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ON THE CALCULATION OF THE CRITICAL ROLLING SPEED OF A PNEUMATIC TIRE

V. L. Biderman

As the angular velocity of a pneumatic tire increases, the state of rolling
of the tire changes abruptly at a certain limit. Waves appear on the surface of
the tire (Fig.l), stationary in the area, but moving with the speed of rolling

relative to the tire. The speed at which
waves appear on the surface of the tire may
be called the critical speed of rolling of
the tire. As the rolling speed of the tire
approaches the critical point, rolling loss

(It is not possible in the tire abruptly increases, and corre-
to secure a satis- spondingly the heating of the tire in-
factory reproduction creases. The life of the tire at a speed
of this photograph.) near the critical point, therefore, is

quite short.

In this way, phenomena appearing at
the critical speed restrict the use of
tires at high speeds. Consequently, it
is necessary to plan special tires with
possibly a higher critical speed for
speeding automobiles.

Fig. 1. Wave-like deformations of
a 7.50-20 tire during the time of
rolling on a stand at a speed of
180 km/hr.

General trends of the design of tires used at high speeds are important.
An increase of the critical rolling speed of a tire is attained with an in-
crease of internal pressure in the tire and with a reduction of its mass.

However, the quantitative influence of these factors on critical speed
has not been sufficiently investigated. There is also a lack of information
on the dependence of critical speed on the stiffness of rubber and cord, and on
the angle of cord fibers and other constructional features of the tire.

Consequently it has been of practical interest to develop a method for the
calculation of the critical rolling speed of a pneumatic tire.

In a published work® it was demonstrated that the appearance of the criti-
cal speed of a tire is completely analagous to the appearance of lateral oscil-

*S. D. Ponomarev, V. L. Biderman, K. K. Lixarez, V. M. Makyshin, N. N. Malinin,
V. I. Feodosev, Fundamental contemporary methods of calculation on reliability
in mechanical engineering, Mashgiz, 1952.
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lations of turbine-drivendiscs. Oscillations of a tire appear when its rolling
speed becomes equal to the speed of travel of a running wave of deformation
along the circumference of the tire. Moreover, forces of resilience of the
tire are equalized with forces of inertia, and therefore the exterior load may
be thought of as due to the presence of internal friction in the material.

With this is associated the increasing loss of power as the rolling speed
of the tire approaches the critical point.

Thus the critical rolling speed of the tire is equal to the minimum speed
of travel of the wave along its circumference.

The tire represents a rubber-cord shell with extremely strong anisotropic
elastic properties. Deformation in the circumferential and meridional direc-
tions of this rubber-cord shell are relatively small due to a change in rhombus
angles (formed by fiber cords of adjacent layers), and the deformation is re-
stricted in the direction of the fiber cords due to the greater rigidity of the
fiber cords.

‘ Using this as a basis, we can now take as a principle of calculation a hy-
pothesis in which fiber cords do not elongate during the time of membranous de-
formation of the shell.

Investigation of tire deformation during the time at which waves appear
(see Fig. 1) shows that, in a given cross section of a tire, normal movements
have an identical sign, that is, the increase of diameter of a tire in a given
cross section matches the simultaneous increase of profile width. The same
sort of wave deformations may extend not only along the toroidal-shaped tire
casing, but also along a straight rubber-cord sleeve. It is evident that the
speed of propagation of waves along the tire may in the first approximation be
assumed to be equal to the speed of the waves in a sleeve of the same cross
section and in the presence of the same internal pressure. However, this does
not take into account the curvature near the rim of the tire. The influence of
this factor may be evaluated by approximate corrections.

Let us examine the progress of the deformation waves along the straight
rubber-cord cylindrical shell (Fig. 2).

Fig. 2. Two-layered rubber-cord hose:
1. Airtight inward layer;
2,3. Layer of cord;
L. Protective device.




The critical speed is calculated with the aid of Rayleigh's method. This
method, as is well known, is based upon equating values of potehtial and kinet-
ic energy of the system.

Component parts of the potential energy system are:

(1) Energy of compressed air in the inner cavity of the shell at the time
of its oscillation;

(2) Energy of extension of the walls of the shell in connection with its
deformation;

(3) Bending energy of the walls of the shell.

To calculate the value of potential and kinetic energy, we must get expres-
sions for the displaced points of the shell. Interest is directed to the case
where there is no tangential deformation of the shell, inasmuch as, as was shown
above, longitudinal nodal lines are absent at the time of the extension of waves
in the tire.

In this case of deformation in which the tangential component of deforma-
tion is zero, any point of the shell may be defined by two dimensions: radial
displacement w and axial displacement u (Fig. 3, a).
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Fig. 3. On the derivation of conditions
of nonextensibility in tire cords.

Inasmuch as the hypothesis of unextensible tire cord has been accepted,
dimensions u and w cannot be independent.

Let us examine the element df of the length of tire cord, the projection
of which on circumferential and axial directions equals ds and dx, respectively,
until the shell begins to deform. After deformation, ds changes to ds' (Fig. 3b):



ds' = ds(l +%)

but dx becomes (Fig. 3b)

w - dx1/l+ ) <8x/

The new length of element df is determined from the equation:

(a)2 = (as")® + (ax")® = as (1+C§)2+dx2 L<l+%>2{§_i)

Since the cord length is invariant,

2
(as)” = @™ ,

or

a? = ds® <l +%))2 + dx° (l + %)2 +(—§£—> 2}

D1v1d1ng both parts of the equation by d4% and taking into account that ds/dz =
cos B and d.x/dz sin B (where B—angle constructed by flbex_-s of cords with
alignment of profile), we find:

(1+)cosB+ <l+5x ):Ismﬁ,

or after simplification,

0 = »ég +,(%92 cos™p + gi ) (' ?| sinZ . (1)

Equation (1) espresses the relationships between u and w, when the length of
the tire cord is constant. In the Presence of small movements, quadratic terms
in Eq. (1) appear small in comparison with linear terms. Therefore in the
first approximation, Eq. (1) gives the function:

@ = - @ tanZB (la)
0 ox

However, this expression does not appear exact enough for the problem with
which we are faced. Substituting the approximate expression for w, (la), we
find the expression for @ corrected for terms of second order as:

@ _ _du 2__(@) 2 2 l gau 6 :
; -5 tan®p s tan“B (1 + tan™B) - (éxg tan”B . (2)



We let u express the sinusoidal running waves:

u = u, sin en (x - ct) (3)
L
where L. = the length of the wave;
¢ = the speed of propagation;
U, = amplitude dimension of displacement,

Then we obtain a suitable expression for:

2
2 .
® _ L o tan2B cos 2% (x - ct) - 148 EEE tan28- (1 + tan®p)cos® L o(x - ct)
0 ° L 5 9% L
4
..l pzuz 16x tanGB sin® _E.E(x - ct) (M)
2 0 4 L

In this expression the first term is dominant, while the remaining terms
are small. They must be taken into account only for calculation of compressed
air effects, inasmuch as in this case the first term drops out.

Let us now proceed to the calculation of kinetic energy of the oscillating
shell.

The element of a shell with the dimension dx*ds has a mass dm = gdx-ds,
where q is mass per unit surface area.

Components of the velocity are, omitting a few terms of higher order:

Ju 2x 2x
= = -c == u, cos == (x - ct)
ot L ° L
2
W oc Eﬁ_uo tan®g sin 2L (x - ct)
ot 1.2

The incremental kinetic energy is given by:

1 du \2 /ab 2
i =g (32) *KSE)

2
= 1ge%? L2 {%032 21 (x - ct) + EEE 0Ztan*s sin® 2% (x - ct)|dxds

L L L

D OL2

Integrating 4T over s from zero to 2np and over x from zero to L, we find the
kinetic energy in the limits of one wave of oscillation:

3 2
P o= 20 czpqug 1+ b oZtan’B (5)
L L2



The potential energy of the air pressure changes during the time of defor-
mation UB = -pAV where AV is the change of the volume of the shell.

The volume of the cylindrical length dx
(Fig. 4) before deformation is:

and after deformation,

av' = x(p +w)%ax (1 + duy
ox
The change of volume is:
bV = = 2?‘29+@+'9>2
Fig. 4. On the determination R (‘p
of the change of air volume ® - 3 )2 du
during deformation of the hose. +2 = '-Ji-*(::> = |&x .
p O0x \p ox

Substituting the value of w and u and integrating x between the limits of
zero to L, we find a change of volume within the confines of one wave of oscil-
lation:

2 2 2
AV = -ugnpz an” <? + L0 tanéé) tan"B
L L2

According to this value of AV, the potential energy of pressure equals:

Let us now examine the deformation energy of the shell; this energy is
made up of two parts:

(1) Energy Uy of deformation of the membrane type, and

(2) Energy U, of bending deformation.

This leads to the supposition that, in the presence of membrane deformation,
tire cords remain unextensible, and all energy in this case will be consumed by

the deformation of the rubber.

Average deformation of the shell is determined by using the terms

circumferential deformation e, = @/p

du/dx

lengthwise deformation €y

These expressions represent rubber deformation in the tread and interlayer
areas. In layers where the rubber occupies only space between the fibers, ac-
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tual deformation of the rubber is greater and approximately*
etp = ket exp = key ,
where
kK = 1/1 - % d

where:**

i = end count per centimeter
d = diameter of tire cord

The volume of rubber in the layers on one surface of the shell is:

+d-n

W=

where n = the number of cord layers and the volume of the rubber in the tread
and interlayers is:

(h -4+ n)
where h.= the overall thickness of the shell walls.

Deformation energy of a single volume of rubber in the presence of plane
stress conditions and deformation, € and EX’ amounts to:
E ( 2 2 \ *AK
. D
a = —=———|e_+ €, + 2ue. ¢ €
2 X t X tr
2(1 - u2) /

where Ep = modulus elasticity of the rubber;
W = Poisson's Ratio.

The energy of deformation of the tread and interlayers over an element of
the shell's surface, dx-ds, is:

E 2 2
dU; = (h -4 - n) EZI_:EJ§7 (eX +€f + 2uexet) dxds |,

and the energy of the rubber in the plies is:

*¥Derivation of a reduced formula based on a substitution of an actual cross
section of fiber with a like size taken at right angles, d-(xd/4).

***Translator's Note: The reader is referred to an article by Bleich, H. H. and
DiMaggio, F., "A Strain-Energy Expression for Thin Cylindrical Shells," Jour.
Appl. Mech., 20, n. 3 (Sept., 1953), 448, for a discussion of the implica-
tions of this expression.



dUs = kd * n %) (ei + ei + 2ueyey) dxds .

2(1 -

Summing up these values, we find:

X%
E. h ‘
AUy = —L (&2 + €2 + 2ue,e;) dxds . (7)
M 2(1 _ “2) X t X*t

where h* = the reduced thickness of the rubber;

2.
h*=h+(k-l)d-n=h+1@—;—rild- (72)

Substituting the values e, and ey in expression (7) and integrating s from zero
to 2rp, and x from zero to L, we find the energy of membrane deformation of a
shell within the limits of one wave:

n* -
Uy = Ep . k%o us(1l + tan*g - 2p tan®s) . (8)
2(1 - p2) L

Now let us calculate the energy of bending of the shell walls.

As a result of deformation of the shell, its generatrix, not having curva-
ture originally, acquires a curvature approximately equalling:

X1 =
dxZ

J

but the circumference, which originally had a curvature l/p, acquires a new
curvature l/p«b; in this way the change of curvature of the eircumference
amounts to:

FHRHHK

o

x2 = ﬁl —l R -
prw p

L
02

At a distance y from the neutral surface of deflection in relation to the
change of curvature, deformations occur:

2
_ Q7w
& = Ny = -3y ,
ox

In view of the rigidity of the cords, the middlé surface of the tire car-
cass will be used as the neutral axis and y measured from there.

During the time of deflection it is necessary to take into account not
only the deformation of the rubber, but also the deformation of the cords.

¥¥¥¥Translator's Note: Within the assumption of small displacements.
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In the layer found at a distance y from the neutral sur%ace, tire cord is
elongated:
2
= in2 25 - . (%%
€, = €, sin"p + €, cos"p = <;X2

. o
sin®B + = cos?B) y .
02

The deformation energy of tire cord of this layer on the section dxds of
the surface amounts to:

E e2 E =) 2
‘k'k . "k _2(d%w 2 w 4
au' = i dxds = i == y°I tan<p + — cos B dxds
k "2 2 <:8xE p%) ’

where Ek = the ratio of stress in the cord to its deformation. Summarizing
energy for all layers, we find:

1. 2 a () 2 w2 4
- = — —_ cos B dxd D 9 )
dU] = 1 E] Zy ( 5 tan B + 2) S ( .

Whereupon Zya—-this i1s the sum of the squares of the distance of all cord
layers from the neutral layer.

Substituting in expression (9) the values o and 3%w/dx® and integrating s

from zero to 2np and x from zero to L, we find the energy of deformation of
tire cord during the time of deflection:

2 2
U = 8 222 1 007 pan )22 (10)
k k S (¢
pL L

where
Ay = 1 E. 2y® sin®s .

Deformation energy of rubber during the time of deflection of the shell
may be determined in the following way:

The energy of deformation of the element ds dx dy amounts to:

E E 2 2 2
D ( oW w
——er €, + €+ + 2u€ €r) ds dx v = D ©_
Zeo R A S ) <x2> s

82(1) W o
+2). > o2 y= ds dx dy .
% 0|

Disregarding the influence of cords on the deformation of rubber in the
layers of the carcass and performing the integration over y, we find:

U, = a L 52“>+@f+2 ® 9 ®| gsax (11)
€p P35 92 o* : 55 dx2 ’



where

A

3 3
- Ep(hy + ha) (11a)

3(1 - u®)

h; and hpy are the distances from the neutral layer to the exterior and in-
terior surface of the shell.

Substituting in expression (11) the valués o and d3%w/dx® and performing
the integration over s and x, we find the deformation energy of rubber inside
the limits of one wave due to deflection as:

o> “ ( 4 p* _ 8x= 02> 2
U = A =t 1+ 160 B M= ° 12)
ep D > an B T U, (

We find the velocity of wave travel by equating the kinetic energy change
to total potential energy:

T = Ug + Uy +Uyg+ U&,'p P

where T is determined according to formula (5), but the remaining values accord-
ing to formulas (6), (8), (10), and (12), respectively.

Thus we find:

2 Do , &8+ bxa + cké

¢t = 13)
¢ l+d-r 7 (13
where
A o= 2np/L
*
E h A
8 = 3tanB +— 2 (1 + tan*B - 2u tan®p) + ékg - tan®B ,
po(l - u2) o po
A P A
b = ten®B - —5 ¢ 2 tan B - —2- 2u tan’s
jo PP
Ay +
c = _E___ég tan4B , and
po®
d = tan4B .

From expression (13) it is clear that the speed of wave propagation de-
pends on its wavelength, since A is the ratio of the perimeter of a cross sec-
tion of the shell to the length of the Waveu(Fig. 5)°

From expression (13) we find that the minimum value of ¢ occurs when

A2 = A% = V& - bd + ad?)/cd® - 1/d . (14)
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From expression (14) the length of
the wave L* in the presence of oscilla-

C tion is determined as:
¥ - 21p
Ax
é* The speed onthe wave is determined
by substituting A~ from expression (1k4)
\ into formula (13).

Ax

For the calculation of the critical
speed of a rolling tire, according to
the previous expressions, an effective
value of specific tire mass g and of the
angle of cord fibers B must be derived.

Fig. 5. The relation of wave speed
to the ratio of the perimeter of a
cross section of the shell to the
length of the wave.

By means of an example we are going to show how to calculate the critical
speed of a rolling tire of size 7.50 x 16 in the presence of an internal pres-
sure p = 2.5 kg/en”.

In this example, the radius of the tire profile is p = 8 cm; average angle
of tire cord can be taken as B = 45°. The tire has 6 layers of cord 9T; the
average size of cord layer in the tire tread amounts to 1.4 mm, end-count of the
fibers is i = 8 fiber/cm, and the size of cord fibers d = 0.8 mm.

The average mass per unit surface area of the tire is found, assuming that
the thickness of a wall on the average equals 2 cm, and the specific weight of
material y = 1.5 + 1073 kg/cm3. Then ‘

_ 2(1.a5x 1072) - 2.35 x 107 kg-sec?

981 e

Inasmuch as the fiber in the casing under the effect of inner pressure has
initial deformation of the order of 2%, the modulus of the fiber must be deter-
mined at about this value of elongation, whereupon the following formula may be
used:

By ~ (Ng - N2)100 ,

where N3 = stress in the fiber in the presence of 3% elongation;
No = stress in the fiber in the presence of 2% elongation.

For cord 9T, (N3 - No) = i kg and consequently E, = 100 kg/fiber. Modulus
k

of rubber resilience Ep = 10 kg/cmg; Poisson's Ratio p = 0.5.

Let us calculate dimensions necessary for the computation of critical speed.

According to formula (7a) we find the equivalent thickness of the rubber:

11



* 1d®i ¢ n n(0.8)2 . 8.6 '
= == "2 - 2 = 2.48
T L. x-B8.0.8 o

According to formula (10a), rigidity at deflection of cord layers is determined
as:

A, = iE Xy® sin®p
where y is the distance of each of the layers from the neutral surface. Figur-

ing that the neutral surface runs through the center between the third and
fourth layers, we get

yi = 0.35 em; yo = 0.21 cm; ys = 0.07 cm;
ya = 0.07 em; ys =-0.21 cm; yg = 0.36 cm.
Then
Ay = 8(100)(2)(0.35% + 0.21% + 0.07%) = 68 kg-cm

The rigidity of the rubber is determined according to Eq. (1la), realizing that
h; = 0.5 cm, hp = 1.5 cm;

Ep(hf + h3) 10[(0.5)2 + (1.5)3]
A, = P = = 15,6 kg o cm .
O FT) 3(0-75) 2-0 %8
The coefficients a, b, ¢, and d that appear in Eq. (13) are determined:
a = 3 tan®B + ———ﬁggf——— (1 + tan™B - 2u tan®B)+ A + %p_ tan*p
po(1l - p2) R
2 10(2)(48) 4 2 68 15.6 4
= 3(1 1+ (1)* - 2(0.5)(1 (
S 0y () - 2057 + RO OE
= b.7;
65 - PE 2 tan®p - 2D 2u tan'p
b = tan 6 - 55?3- an pps
s _ 68(2)(1)2 15.6 4
=\l = = 2)(0. 1 = 0-88;
W s T msiee AW
Bt hp s 684156 (1) L 065 :
HRE e e LR &

d = tan*p = 1.

A% is found according to (14):

2 c -bd+ad® 1 0.065 - 0.88(1) + L4.7(1)
N = ———— S M = = -1 = 6. LI- °
* ﬂ/ cd? d /\/ 0.065(1) [
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2.6

e =
Length of wave deformation:
L = gﬁﬂ = 2n(8) =19.3 cm .
A 2.6

The critical speed is found according to (15):
L.7 + 0.88(6.74) + 0.065(6.74)%

2 - Doga+ bkz + c>\.4 - 2.5(8) N
q 1 + ap\2 (2.35 x 108) 1 + 1(6.74)%
= 1%.1 x 10° cm®/sec® ;
= 130 km/hr .

3.62 x 10° cm/sec = 36.2 m/sec =

The actual critical rolling speed of this tire, found experimentally by V.
I. Novopolsk, amounts to 160 km/hr, and the wave length was L = 17 cm.

(¢}
]

It is possible to assume some increase of critical speed and decrease of
wave length compared to calculated values primarily due to the influence of

fixity at the rim.
The expressions derived allow us to analyze the dependence of the critical

rolling speed of a tire on inner pressure, angle of tire cord, and rigidity of

From

rubber.
Appropriately calculated graphs are presented in Figs. 6, 7, and 8.
the graphs it is obvious that to increase the critical speed one can increase
200 200
1801 EISO
x £
EIGOP a‘IGO
E ~
= |40} © 140
O
120 120
ool—m—t i 100 I L 1 A
| 2 3 4 5 6 40 45 50*55 60
p, kg/cm? B
Fig. 6. Dependence of Fig. 7. Dependence of crit-
ical speed on tire cord
angle.

critical speed on inner

pressure.
the inner pressure and lower the tires' mass, as well as to increase the angle

of cord fibers and to raise the rigidity of the rubber.
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The method just used for thée determination
of critical speed may be developed without using

_160 - a simplified hypothesis about the equivalence of
< the rubber-cord shell and tire. However, inas-
5140" much as deformation will of necessity include
(5120“ tangential movement, the mathematical expressions
are considerably more complicated. In conclusion
L L L it should be pointed out that the influence of

0 S 10 5 20 dynamic processes on the performance of a tire

Ep,kg/cmz begin to tell in the presence of speed essential-
Fig. 8. Dependence of crit- 1y less than critical. In view of this, the per-
ical speed on modulus of missible operation speed of a rolling tire must
rubber resilience. be designated as

Vmax = M Ckp
where 1 is the coefficient of allowance, a number smaller than one.

The value of the coefficient n must be chosen with due regard to tire load
and the required mileage in the presence of speed V max.
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