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SUMMARY

A Bayesian analysis of the semi-parametric regression model of C'ox (1972) is given. The
cumulative hazard function is modelled as a beta process. The posterior distribution of
the regression parameters and the survival function are obtained using a combination of
recent Monte Carlo methods. An illustrative analysis within the context of survival time

data is given.

Some Lkey words: Infinitely Divisible Distributions: Laplace Transform: Beta Process:
Hazard Function: Latent Variables; Cox Model: Gibbs Sampler.

1 " Introduction

Cox (1972) proposed a model for survival time data in the presence of covariates. To state
it. let T represent the time to the event of interest for an individual and z = (z.....3,)’
the vector of covariates. Then the survival distribution of T is taken to be

P(T > t|z) = exp{—H(t)exp(z'3)} (1)

where H(t) = [; h(s)ds is the baseline cumulative hazard function (CHF), A(.) the cor-

responding hazard rate and 3 = (3,,....3,) is the vector of regression coefficients. This
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model is often called the proportional hazards model since the ratio of hazard rares of
two individuals with differing z's is coustant in time. [ts use and success are now so
widespread [see. for example. Klein an« Moeschberger (1996) and the references therein]
as to make it the primary tool in the analysis of lifetime data.

In his original article Cox used a factor of the full likelihood. which he later justified
and termed partial likelihood in Cox (1973). to estimate J. IKalbfleisch (1973) considered
a Bavesian analysis nsing a gamma process prior on the logarithm of the baseline survival
function and Clayton (1991) discussed a Monte Carlo method for related frailty models.
Designed for use in various survival analysis problems. the beta process was advanced
bv Hjort (1990) as a prior on the space of CHE's. He also briefly treated the Cox model
and gave some descriptions of the resulting posterior distributions.

In this paper. we follow Hjort (1990) and model the cumulative hazard using a beta
process. We give a full Bavesian solution in that the posterior distributions of the base-
line CHF H(t) and the regression coefficient vector J are obtained. This is accomplished
by using and extending a combination of Monte Carlo methods described in Smith and
Roberts (1993). Damien et.al (1995) and Walker (1995). By straightforward transforma-
tions, samples obtained from the full posterior distribution also allow inference for other
relevant quantities such as the baseline survival function. the relative risk and survival
probabilities at given values of covariates and times. A

Section IT below describes the use of the beta process with the Cox model and the
attendant posterior results available from Hjort (1990). In Section III, we develop the
computational form of the model and give details for its implementation. Section IV
provides an illustrative analysis of the leukemia data previously analysed, using Bayesian
methods. by Kalbfleisch (1978). Some extensions are discussed in Section V.

2 Cox Model with Beta Process Prior

Much of nonparametric Bayesian inference has proceeded by modelling the unknown
cumulative distribution function (CDF) as a stochastic process. One of the exceptions
appears in Hjort (1990) where an alternative is introduced by placing a (beta) stochastic
process on the space of cumulative hazard functions. This has several attractive features:
it offers a broader class of models in the context of life history data; there is an accessible
interpretation of the prior process in terms of hazard functions; and it provides a natural
generalisation of neutral to the right processes. such as the Dirichlet (Ferguson. 1973).
In the discussion that follows. we will consider the general time-continuous version of
the beta process. Let T be a random variable with CDF F(¢t) = Pr(T < t) on [0. )
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and F({0) = 0. The CHF for F or T is a nonnegative. nondecreasing. right continuons
function 4 on [0. x). As in Hjort (1990) we use the symbol 4 in three different ways :
Ala.b). A(t) and A{t} denote the increment of the function A in the interval [a.b). the
value of the-function A at a point ¢. and the increment of the function 4 at ¢, respectively.

Now let 4 be such that it satisfies
dA(s) = Als.s+ds) = Pr{T € [s.s +ds)|T > s} = dF(s)/F[s. x)

<0 that

B dF(s)
Aleb) = /[.Lb) Fls.x)

Recovering F' from A requires product integrals (Gill and Johansen. 1990) as

F(t)=1-][{1 - dA(s)}. t > 0.

- [0.4]

If /" is continuous, this can be shown to re-' “ce to the usual formula
A(t) = =log(1 — F(t)).

In general. however. F(t) does not equal 1 — exrp{—A(t)}. As explicated in Andersen
et al.(1993), this definition of the cumulative hazard function unifies the treatment of
discrete. continuous and mixed random variables while retaining the appropriate meaning
of hazard as used in the actuarial and survival analysis literature.

While we omit the mathematical details of its construction. -the beta process has
independent increments that, infinitesimally speaking, have beta distributions. More
preciselv. it is a Lévy process with Lévy measure concentrated on [0,1]. Using this
process as a prior on the space of cumulative hazard functions, the posterior distribution
is. in the absence of covariates, again a beta process. Relevant definitions and results
are stated in the Appendix. Full Bayesian inference using the Gibbs sampler for this
situation is given in Damien et al (1996).

To include covariates as prescribed in the Cox model (1), let 4; and z; denote the

cumulative hazard function and the covariate vector for individual i, i =1,---.n. Then.
1—dAi(s) = {1 - dA(s) =),

Suppose X;.---..\}, are the times to the event of interest for the n individuals and the
data are in the form t; = min(Xi.c;), & = I(X; < ¢;), where I denotes the indicator

function. The ¢;’s here are censoring times assumed to be independent of the event times.
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Now the discussion in Section 6 of Hjort (1990) leads to the following likelihood for 4

and .3 :

&

L{A 3:data) = [H {1 = dA@)}* I {1 = Ao - (2)

0.

where R(s..3) =3 exp(z;.3)I(t, > s). Using a beta process prior A ~ beta(c(.). Ag(.))
for A (see Appendix for notation) and an independent prior-for .J. the conditional poste-

rior of 4 given J and the data is a beta process between points where actual event times

are observed. At such event times. there are positive jumps in 4 with distributions

Fagsy (1) x umH(1 = g) I RE=deAIn {1 —di(s)(1 - u)e‘”’(z"j)} (3)

where d;(s) = I(t; = s.6; = 1) and d(s. 3) = 1", di(s)exp(z;3). A prior specification
for 3 and the likelihood in (2) above suffice to weld a conditional posterior for J given
A. In the next section we employv these two conditionals and several auxiliary variables

to develop a Gibbs sampler.

3 The Computational Model

Let A=(1;-- '-X,v.) denote increments in the 4(-) process between the ¢;'s: i.e.. the grid
is taken to be all distinct censoring or event times in the data. Call these time points
51 < 83 < -+ < sy. among which are event times r; < T3 < -+ < I, occuring with
multiplicities Ay.&a. - .k, repectively. Let U = (U, ---Uy,) stand for the jumps in A(-)
at these r's. F'inally, let i(j) be the index of the j** event observation at z;, j = 1.---.k,
in some fixed order for each i = 1,---,m. This means that i(j) is.a unique number

between 1 and n such that t;;) = x; and é;;) = 1.

With this notation, the Gibbs sampler proceeds by simulating from [A. U3, data] -

and [J]A. U, data). As outlined in the previous section, [A|G, data] is the distribution of
the increments of a beta process with parameters {c(-) + R(-, 3)} and f{ % The
components of A\ are inde.pendent. each with an infinitely divisible distribution. Simula-
tion of these is detailed in Damien et al.(1996). Moreover, U and A are independent, [’

having independent components with distributions

Simulation from such a distribution can be effected using auxiliary variables. Transtorm-

ing u to v = —log(l — u}. the task is to simulate from

-

[v] x exp(—av)(1 — exp(—v)) "', (1 — exp(=b;v)) .

4
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With y a geometric variate and w; truncated exponentials given by
[yle] = (1 —exp(—v))exp(=vy). y=0.1.--
and
[wi]v] = biv exp(=bivw,)(1 — exp(=biv)) ™ o (w,) .
we get

A..
[t]w. y] x ¥ exp{—rv(a+y+ Y b}
=1

which is a gamma variate.
It only remains to simulate J|A. (" data. Adapting the likelihood (2) to the notation

of the current section yvields

[3]A. U data] x [3] {n;‘; (1 __\i)ms..m}
I, (1 — ) Ree D =dzny 1{1 (1-u;) exp(z.(]; )}

.where [J] is the prior distribution of the regression coefficients. Using v; = —log(1 — u;)
and incorporating the conditionals of the auxiliary variables y;,w;j,i = 1.---.m.j =

1.---,k;. we arrive at

N
[F]A. VY W, data) x [3exp {Z R(s;, 3)log(1 — &)

i=1
m ki m k,
—Zh{ E — wy)exp(zi; 3)}422%)'3} '

It is straightforward to show that this is logconcave in each component of J if the prior
is so. leading to efficient simulation of 3 by the algorithm of Gilks and Wild (1992). To

summarize. we use

(Y3, A, V,W.data] x Independent Geometrics

(W]3.A.V,Y,data] x Independent Truncated Exponentials

[V]3. A, W, Y, data]

(A3 VW, Y, data] o Independent Beta Process Increments
x

[3]A. V.V, Y. data]

Independent Gammas

Componentwise Logconcave

as the full conditionals in a Gibbs sampler.



Table 1: Leukemia Remission Time Data

[Group 0 (drng) | 6°.6.6.6.7.9-. 10", 10. 11". 13. 16. 17". 19". 20". 22. 23.
L : 25*.32*.32*.347.35% *(Censored
] Group 1 (placebo) | 1.1.2.2.3.4.4.5,5.8.8.8.11.11.12.12.15.17.22.23

4 Illustrative Analysis

To demonstrate the tvpes of inference one can make using the techniques of this article.
. we consider the leukemia data analvzed by Cox (1972) and Kalbfleisch (1978). aniong
others. These data. listed in Table 1 as reported by these authors, consist of remission
times (in weeks) of leukemia patients assigned to treatment with a drug or a placebo
during remission maintenance therapy. Although Andersen et al.(1993) point out that
the data actually consisted of 21 pairs matched by status of initial remission attained. we
have chosen to disregard this aspect here in view of the present purposes of illustration
and comparison.

~In the analyses below. the prior distribution for J is taken to be normal with mean
1.5 and standard deviation 5.0. Runs with varying means in the range -5.0 to 10.0 gave
similar results not reported here. The prior for the baseline cumulative hazard function is
a beta process with 4g(t) = 0.05¢ and c(t) = ke~%9¢, This simple choice corresponds to a
prior mean survival function that is exponential with mean 20 while the prior variability
can be controlled via the number k. Our illustrative calculations use a wide range for
k from 0.01 to 100.0. The beta process, however, admits a much richer expression of
prior opinion as designed in Hjort (1990) and demonstrated in Damien et al.(1996). One
can specify different time-dependent degrees of prior variance in A(t) since ¢(t) can be
interpreted as the number at risk at ¢ in an imagined prior sample. Such flexibility is
especially welcome in constructing prior specifications from past data sets and reported
studies.

With these priors and the data in Table 1 the Gibbs sampler of the previous section
was implemented and run with each setting of &, saving 2000 iterations after discarding
the first 3000. The results for J are summarized in Table 2. Values of A near zero
represent little prior input whereas large values correspond to a strong prior belief that
the baseline hazard is that of an exponential distribution with mean 20. These posterior
summaries are remarkably stable over a large range of &, a phenomenon observed also by
Nalbfleisch (1978) regarding the posterior mode and an approximation to the posterior

standard deviation when using a gamma process prior. In Figure 1(a) we show the



Table 2: Posterior Summaries for .J

A.
Summary 0.01 0.10 1.0 10.0 100.0
\ean 1.69 1.71 1.71 . 1.67 1.62 |
Standard deviation 0.438 0.421 0422 0419 0.381
Central 90% limits || (0.99.2.43) (1.06.2.44) (1.02.2.42) (0.98.2.36) (0.97.2.25)

posterior distributions of J.

For comparison with results based on maximizing the partial likelihood. calculations
were carried out using four different methods including those advanced by Efron (1977)
and Kalbfleisch and Prentice (1980) to accomodate tied observations. Details of these
are given. for example. in Section 8.3 of Klein and Moeschberger (1996). Estimates of J
varied from 1.51 with the method of Breslow (1974) to 1.63 by that of Cox (1972). The
discrepancy is about 28% of the standard error. In contrast, the Bayesian analysis in this
paper uses the full likelihood and calculates the appropriate posterior, with or without
multiplicities. The Monte Carlo error in the posterior mean of J is less than 0.01. Figure
1(b) shows posterior distributions of the more easily interpreted hazard ratio of placebo
to drug treatment. These are readily obtained by transformation of the posterior samples
of J.

The posterior mean of the baseline survival function and pointwise 90% limits for it
are plotted in Figure 2. As & increases, the shape approaches that of the exponential
as chosen in the prior. Values of £ upto 10 give remarkably stable posteriors except
in the right tail where a different ¢(-) function could be chosen to express higher prior
uncertainty. In general, such stable ranges of & will depend on the size of the data.

Figure 3 demonstrates the types of inference that can be easily obtained from the full
posterior samples. In addition to the mean survival functions for the two groups, part (b)
shows how all parameter uncertainty can be propagated to useful quantities such as the
difference in the survival functions. A more detailed description at ¢t = 10 weeks is shown
in part (c). It clearly conveys the effectiveness of the drug in maintaining remission past
10 weeks.

The calculations for this analysis were performed on a Hewlett-Packard 9000 Series
700 workstation using code written in SAS-IML. Generation of 5000 posterior samples
was accomplished in 28 minutes. Code in FORTRAN or C could be expected to speed
this up considerably. Convergence diagnostics not reported here showed a burn-in of
1000 would suffice.



5 Conclusion

A semiparametric model using Cox regression and the beta process was described and
exemplified.. The complex form of the posterior distribution. following latent variable
transformations. was shown to reduce to a computational model that conld be sampled
easilv. The beta process is a rich family of prior distributions on the space of cumula-
tive hazards with easy to interpret parameters. However, in some contexts. it may be
necessary or easier to model the hazard rate nonparametrically. One class of prior distri-
butions for hazard rates is called the extended gamma process (Dykstra and Laud. 1981).
A semiparametric analysis similar to the one in this paper for increasing. decreasing and
U-shaped hazard rates can be developed. In another direction. the methods of this paper
can be adapted for use with various frailty models. These developments will be reported

elsewhere.
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APPENDIX

Beta Process Summary

With Beta(a, J) denoting the beta distribution proportional to x}(1 — z)?~! on [0, 1.
we have,

Definition: Let A4y be a cumulative hazard function with a finite number of jumps
taking place at t;,ty,- -, t, and let ¢(-) be a piecewise continuous, nonnegative function

on [0.2c). A process A is called a beta process with parameters ¢(-) and 4,(:), denoted
A~ beta(e(-), Ao(+)),

if it has Lévy representation

E(e—-G,-l(t)) —

T[ B )} exp {— / - e“es)(lLt(s)} ,

it <t 0




with
Sj = -l{fj} ~ Bet(t(t‘(fj).—lo{fj}. C(Z‘J)(l - -1(){tj}))
and [
dLy(s) =/0 [c(:_)s“l(l - 5)‘3(:)“1(1..-19‘6(:)] ds
for £ > 0and 0 < s < 1. where g (t) = 4o(t) — >o < do{t}

Ao is the prior guess at the cumulative hazard. and c(t) can be interpreted as the
number at risk at ¢ in an imagined prior sample. The above definition implies that
the beta process has independent increments and at fixed points of discontinuity the
increments have beta distributions. More general choices of dLy(s) are possible with
attendant results given in Hjort (1990) and simulation techniques in Damien et al.(1996).

Let X}.---..X|, be independent and identically distributed with cumulative hazard
function 4, and A ~ beta(c(-), 4o(-)). Suppose (Ty,6;), - (T, 6,) is observed. where
T: = min(Xi.c;), 6; = I{X; < ¢} and ¢y, - - - ¢, are censoring times. Define the counting

process NV and the left-continuous a- visk process Y as
Nt)=Y HTi<t&bi=1}, Y(@)=Y I{Ti >},
i=1 i=1

where [ is the indicator function. Then -

() ¢(s)dAg(s) + d.N(s) }

A[(Ty.61). - (Tan b7) ~ beta{ () + Y(’)’/O c(s) +Y(s)

The posterior process contains fixed points of discontinuity even if the prior does not.
These extra points occur at observations with 6; = 1. The distribution of any jump is

given by

A{t}data ~ Beta(c(t)do{t} + dN(t), c(t)(1 — Ao{t}) + Y'(t) — dN(2)).
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