savings
from reducing the defects in their products shipped. For example, we find improving quality by 1%
leads to a 0.56% gain in life-cycle productivity. Second, our results provide managers with guidcliﬁes
for resource deployment during product development. For instance, higher investments in the front-
end of the product development cycle leads to higher quality.

The rest of the paper is organized as follows. In the next section, we briefly review the
literature and highlight the contributions of our field study. We address the research issues in Section

3 and provide a theoretical basis for our empirical models in Section 4. We describe the data
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collection methodology and variable measures in Section 5. Our empirical analysis is described in
Section 6, the results in Section 7. Finally, we present conclusions and limitations of our study in
Section 8.

2. Literature Review and Contributions

Identifying software productivity factors and estimating software costs continue to be
important research topics [Kemerer, 1987; Mukhopadhyay and Kekre, 1992; Banker et al., 1993].
Recently, Maxwell, et al., [1999] have reported generic and company specific models to identify
software development cost drivers. Most of the empirical research on software maintenance has
analyzed tradeoffs between software quality and maintenance effort, and identified drivers of software
maintenance costs. Theoretical models have also been proposed to predict the quality (or reliability)
level of software products [Farr, 1996]. However, practitioners in the software industry continue to
face problems related to cost overruns.

Prior research has not been able to provide answers since productivity and quality modeling
efforts have often considered either only the productivity or the quality. That is, most productivity
models ignore the quality of the delivered product, and quality models ignore the cost incurred in
developing or maintaining the products. A key reason is that the accounting systems of software
organizations lack provisions for tracking life-cycle costs. Moreover, the effect of development
process aspects has not been explicitly incorporated in cost or quality models. Empirical evidence on
the effect of process factors is restricted to case studies and experience reports of a few projects. dur
field study fills this void.

The three main contributions of our field study are: 1) We develop models for software life-
cycle productivity that include both development and maintenance costs. Most previous models

address either development or maintenance costs separately. 2) Our models also capture the effect of



the software development process on life-cycle productivity and quality. 3) We empirically validate

these models using primary data on projects of a large commercial software developer.

3. Theoretical Framework

As noted earlier, software managers and executives face a multitude of choices that impact
productivity and quality. The major choices relate to technology, people, process, and product factors.
However, the specific impacts of these factors on life-cycle productivity and quality are still not clear.
For instance, should a manager invest in the latest software development approach and language, or in
an automated tool to support software design? Likewise, should the manager hire new programmers
or invest in process improvements? At present, the lack.of a rigorous framework can lead to incorrect
trade-off,

In our framework, we address the following research questions:

1. What is the trade-off between quality and life-cycle productivify?

2. What are the effects of the development process on life-cycle productivity and quality?
3. Does up-front resource deployment pay off?

4, What are the effects of development resources on productivity and quality?

We examine each of these questions in the subsections 3.1-3.4.

3.1 Quality and Life-Cycle Costs

We build on the research in manufacturing on the trade-off between quality and prodlictivity.
There are many parallels between costs of quality in manufacturing and those in software
development. The relationship between productivity and quality in the manufacturing context has
been discussed from two viewpoints [Garvin, 1987]. The first perspective, a traditional viewpoint,
asserts that increased expenditures are required to attain higher quality levels and highlights economic

conformance levels of quality. The second perspective considers the life-cycle cost of the product,

5



i.e., total cost incurred in product development and service support. The claim made is that costs are
inversely related to the quality attained and it is always optimal to produce products with zero defects
(Crosby, 1979; Gyma, 1988]. The rationale for this view is that cost reduction and quality
improvement can be simultaneously attained by reducing waste and rework, and that reducing defects
in the product leads to substantial savings in support costs. We translate these perspectives to the

software domain in our modeling effort.

3.2 Development Process

The methods and practices adopted by software development professionals to develop and
maintain software are believed to have significant impact on the project outcomes in terms of
development cost and product quality. Disciplined methods and practices such as requirements
analysis, defect prevention, and configuration management are expected to result in better control
over the software development process. We measure these key process areas using the Capability
Maturity Model (CMM) [Paulk et al., 1993a;1993b].
3.3 Resource Deployment |

An important managerial question involves the relative deployment of resources across
various stages of software development, such as feasibility study, requirements analysis, high-level
and low-level design, and coding, etc. It has been observed in the literature that allocating more
resources in the early stages may improve the quality and productivity of the software considerably
[Blackburn, Scudder, and van Wassenhove, 1996; Humphrey, 1989]. The rationale behind this
argument stems from the importance of requirements analysis and design. For instance, when
customer requirements are not well mapped into the product design, customers may find more defects
in the final product due to induced changes in the later stages of development. As a result, the quality

of the end product is likely to suffer.



We examine the impact of varying deployment of resources in the early stages of product
development on software conformance quality. All the software products at our research site were
developed using the sequential life-cycle model often known as the “waterfall” model. This systems
development model specifies distinct stages of product development such as feasibility study,
requirements analysis, detailed design, coding and unit testing, systems integration, and field
maintena.nce [Boehm, 1981].

3.4 Development Resources

The effect of the technical capability of the members of a software development team and the
usage of various software tools in determining the quality of the product or productivity of the team
are well addressed in the literature [Conte et al., 1986; Fenton, 1994]. Researchers have used various
measures such as average language experience, software domain experience and analystlexpcrience as
proxies for the technical capability of the teams. Field studies in software projects have reported both
positive and negative effects of tool deployment on software productivity [Banker et al., 1992]. In
order to contrpl for these variations in productivity and quality, we include measures for both
personnel capability and usage of tools in our model. Note that the effect of these drivers can be

quantified after the software size has been accounted for.

4. Research Model and Data Collection

In this section, we first develop the conceptual elements of our.rcsearch model. We then
describe the research site, and data collection methods to test the model. This section ends with a
description of the measures used for the variables in our model.

4.1 Conceptual Model

A schematic diagram of the conceptual elements of our research model is shown in Figure 1.

The model addresses the research questions related to tradeoffs between life-cycle productivity and

quality and the effects of resource deployment and process design. The primary links of interest in our
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study are represented by bold arrows in the figure, and mapped to the research questions in Sections

3.1-3.3. The oval shapes and lighter arrows in Figure 1 show the control variables discussed in

Section 3.4.

Insert Figure 1 Here

The life-cycle productivity of a product is defined as the ratio of product size in KLOC by
total life-cycle costs. The life-cycle cost includes both development and support costs. Development
costs include the costs incurred in all the stages before shipping the product to the field, whereas
support costs are incurred in fixing customer reported problems. Once the software product is
released to the customers in the field, if the quality of the product is inadequate, customers report a
significant number of problems. Hence, for a poor quality product, software vendors may incur
substantial support costs to fix the problems reported by the customers.

Thus we summarize the interaction between quality and life-cycle productivity depicted i;x
Figure 1 using the following pair of equations. In Equation 1, we specify quality of the product
(QUALITY) as a function of product size (SIZE), personnel capability (PER-CAP), usage of tools
(USG-TOOL), process factors (PROCESS) and proportion of investment in the front-end of
development (FRNT-RES). Similarly, we specify product life-cycle productivity (LC-
PRODUCTIVITY) in Equation 2 as a function of quality and factors related to tools, development
process and people.

QUALITY =f/(PER-CAP, USG-TOOL, SIZE, PROCESS, FRNT-RES) ¢
LC-PRODUCTIVITY =f,(QUALITY, PER-CAP, USG-TOOL, PROCESS) _(2)

We describe our research site to test the above model in the following section.

4.2. Research Site and Data Collection



Our research site is one of the largest software development laboratories of a Fortune 100
company. This laboratory develops commercial software systems for various applications. The annual
revenue of the firm exceeds several hundred million dollars and the lab employs over 2500 software
professionals. In the recent past, various practices for improving quality and productivity have been
instituted. Considerable resources are being deployed at the design and planning stages of product
development. In addition, efforts have been made to improve the process adopted for developing the
software products. Our study was initiated to assess the effectiveness of these programs.

Our data collection involved gathering information on the costs and quality of a cross section
of systems software products developed for various markets. We chose recent projects in order to
control for the change in productivity or quality of the software projects due to tools and development
technology. Based on our discussions with the managers, we started with an initial sample of 56
projects. We dropped thirteen products due to incomplete data. foesé projects were dropped primarily
due to lack of reliability and validity in their metrics. For example, in some of these projects, a major
part of the development effort was outsourced to a software contractor. But the company did not track
the cost data for the contractor's effort on a project basis. In addition, the quality variables based on

'
defect counts were not accurate in these projects. There was a lack of consistency in tracking the
defects especially when it was related to the contractor code. Note that all the projects in our sample
are from a single firm. In empirical research on software projects, in order to control for various
organizational specific effects and consistency of measures, choice of data samples from a single firm

is often preferred [Maxwell, Wassenhove and Dutta, 1999; Banker and Slaughter, 1997; Boehm,

1981].

Our sample size of forty-three is not small compared to other studies of costs or quality in

software products. For example, the COCOMO cost model, based on one of the larger datasets, is



estimated with data on sixty-three software projects [Boehm, 1981], whereas Albrecht and Gaffney
[1983] used twenty-four projects and Kemerer [1987] used fifteen. Since most software organizations
do not have a standard software metrics program to track quality and productivity data in the various
stages of product development, it is extremely difficult to find reliable data on software cost and
quality for a large sample size. In addition, data on recent projects are often considered proprietary by
software organizations.

Our productivity measure includes data on costs (in dollar figures) incurred in all stages of
product development and support starting from product planning through service support in the field.
Since the software products in our sample were developed over a span of five years, we normalize the
cost figures to constant 1993 dollars using an appropriate normalization table [PRICE, 1994]. All the
products in our sample were developed in C and a similar proprietary programming language.

4.3 Variable Definitions

The following variables are used in our analysis:

SIZE : The size of each product is measured in terms of lines of code. Although this measure
has been widely used in the software engineering literature, certain problems associated with this
measure are well known [Kemerer, 1987; Jones, 1991]. The main shortcoming of this measure stems
from the inaccurate and inconsistent definition of “a line of code” across various programming
languages and tools used to count the number of source lines of code. In order to ensure consistency
of measurement across products, the size of each product in our analysis was measured using the
same in-house tool. This tool I;leasurcs the number of executable source instructions, excluding blank
and comment statements. This count of executable statements is recognized as a more accurate
measure than a count of the physical lines of code [Park, 1992]. Most of the products in our sample
were new products and a few were new subsystems to existing products. Hence we used the count of

new lines of code for our size measure.
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QUALITY (Conformance-Quality): Our quality measure captures the number of unique
problems reported by customers. In order to control for the size effects, this measure is normalized by
the product size measured in thousand lines of code. Since the product cycle times in this industry are
relatively shorter and most of the defects for the products in our study were reported in the first seven
quarters after customer shipment, in our quality measure, we use the number of unique problems
reported in the first eight quarters after product shipment. For ease of interpretation, we define our
quality measure as thousand lines of code per customer reported defect. Thus our quality measure is
normalized for product size.

LC-PRODUCTIVITY (Life-Cycle Productivity): We define life-cycle productivity as a ratio
of product size to the total cost incurred in product development and support. Our cost data is in
dollars instead of person hours to avoid problems related to aggregating the effort of experienced and
novice programmers. Our cost data was obtained by computing the work hours from the weekly
online time-sheets of the software professionals working on the projects and overhead costs allotted
to the projects.

USG-TOOL (Usage of Tools): This variable captures the usage of automated software tools
across various stages of product development. We measure this construct using a five point Likert
scale available in the literature [Boehm, 1981]. The product manager and at least two randomly
selected software engineers from the team rated the usage of tools on this five-point scale. The final
score for each product was obtained by averaging these responses. The inter-rater reliability index of
0.69 for this measure was also well above the threshold recommended by Nunnally [1967].

PER-CAP (Personnel Capability): This variable measures the technical capability of the
members of the product team. In our analysis, we measure this construct using a five point Likert
scale available in the literan;re [Boehm, 1981]. The product manager aﬁd at least two randomly

selected software engineers from the team rated the capability of the team on this five-point scale.
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The final score for each product was obtained by averaging these responses. The inter-rater reliability
index for this measure was 0.72.

FRNT-RES (Front-End Resources): This variable measures the percentage of the
development resources (i.e., total cost incurred before shipping the product to the customers)
deployed in the initial stages of the development process, including product planning, high-level
design and detailed design. As noted earlier, the projects in our sample were either new development
or addition of new subsystems with several thousand lines of code. Hence this measure of front-end
investments is not biased by minor modification projects.

4.4 Process Measurements

As discussed earlier, in our analysis, we consider the software process areas specified in the
CMM that are relevant to software productivity and quality. The CMM is widely known in the
software industry and it highlights 18 process areas in the software development process [Paulk, et
al., 1993b]. The CMM also identifies specific practices to be followed in each process area. Software
managers adopt these practices in their development process in order to improve the quality and
productivity of their projects. In our study, we assessed all the projects based on the degree to which
these practices were consistently adopted across projects. Although all the projects in our data were
from a single organization, our measurements of CMM process areas at the project level exhibit
considerable variance. This is because product managers at our research site had high level of
autonomy in resource deployment and process related decisions in their respective projects. Project
managers differed in the extent to which they implemented the key practices specified in the CMM
key process areas. In additioﬁ, the measurement scales that we use in our analysis are adapted for
project level data. Our process measurement scale and choice of process areas are discussed in the
Appendix. Further details on our process measurements at the project level can be found in Krishnan

and Kellner [1999].
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Based on the key process areas specified in the CMM model, we define process constructs Q-
PROCESS and LC-PROCESS related to quality and life-cycle productivity of software products
respectively. The details of our measurement of these constructs and the specific CMM process areas
included are provided in the Appendix. We hypothesize that projects with high scores on the LC-
PROCESS and Q-PROCESS constructs will exhibit higher productivity and quality respectively.
The summary of our data is presented in Table 1.'

Insert Table 1 Here --

3. Data Analysis

In this section we describe the key data analysis procedures in four sub-sections.
5.1 Linear versus Non-linear specification

We consider alternate specifications (linear versus noﬂ-linear) for the relationship between
various explanatory variables and quality or life-cycle productivity. We contend that this relationship
is inherently non-linear. For example, though higher investment in the early stages of product
development may improve quality, the improvement in quality may not be linear. Similar arguments
may apply for the effect of personnel capability, usage of tools or product size on productivity or
quality of software projects. Hence many empirical models on software productivity and quality adopt
multiplicative specifications (Boehm [1981]; Maxwell, Dutta and Wassenhove [1999]). Based on the
theoretical models described in Section 4, we estimate the parameters of the following multiplicative

model specifications to understand the relationship between life-cycle productivity and quality.

In(QUALITY) = o + o *In(SIZE) + 0*In(PER-CAP) + 05*In(USG-TOOL) +

04*[n(FRNT-RES) + 05*In(Q-PROCESS) + ¢, .(3)
In(LC-PRODUCTIVITY) = By + B;*/n(QUALITY) + B,*In(PER-CAP) +
B3*In(USG-TOOL) + B4*in(LC-PROCESS) + &, ... 4)

The specification tests for non-nested models rejected linear models over the log linear

specifications mentioned above [Davidson and MacKinnon, 1981].
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5.2 Estimation Procedures

We estimated the parameters of the two equations in (3) and (4) using OLS (Ordinary Least
Squares) estimators. The OLS estimates of the parameters of the two equations are provided in third
columns of Table 2A and 2B respectively. Since all the projects are from the same firm, there is a
possibility of correlation between the error terms in the two equations. Thus we also treated the two
equations as SUR (seemingly unrelated regressions), and estimated thé SUR parameters using the
generalized least squares estimator allowing for correlation in the error terms across the two
equations. The SUR estimatés of the parameters of the two equations are presented in fourth columns
of Table 2A and 2B respectively. In the SUR model, we tested the significance of the model using a
F (J, MT-K) test for linear restrictions (Greene, 1993 pg. 491). In this stastistic M is the number of
equations, T is the number of observations per equation, K is the total number of parameters that are
estimated and J is the number of linear restrictions in the hypothesis. In our hypothesis, we restricted
the coefficients of all the explanatory variables in the two equations to zero and hence J = 9. The
computed statistic Fo 75 = 27.76 rejects the null hypothesis at 1% level of significance. Note that the
SUR estimates are nearly the same as OLS estimates. This indicates that there is no significant effect
of simultaneous correlation between the error terms in the two equations.

5.3 Testing for Endogeneity:

It may be argued that quality and productivity are endogenous, i.e., the two variables are
determined simultaneously. In other words, it can be claimed that quality affects productivity and
productivity affects quality. We tested for the endogeneity of quality variable in the productivity
equation using Hausman’s endogeneity test (Hausman [1978]). In this test, we estimate the predicted
values of the quality variable by regressing the quality variable on all the exogenous variables, i.e., In
(SIZE), In(PER-CAP), I[n(USG-TOOL), In(FRNT-RES), [n(Q-PROCESS) and In(LC-

PROCESS). This predicted value of the quality variable is then added as an independent variable to
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the productivity model along with the original quality variable and other independent variables and
model parameters are estimated using OLS. A test for significance of the coefficient of this predicted
quality variable indicates if the quality variable is endogenous. In our analysis we did not find this
coefficient to be significant. Hence endogeneity of the quality variable in the productivity equation is
not a serious concern.

Since the small sample properties of the endogeneity tests are not certain, in order to correct
for any bias in the OLS estimates due to potential endogeneity of quality variable in the productivity
model, we also treated the two equations (3) and (4) as simultaneous equations and estimated the
parameters using 2SLS (two stage least squares). We used the variables In (SIZE), In(PER-CAP),
In(USG-TOOL), In(FRNT-RES), in(Q-PROCESS) and In(LC-PROCESS) as the instruments in
thé first stage of 2SLS estin;ation. The 2SLS estimates of the parameters of the two equations are
provided in fifth columns of Table 2A and 2B respectively. As shéwﬁ in‘thevtab‘l‘eAs, theIZSLS
estimates are very similar in sign, significance and magnitude to the OLS estimates. This indicates
that the OLS estimates are not biased due to endogeneity problems. We also conducted a different
version of the Hausman’s specification error test for endogenéity based on the differences in the QLS
and 2SLS estimates of the quality coefficient in the productivity equation and found no evidence for
endogeneity of the quality variable.

5.4 Other Tests

We tested for standard assumptions for these estimators in our sample. The xz test statistics
(0.964 and 0.990 for Equationis (3) and (4) respectively) with two degrees of freedom, in the test for
the normality assumption of the residuals, did not reject the assumptions of normality of the error
terms at 5% level of significance [Bowman and Shenton, 1975; Kmenta, 1986]. The presence of
multicollinearity, i.e., significant correlations among the independent variables may also influence

OLS estimates. We checked for the effect of multicollinearity using conditions specified in Belsley et
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al. [1980]. The condition indices for both the equations were below 20. The variance inflation factors
for the independent variables in both equations ranged from 1.0! to 1.92, indicating absence of any
serious multicollinearity effects. Another standard assumption for OLS estimator is constant variance
in the error terms of all the 43 projects in the regression equation (i.e., homoskedasticity) [Knenta,
1986]. We tested for homoskedasticity in both the equations using White's test and did not find any
violations [White, 1980]. However, note that in our analysis, variables such as personnel capability,
usage of tools and software process are measured on a subjective ordinal scale. This may lead to
biased estimates due to the potential measurement errors in these variables.

Since our sample included projects with varying sizes that incurred significantly different
costs, we tested for the effect of influential observations on our parameter estimates. We deleted each
observation in the sample, and re-estimated the parameters and computed the Cook’s distance
between the old and new values in the parameter space [Cook and Weisberg, 1982]. The maximum
values of Cook’s distance were 0.16 and 0.55 for the quality and productivity equations respectively.
The calculated values of F-statistics for Equations (3) and (4) exceeded the critical values at 1%
sighiﬁcance. Note that our r';lodels also explain a significant amount of variance in the respective

dependent variables.

Insert Table 2 Here

6. Results and Discussion

6.1 Drivers of Quality and Life-Cycle Productivity

Our findings in this field study provide several insights for managers of commercial software
products. The results of the quality equation identify several drivers of product quality. For example,
we find that size of the software product (o= 0.66), personnel capability of project team members (0,
= 1.08), front-end investments (0 = 0.22), and software process (s = 1.07) significantly affect

quality. Our findings confirm the importance of personnel capability of the software team members in
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determining the quality of the product. We also find that investments in the early stages of software
development improve quality. Our results support the theory on the importance of customer
requirements analysis and the design process adopted for software projects [Blackbur et. al, 1996a;
Krishnan, et. al, 1997; Humphrey, 1989].

The effect of size in determining the quality of the product in our analysis needs to be
interpreted with care. Note that our quality variable is the ratio of size in KLOC over the number of
defects. That is, the quality measure is the reciprocal of defects normalized for size. However, since
the effect of size on qualit)‘/‘ is often non-linear, we include size as an explanatory variable in the
model. A larger software i)roduct is likely to have several modules, leading to many possible
interactions between the modules. Therefore, the likelihood of a defect in a larger product is
increased. However, our result (o= 0.66) indicates that this rate of increase in the defects due to
increase in product size is decreasing for larger products (Note that loyl < 1). Although it may be
argued that the effect of size may be spurious due to the inclusion of size in defining the quality
variable, this is not a serious concern in our multiplicative model specification. We estimated the
model without normalizing the dependent variable quality for size (i.e., using dependent variable as
1/defects). We find that all the coefficients in the model except for the size variable remains the same.
The coefficient of size becomes -0.34 (i.e. o= 0.66 - 1 = - 0.34) and was significant. This is due to
the removal of linear effect of size from the dependent variable. This indicates the direct negative
association of size and quality (not normalized for size). That is, the direct positive association
between size and number of defects.

Our analysis highlights the significance of software development process factors in
determining the quality of a software product. We find that adherence to the practices of certain
development process areas as specified in the CMM framework is associated with higher

conformance quality in software products. These practices work in two ways. First, practices such as
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code inspections, structured code walkthroughs and causal analysis of the defects as specified in the
key process areas of defect prevention and peer review aid in detecting the software problems earlier,
thus avoiding the injection 6'f defects. Second, practices such as promoting process visibility within
the group, consistently performing quality assurance audits and checks for assessing integrity of
various work products provide better control over the software work products, thus reducing the
number of defects shipped to the customers. As discussed earlier, the effect of software development
process factors on productivity or quality has not been empirically tested before. Our study is one of
the first empirical validations of software development process effects on productivity and quality. It
is interesting to note that we do not find any significant effect of the LC-PROCESS variable on
productivity (84 is not significant). One explanation for this could be that some of the practices in the
CMM key process areas such as software project planning and requirements and training programs
may also add to the project overheads in a single project and thus negatively affect productivity. As a
consequence the net effect of this process construct is not significant.

In our analysis, we do not find the usage of tools playing a significant role in explaining the
quality or productivity. We discussed these results with the managers at our research site and learned
that the usage of tools had mixed effects on the software projects. In some projects, version control
and documentation tools were efficiently used and provided better control on the software
management, thus increasing productivity and quality. In other projects, some design and
reengineering tools led to higher learning costs and quality problems due to code mismatch with the
tools. It should be noted that our measurement construct on the usage of tools is on a subjective scale.
Thus the lack of significant effect of tools in our study may also be attributed to measurement errors.
The effect of tool usage in s'(oftware products needs to be further investigated on a larger dataset

measuring the effect of similar types of tools.
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Our estimation of the life-cycle productivity in Equation (4) indicates significant increases in
life-cycle productivity for improving the quality of the product ( B; = 0.56). Note that since | B;] < 1,
the increase in life-cycle producti\;ity from improving the quality is at a decreasing rate. That is, the
marginal payoff in terms of increases in productivity diminishes at higher levels of quality. As noted
earlier, life-cycle productivity in our model aggregates effort in development and maintenance phases.
We further investigated the effect of QUALITY on development and maintenance productivity
separately. Our results based on these models indicate that improving quality leads to increases in
both development and maintenance productivity. However, from a return on investment perspective,
software managers are interested in the total costs, i.e., life-cycle costs incurred in software projects.
Our findings in these models also provide evidence for significant positive effect of personnel
capability on maintenance productivity. We next discuss the returns from quality impr;)vements on
life-cycle productivity in the following subsection. |
7.2 Quality Improvement and Returns

Given that multiple options for investing in the product are always open for managers, a
quantitative assessment of the payoff from hiring the best people, improving the process, and
ensuring conformance qualitx in the products is important. In our analysis, we find that the personnel
capability of the team members has a direct, significant effect in improviﬁg quality. Thus our results
show evidence for both direct and indirect (through quality improvement) effects of personnel
capability on software productivity. Our findings also provide evidence for the positive effect of
certain software development process aspects in improving the quality of the products.

Our model allows us to quantify the marginal gains of quality improvement on life-cycle
productivity. The life-cycle productivity model in Equation (4) is linear in logrithmic transformation

of the variables. In this model, holding the variables PER-CAP, USG-TOOL, and LC-PROCESS
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constant at their mean levels, the marginal change in life-cycle productivity for improvement in

quality is given in Equation (5) below.

d(LC~PRODUCTIVITY)

= * - ' . 5
J(QUALITY) B; *(LC-PRODUCTIVITY)/(QUALITY) (5)

Our results help to translate quality-related problems into dollar value and thus can help
managers to cost justify certain quality improvement programs such as enhancing the development
process and hiring the best people. In Figure 2, we show the change in life-cycle productivity (size per
$1000) for 1% improvement in quality at various levels of quality. At higher levels of quality, the
payoff in life-cycle productivity decreases. It can be argued thaf there exists a threshold quality level
such that any improvement in quality beyond this level may lead to a decrease in life-cycle
productivity. Thus quality is not free beyond this threshold. However, in the current range of quality

levels in our analysis, we do not find evidence for such a threshold level of quality.

h;sert Figure 2 Here
Figure 2 also provides managerial insights for resource allocation decisions. For example,
beyond a certain level of conformance quality, managers may find it beneficial to allécate resources to
other dimensions of product quality, such as functionality or performance of the products. Note that
our marginal analysis is based on the mean value of the OLS estimate of the parameter B; and does
not include the variance in OLS estimate of ;. For example, allowing for single standard deviation
error around the mean estimate of B;, our analysis indicates that at the mean level of quality, the
productivity gains from 1% improvement in quality may rage from 0.46% to 0.66%.
7. Conclusion
Our field study of commercial software production in a leading software company provides
several insights for product managers. First, our results provide evidence for significant increases in
life-cycle productivity from improved quality in software products shipped to the customers. Given
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that the expenditure on computer software has been growing over the last few decades, empirical
evidence for cost savings through quality improvement is a significant contribution to the literature.
Second, our study identifies several quality drivers in software products. Our findings indicate that
personnel capability, software development process factors, and deployment of resources in the initial
stages of product development (especially design) have significant positive impact on the quality of
the product. We find that although larger products exhibit higher number of defects, the rate of
increase in the defects due to increase in product size is decreasing for larger products. We find no
evidence in support of the effect of the usage of tools on quality or productivity. Hence, our analysis
provides insights to help product managers improve product quality and life-cycle productivity.

We also find both direct and indirect effects from the personnel capability of software team
members on the maintenance productivity. Software firms have deployed significant resources to
adopt the CMM and other similar models for software process improvements. However, as discussed
earlier, the effect of process on the outcomes of the project was not tested empirically prior to our
field study. Our findings indicate positive association between product quality and certain
development practices specified in the CMM model.

As discussed in Kriebel [1979], quality of a software product is multidimensional. Our study
primarily addresses conformance quality in software products. It is recognized that building more
features into the product or supporting a software product in multiple environments may only increase
the costs to the software vendor. Further research is required to define objective metrics for other
dimensions of software quality and to study their effects on productivity. It ié possible that in addition
to project size, other project complexity measures such as code complexity or number of modules and
their interactions may also determine product quality. However in our sample, we do not have reliable
data on these measures of complexity. Another limitation of our analysis is that variables such as

personnel capability, software process and usage of tools are measured on a subjective ordinal scale.
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However, since these variables are not dependent variables in our models, the OLS estimates of the
model parameters are not affected. Although we treat the final score on these variables as continuous
variables, coefficient estimates of these variables should be interpreted with caution. Future studies
should attempt to define objective metrics to measure personnel capability and tools and measure the
adoption of specific practices specified in the CMM key process areas and link these practices to
productivity and quality.

Our analysis is restricted to data collected from a single organization. The limited variance in
the data from a single organization could also be a reason for the lack of significance of the effect of
variables such as usage of tools on productivity and quality. However, pooling data from multiple
firms would need control for accounting standards for cost data and consistent measurement of
product size, cost and quality. In addition, organizational structure of the firms and other
environmental variables may affect the economics of quality. Though obtaining clean data from
multiple organizations with appropriate measurement controls is difficult, research that pools data
from multiple sites with adequate controls for various factors discussed above is needed to further
validate our results.

Our findings on the marginal productivity gains from quality improvements should be
interpreted with caution. The range of conformance quality in the software products differs depending
on the software domain. For example, the quality range for commercial systems software products (as
at our research site) may be significantly lower than the quality range in mission-critical software
(such as the NASA space shuttle or medical diagnostic systems). Further research is required to assess
the change in life-cycle productivity at the various levels of quality of software in these domains.
Software organizations may need to estimate the shift of the curve depicted in Figure 2 for their

respective software environments.
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Appendix

Software Process Constructs

The Capability Maturity Model (CMM) of the Software Engineering Institute is widely known
in the software industry and it highlights 18 process areas in the software development process
[Paulk, et al., 1993b]. The CMM also identifies specific practices to be followed in each process area.
Some of the CMM process areas address process aspects at an organizational level, while others
address software practices at the project level. Since the unit of our analysis is software projects
within an organization, we consider only those process areas which address project level software

practices. Our list of process areas is shown in column one of Table Al.

Insert Table Al Heré

In all the 18 process areas, the CMM specifies two to four questions on software practices
related to the goals of each key process area. We developed an instrument using the questions related
to these practices on a five point scale with anchor values from 1 (‘;The practices were never
performed ™) to 5 (“The practices were performed more than 90% of the time”). We used exactly the
same questions for each process area, as specified in the CMM [Paulk, et. al., 1993b]. This scale
measures the degree to which these practices were followed in the respective projects. We checked
for the content validity of the instrument through pilot testing with the members of the Software
Engineering Institute and other software professionals’. We also verified the construct validity of the
instrument based on the approach described by Benbasat and Moore [1991]. The instrument was
suitably modified after pilot testing at our research site. A detailed discussion on our measurement

scale, content and construct validity can be found in Krishnan and Kellner [1999].

| . . . . .
We thank Prof. Barry Boehm of the University of Southern California, Dr. Dennis Goldenson and Dr. Dave Zubrow of
the Software Engineering Institute, for their useful comments in the construction of our instrument.
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In order to check for reliability, we obtained multiple responses for each software product.
Our respondents were product managers and at least two randomly selected software engineers from
the product team. The inter-rater reliability of these measures for the same software project was also
above the threshold recommended by Nunnally [1967]. A score on each question was obtained by
averaging these responses. Similarly, a score on each process area was obtained by averaging the
scores on all the questions in that process area. All the process areas exhibited a high reliability index
as measured by Cronbach élpha (minimum of .87 for project planning to maximum of .95 for
requirements management). In addition, confirmatory factor analysis of the responses to various
questions in each process area identified that one factor in each process area explained over 70% of
thé variance. We also verified that all questions loaded almost equally on one factor and only one
factor was retained on minimum eigen value criterion in each process area. The factor loading and
reliability measures for the process areas are provided in Table Al. For ease of interpretation, we
weigh all the practice questions within a process area equally for computing the final score of each
process area.

Broadman and Johnson [1994] report results on the perceived effect of the CMM process
areas on the cost and quality outcomes in software projects. Based on their results and discussions
with the original architects. of the CMM model, we develop software process constructs Q-
PROCESS (quality related process areas) and LC-PROCESS (cost related process areas) in our
quality and productivity specifications respectively. As shown in Table A2, we measure four process
areas in each of these two constructs. For example, configuration management process area in the Q-
PROCESS variable specifies disciplined practices adopted to manage various configurations of
software work products, such as source files, documentation, etc. A proper control of these work
products would lead to reduction in software errors due to incorrect versions of source files and

documents. Similarly, quality assurance, defect prevention, and peer review process areas address
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disciplined practices related to defect prevention and defect detection. The LC-PROCESS construct
in our model includes requirements management, project planning, training program, and product
engineering. These process areas specify disciplined practices to improve productivity of software
development and maintenance, and thus life-cycle productivity.

Insert Table A2 Here -

The final scores on the variables Q-PROCESS and LC-PROCESS were obtained by
ayeraging the scores on the respective set of four process areas as depicted in Table A2. We also
verified through confirmatory factor analysis that these sets of four process areas loaded on one factor.
As shown in Table A2, the four process areas in the Q-PROCESS construct loaded on a single factor
(explaining 69% of variance), and this variable also exhibited a high reliability index as measured by
the Cronbach alpha (.840). Similarly, the four process areas in the LC-PROCESS construct loaded
on a single factor (explaining 70 % of variance) and this variable also exhibited a high reliability

index as measured by the Cronbach alpha (.844).
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Figure 1: Conceptual Framework
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Table 1: Summary Statistics

Variable Mean Median Std Deviation
SIZE (000 Lines of code) 109.12 73.0 109.58
LC-COST 13392.35 8100.6 12284.12
(Life-cycle cost in $000)

Number of Field Problems 80.60 66.00 56.99
PER-CAP 3.46 35 0.775
(Personnel Capability)

USG-TOOL 2.92 3.00 0.76
(Usage of Tools)

FRNT-RES 13.34 12.82 9.04
(Front-End Investment)

LC-PROCESS 3.31 3.27 0.73
(Process in Productivity Equation

Q-PROCESS 3.25 3.28 0.76
(Process in Quality Equation)

LC-PRODUCTIVITY 010 008 .008
(SIZE/LC-COST)

QUALITY 1.77 1.12 1.95
(SIZE/Number of Field Problems)
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Table 2A: Equation 3 Parameter Estimates

(The t-statistics are given in parenthesis)

OLS SUR 2SLS
Variable Name Parameter Estimates Estimates Estimates
O -5.15%* -5.10%** -5.15%*
Intercept (t-statistics) (-5.01) (-4.97) (-5.01)
Loy 0.66** 0.67** 0.66**
In(SIZE) (t-statistics) (7.01) (7.12) (7.01)
(038 1.08** 1.07** 1.08%x*
In(PER-CAP) (t-statistics) (2.54) (2.52) (2.54)
o3 -0.55 -0.53 -0.55
In(USG-TOOL) (statistics) (-1.33) (-1.29) (-1.34)
Oy 0.22* 0.21* 0.22*
In(FRNT-RES) (t-statistics) (1.90) (1.79) (1.90)
os 1.07* 1.01* 1.07*
In(Q-PROCESS) (t-statistics) (1.78) (1.71) (1.78)
R(adjusted) 0.557 0.556 0.557
F5,37 -Statistics 11.58
(p <.001)
** 5% significance * 10% significance
Table 2B: Equation 4 Parameter Estimates
(The t-statistics are given in parenthesis)
OLS SUR 2SLS
Variable Name Parameter Estimates Estimates Estimates
Bo -5.04%%* -5.04%* -5.04%*
Intercept (t-statistics) (-7.18) (-7.20) (-7.14)
By 0.56%* 0.59** 0.62**
In(QUALITY) (tstatistics) (5.45) (5.89) (4.73)
B, 0.65 0.63 0.62
In(PER-CAP) (t-statistics) (1.63) (1.60) (1.55)
Bs -0.07 -0.04 -0.02
In(USG-TOOL) (t-statistics) (-0.16) (-0.10) (-0.05)
Bs -0.55 -0.57 -0.58
In(LC-PROCESS) (t-statistics) -1.11) (-1.14) (-1.15)
R*(adjusted) 0.454 0.451 0.44
F4’38 -Statistics 9.74
(p <.001)

** 5% significance * 10% significance
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Table Al
Reliability coefficient and Reliability Coefficients

Software Development Process Area Number of items Cronbach Alpha
Software Configuration Management 4 .89
Defect Prevention 3 92
Peer Review 2 .92
Software Quality Assurance 4 .89
Requirements Management 2 95
Software Project Planning 3 . .87
Software Product Engineering 2 91
Training Program 3 90

Table A2

Reliability coefficient and factor loadings for process variables

Number | Cronbach | Loadings on

Process Variable of items | alpha Factor retained
LC-PROCESS 4 844

Requirements Management .879

Software Project Planning 809

Software Product Engineering 857

Training Program 756
Q-PROCESS 4 .840

Software Configuration Management .851

Defect Prevention 851

Peer Review 758

Software Quality Assurance .833
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