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SUMMARY

A new simulation method, Auxiliary Random Functions, is introduced. When used within a
Gibbs sampler, this method enables & unified treatment of exact, right-censored, left-censored,
left-trucated and interval censored data, with and without covariates, in survival modcls, The

models and methods are exemplified via illustrative analyses.

Key Words: Extended gamma process, Censored data, Gibbs sampling, Auxiliary functions,

Covariates, Bioassay.

1 Introduction

The prior modelling of increasing or decreasing hazard rate functions using the extended gamma
process is relatively straightforward; see, for example, Dykstra and Laund (1981). However,
scrious problems arisc in summarising posterior distributions. Even using a Gibbs sanpler, a
number of computational difficulties remain (Land et al., 1996).

In this paper, we synthesize the Dykstra and Laud (1981) model with computational idcas
detailed in Damien, Wakefield and Walker (1999). These authors use auxiliary variables to
simplify existing Gibbs samplers, by ensuring full conditional distributions take simple forms.
Here we develop the idea of Damien et al. (1999) to solve the computational problews of Laud
et al. {1996) via the usc of auxiliary random functions (ARF). It is well known that there
arc unique computational difficulties associated with Bayes nonparametric models involving
the Gibbs sampler; see, for example, the innovative ideas adopted by MacEachern and Miiller

(1998) and reviewed by MacEachern (1998) for the Dirichlet process.



2 Prior Model

Here we collect, bricfly, the key properties of the extended gamma process that will be of use in
the rest of the paper; see, Dykstra and Laud (1981) and Arminan (1984) for further details. To
begin, we consider increasing hazard rate functions. Let G(«, ) denote the gamma distribution
with shape parameter o > ) and scale parameter 1/8 > 0. For a = 0, we define this distribution
to be degenerate at zero. For « > 0, its density is

42 12~ Yexp(—Bz " .
glele, ) = { @ >0
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Let a(t), ¢ > 0, be a non-decreasing left continuous real valued lunction such that ¢{0} = 0 and
f(t),t > 0, be a positive right. continuous real valued function with left hand limits existing and
bounded away from 0 and cc.

Take Z(t), ¢ > 0, to be a gamma process with parameter function «(-). That is, Z(0) = 0,
Z(t) has independent increments and for ¢ > s, Z(t) — Z(s) is G{a(t) — a(s),1). Considering a

version of this process such that all its sample paths are non-decreasing and left continuous; let
0= [ (B,
(0,8)
This process {r(t),¢ > 0} is called the Extended Gamma (EG) process and we denote it by

r(t) ~ Ila(), B()).

Several aspects of the posterior distribution are given by Dykstra and Laud (1981), Laud (1977)

and Amman (1984). These can be summarized as follows :

Fact 2.1 : The EG process is conjugate with respect to right censored data. In particular, given
an observation X > , writing [f r(t)dt as [7°(z —t)Tdr(t) it follows that the posterior process

is again EG with a() unchanged and the 8 parameter modificd as

At) = B(t) + (2~ ).
Here the superscript + on a quantity denotes its positive part,

Fact 2.2 : The posterior with respect to exact data is a mixture of EG processes. The mixing
measure is n-dimensional, where n is the number of exact observations, and has both continuous

and jump components.

Fact 2.3 : Although analytic expressions for the posterior mean and variance functions ave given
by the above mentioned authors, their mnnerical evaluation is virtually impossible, especially
as the sample size increases to more than around 20. They do not even consider the possibility

of including covariates as a consequence.



Our goal is to provide the basis for a full Bayesian analysis of the increasing (and later the
decreasing and bathtub shaped) hazard rate models for various types of censored data as well
as exact observations, both with and without covariates. For ease of exposition, we first focus
attention on the increasing case. The rest of the discussion applics also to data arising in a
bicassay because a bioassay can be treated as a censored data problem. In addition, these
methods also work for cstimating the intensity rate function of a nonhomogeneous Poisson
process because the form of the likelihood in this case is the same as that for survival daia (see,

for example, Lawless (1982)).

3 Posterior Computations Via ARFs

Damien ct al. (1998) develop a general method to sample from posterior distributions using
auxiliary variables. Suppose the required conditional distribution for a random variable X is
denoted f. The basic idea is to introduce an auxiliary vaviable U, construct the joint. density
of U and X, with marginal density for X given by f, and then extend the Gibbs sampler to
include the extra full conditional for U. In a Bayesian context, consider the posterior density
given by f(2) oc I{z)7(x) and suppose it is not possible to sample directly from f. The general
idea proposed by Damien ct al. is to introduce an auxiliary variable Y, defined on the interval
(0, 00) or more strictly the interval (0, ! (2)), where & maximises (.), and define the joint density
with X by
fl@,y) o< Hy < l(z))n(x).

The full conditional for ¥ is 24(0,(z}), a uniform variable on the interval (0,1(z)), and the full

conditional for X is 7, restricted to the sei. A, = {x : Hz) > y}.

In this paper, we develop a simulation method that is particularly suited to the context of
sampling the monotone hazard rate processes. Whereas Damicn et al. use latent variables to
put a function in place which depends on a finite number of parameters, the latent variables
used in this paper put an entire random function into place. Hence we refer to it as the auxiliary
random function (ARF) method. To introduce the method, consider the increasing hazard rate

case without covariates, and therefore dropping the superscript 1.

Exact observations. The contribution to the likelihood resulting from one exact abservation at
z 18 given by:

f(@) = r(x}F(x) = r(z)exp (— /UT r(.s)rls) ,

where F is the survival function. Based on Fact 2.1, it is clear that F(z), being the contribution
of a right-censored observation, updates the prior parameters of the EG process. In the above

equation, from an ARF perspective, the following question arises: how do we substitute the



random function r(-) so that sampling from the posterior is accomplished readily? Take the

cumulative distribution of a random varjable Y given the hazard rate process r(-) as:

(1
P <ult) = TO10 Sy <)+ 12 ).
r(z
The distribution of Y is defined in terms of a random function, hence the phrase “auxiliary
random funetion®. Tt is in this scuse that the ARF algorithm is different from Damien ct
al’s algorithm. To sample [Y([r(-)], let Y = »~Y(Ur(z)) where U ~ U(0,1) and r~!(w) =
inf{tlr(t) > w}. To address sampling [r(:})]Y = y], write the density of Y|r(-) as

i) = T 0 <y <o)

Combining this with the prior and the likelihood we arrive at

POl o bty ess (- [ rts)ds)

where dr(y) denotes the increment of r(-) at y. It is clear that this term combines naturally
with the EG process, adding a unit jump at ¢ to the shape parameter o-). Thus, as a result of
the ARF substitution and Fact 2.1, the posterior full conditional for r(-) is once again an EG

process with the parameters updated by:
&(s) = ofs) +1(s 2 y) and Bls) = Bls) + (x - 8"

The full conditional distribution of the hazard rate function after the ARI substitution
reduces to an EG process. The increments of the EG process can be simulated by using the
Bondesson (1982) method as described in Laud, Smith and Damicen (1996} or, as is often

adequate, simply approximaled as gamma variates.

Left censored data. The contribution to the likelihood from a left-censored observaton, X < z,

F(z) =1~ cxp (— /Ox r(s)ds) .

First, using the auxiliary variate [W|r(-)] with hazard rate r(-) restricted to [0, z], we have

() exp(— fy 7'(3)(1.5')!
1 —exp(— f 7(s)ds)

Is

(wlr(), X <a] ="

(0 <w < a),

and
44}

[r{-)w, X <] o [r(-))r{w) exp (—/0 7'(.9)(13) .

Now, in a manner similar to the exact data scenario, we introduce an ARF Y and proceed as

described above.



Interval censored data. The contribution of an obscrvation, ¢ < X < b to the likelihood is

F(a) - F(b) = exp (— /Oﬂ 1'(3)(15) — CXp (— ](}b 7'(s)ds) .

Employing Wr(-) with hazard rate »(-) restricted to (a,b] yields the same full conditional for

7(-) as in the left censored data scenario above.

Left truncated data. Here one observes X (or a censored version of it) only if it exceeds an

observed left truncation time L. Tlms the contribution of X = z,L =1 to the likelihood is

il;((f))[(l <) =r(x)exp (— /l-x r(t)dt) I < x).

Once again, the ARF Y as defined above suflices to substitute for 7(z). It can be shown easily

that the effect of the term e_fl HOd s to modify the scale functions given in Facl 2.1 as
B(t) = B(1) + (= — maz(t,1))*.

4 Cox Model Computations Via ARFs

Consider now the extension of the nonparametric analysis to include covariates. Employing
the Cox model, Cox (1972), and initially tackling a single right-censored observation, let 4
and z denote, Tespectively, the vectors of regression parameters and covariates. The likelihood

function for a right censored obscrvation is given by

L(r(),0) = P(X > alr(), B) = exp (_ez’f’ /U 1-{3)ds) .

Conditioning on /3 and following the development leading to Fact 2.1, we easily arrive at

()18, X > 2] ~ EG (al), ()

where
Bl =B) + &Pl - s)t
In the case of exact data,

T

r(s)ds) .

0

Clearly, the problem now yields to the same ARF substitution cmployed in the case without co-
variates. To examine the full conditional distribution of B, let § denote the usual “noncensoring”
indicator and write the likelihood as

1 4 v
L(r(-), B;2,8) oc ¢ exp (—czﬁ/ 7'(s)ds) .

0

(e ]
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Simulating from [f|] is easily accomplished using the adaptive rejection sampling algorithm of
Gilks and Wild (1992) based on the log-concavity of [#]:], having assigned independent normal
priors for the f# componcuts,

Sampling 7(-), which avoids the grid approximation mcthods of Bondesson (1982) and
Damicu ct al. (1995), is available using representations of Lévy processes detailed in, for

example, Walker and Damien (2000).

5 Illustrative Analysis \

For illustrative purposes we present here an example using a simalated data set of size n = 500.

We take the simulation model to be a Weibull proportional hazards model; that is,

hi(t) = ho(t) exp(Br zi1 + Bu zin),

where ho(t) = ¢2/7200, f; = 0.405 and By = 0.693. The zijs arc taken to be in {0,+1}
independently generated and P(z;; = 0) = 0.5.

We took independent normal priors for 8 and fz with zero means and standard deviation
of 10, resulting in a non-informative set-up. The prior parameter functions o) and j(-) were
chosen so that (-) was centred on a Weibull hazard rate function but wilh a large variance.

The Gibbs sampler was run for 4000 iterations with a burn-in of 2000 leaving 2000 samples
from the posterior distributions with which to make posterior summaries.

In the Figure we present the estimate of the baseline hazard rate function, with associated
2 standard deviation limits alongside the true hazard ratc function. It is evident that the

algorithm has performed well in this case.

6 Decreasing and Bathtub shaped hazard functions

In a manner similar to the description of the increasing hazard rate fucntion, one can define
an EG process for decreasing hazard rates as in Laud {1977). Take «(-), 4(:} and Z(-) as with
the increasing case. In addition, let Z{co) ~ G{a(00),1) Le such that Z(oo) = liny e Z(t) is

independent of the rest of the process, a(oo) > limy—,e a(f) and Bloc) > 0. Now define
= [ [Nz = [ [ az(e) + [Aleo)) [ 2(00) ~ Jim Z(0)
(£000] too) t—oc

The main purpose of the values at infinity is to preclnde limy_, o (1) = ) so that Jjo) (£}l
is infinite and the survival time described by »() does not have positive probability at infinity,
It is clear that such a process generates non-increasing hazard rates. We call it the Decreasing

Extended Gamma (DEG) and denote it by

r(t) ~ DI(af-), ().



Amman (1984) uscs the above development and defines a combined process by

() =1 () +rP(1),

where the superscript, inherited also by the parameter functions, indicates the direction of
monatonicity, and the two component processes are independent. Amman termed this a U-
shaped process whereas elsewhere in the reliability and survival analysis literature one also
encounters the usage “bathtub-shaped hazard rates”. It should be noted that such a combined
process does not necessarily penerate hazard rates with this shape. It does, however, addd a great.
deal of flexibility in modelling the shape. For example, the expected hazard rate can be arranged
to decrease initially and to increase beyond a certain time point by a suitable choice of the
parameter functions. A parametric choice for the expectation can be a Weibull distribution with
shape parameter less than one for the decreasing componcent and shape parameter exceeding

two for the increasing component. In general, one can require

d? &
e W) = WF(T()) B () 20

with

p E( (t}) =0 for some ¢ > 0.

Since
Be) = [ ) el )+ [ 0] )
[0)1) [t,OO]
we get the conditions

Al (t)ay (t) — ”{1)(t)!’3(11)(5) AP (1afy(t) — oy (B3 (2) >0
B () (B2 (1) -

and ; D
n(l)(t) _ (y(l)(L)

Ay AP

where the parenthesized subscript ¢ on a function denotes its 7" derivative. Such a prior,

={ for somet >

while maintaining a bathtub expectation, allows the hazard rates to have more general shapes.
The data can then either reinforce the bathtub shape or indicate otherwise via the posterior
expectation.

Facts 2.1 to 2.3 also apply to the decreasing hazard rate function, except for 2(t) =
AP (1) + min(z, #) in the decreasing hazard case and for Fact 2.1.

The case of the deereasing hazard rates is similar : the auxiliary variable Y has the survival
function

MI(,U > )

PIY > i) =



and possibly takes the value “co”. This results in a DEG process for the full conditional for

7(-) with parameters
a(s)=caf(s)+1(s > y) and B(s) = B(s) + min(z, s).
Turning to the case of the combined process, we write the posterior distribution as
PEhr X = ) e PO () 4/ @) exol— [ (P (5) /(o))

Now the stochastic substitution takes the form

_ a0 <y <a) + {—drP ()} Iy > )
- rP(x) + r!(x) '

WX =2.rP().0()
Straightforward algebra results in
[P Ol X = o] o BG(@&, B1EGEP, BP),
where
&”(s) = aP(s) + Iy > 2)I(s 2 y), &'(s) =’ (s)+ 10 <y < &) (s > y)

and the two scale parameter functions as piven above.
The updates for left censored data, interval censored data and left truncated data follow

straighforwardly.

7 Discussion

In this paper we have provided a complete and casy to implement Bayesian solution to modelling
monotone increasing hazard rate functions nonparametrically. We point out that the approach
readily extends to the modelling of monotone decreasing and bathtub hazard rate functions
based on the EG process (see, Laud, 1977, and Amman, 1984). A new stochastic simulation
method was introduced to sample the posterior process, We also provided a solution for the
semi-parametric model with covariates. Natural extensions are to consider time-dependent
covariates and to detect when data coutradict the proportional hazards assumption. From
the perspective of the physicians and scientists wishing (o use these methods, based on the
stored posterior samples, graphical implementations that can respond to queries rogarding

substantively interesting [unctionals would be attractive indee.
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Figure. Solid lines represent posterior mean and two standard deviation limits.
Lower dashed line shows the prior mean, the upper the true hazard.
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