Bl MICHIGAN Released Octoner 15, 2003

BUSINESS SCHOOL

From the Department of
OPERATIONS AND MANAGEMENT SCIENCE

WORKING PAPER SERIES

> Optimal Mechanisms with
Finite Agent Types

by

William S. Lovejoy

RAYMOND 7. PERRING FAMILY PROFESSOR
OF BUSINESS ADMINISTRATION and
PROFESSOR OF OPERATIONS AND
MANAGEMENT SCIENCE

Meyerson's seminal paper on mechanism design
invokes differential reasoning in deriving his
classical results. The arguments used do not
readily lend themselves to parallel derivations
for finite type spaces. Because of this difference,
and the transparency and intellectual dominance
of Myerson's work, relatively few papers have
tooked at the case with finite agent types beyond
the two-type case. This paper provides that
parallel argument in the regular case, for which
Myerson's results are most often invoked. The
results here for finite type spaces can be read
alongside Myerson's results with no intuitive
leaps. A minor error in Myerson's presentation,
irrelevant with symmetrical agents, is corrected,
allowing the results to handle the symmetrical

and asymmetrical cases in one unified way.

LEADING IN THOUGHT AND ACTION



Optimal Mechanisms with Finite Agent Types

William S. Lovejoy
University of Michigan Business School
701 Tappan, Ann Arbor, MI 48109-1234

Working paper WP03-024

October 15, 2003

Abstract

Myerson’s seminal paper on mechanism design invokes differential reasoning in deriving his
classical results. The arguments used do not readily lend themselves to parallel derivations
for finite type spaces. Because of this difference, and the transparency and intellectual
dominance of Myerson’s work, relatively few papers have looked at the case with finite
agent types beyond the two-type case. This paper provides that parallel argument in the
regular case, for which Myerson’s results are most often invoked. The results here for finite
type spaces can be read alongside Myerson’s results with no intuitive leaps. A minor error
in Myerson’s presentation, irrelevant with symmetrical agents, is corrected, allowing the
results to handle the symmetrical and asymmetrical cases in one unified way.



The number of papers and presentations on optimal mechanism design with finite agent
types is far fewer than those for continuous type spaces. This probably follows from a diffi-
culty in replicating the line of argument in Myerson’s (1981) seminal paper, which invokes
differential reasoning in deriving his classical results for optimal mechanisms. Because of
this difference, and the transparency and intellectual dominance of Myerson’s work, rel-
atively few papers have looked at the case with finite agent types beyond the two-type
case.

However, the difference between continuous and finite type spaces can be more than cos-
metic. For example, in procurement auctions types represent the cost structures of agent
firms, and an analysis of optimal pre-auction investments by agents may lead to single
points, or several discrete points, as possible investment (hence, type) solutions. As re-
search moves forward to deconstruct the decision processes that lead up to type the dif-
ference between finite and continuous type spaces may become more than a mathematical
detail.

The articles that do exist on finite agent types do not follow Myersons line of argument,
for the reasons noted. Rather, they either analyze the two-type case and exploit the
natural simplifications that attend that assumption (c.f. Fudenberg and Tirole 2002), or
they use mathematical programming or optimal control theory logic (references provided
below). The alternative derivations end up, as they must, with accurate expressions for
the optimization problem to be solved, sometimes in the form of necessary rather than
sufficient conditions. However, these expressions do not as readily suggesf the form of the
optimal mechanism (at least, in the case of “regular auctions,” which we will define below)
as Myerson’s results. We restrict attention to regular auctions in this paper, because these
are where the cleanliness and transparency of Myerson’s framework gives it an advantage
over the alternative approaches mentioned. Finally, all existing derivations for finite agent
types known to the author assume symmetrical agents, while Myerson’s paper and this
one handle the symmetrical and asymmetrical cases in one unified way.

The mathematical tricks needed to overcome the obstacles to a derivation that parallels
Myerson’s arguments are well-known and documented, but have yet to be used in that
fashion. This note provides this parallel derivation and the finite-type counterpart to
Myerson’s famous lemma 3. Hence, the component parts of this derivation are not new,
although their use in concert to generate our eventual expressions is. The advantage of
presenting the results in this way is the intuitive transparency that accrues to those who
have already internalized Myerson’s classical work. Theorem 1 below can be read alongside
Myerson’s lemma 3 with no intuitive leaps, and the results here converge to Myerson’s as
the feasible types become dense in a type space.
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The critical result that allows us to circumvent the need for differential arguments is the
replacement of global incentive compatibility constraints with local counterparts (lemma
1 below) and showing that even greater simplifications must hold at optimality (lemma 2
below). These arguments are well-known. For the intellectual heritage of this replacement
in the context of finite agent types see Harris, Kriebel and Raviv (1982); Hart (1983) and
Moore (1988). For text-book articulations of the argument see Stole (2001); Li, Malakhov
and Vohra (2002) and Fudenberg and Tirole (2002). Stole and Li et al provide general
results for finite agent types through a control theory and mathematical programming lens.

Assume that there are n agents, and agent i has a type v; € Q; where Q; is a finite set
with m; > 1 elements. We will number these elements as follows. Let a; = v} <12 < ... <
v = b;, s0 a; and b; (equivalently v} and v;"') are the least and greatest elements of (;

and l/fC 1s increasing in k for 1 < k < m;.

The principal’s uncertainty about the value each agent places on the contract is captured
in a probability distribution m;(v;), which is the probability that agent i has value v;.
All other agents share this assessment of agent i’s possible values. The values of various
agents are assumed to be independent, so that the principal will assess the probability of
any value vector v € R" with the product 7 (v) = I, m;(v;). Agent i knows her own value,
but she share’s the generic understanding of other agent’s values, so that she assesses the
probability that the other (n—1) agents have values v_; € R* ! as 7_;(v_;) = ILjzimi(v;5).
The principal’s value for keeping the contract and not giving it to any of the n agents is
Vo, and is known to all.

The principal wishes to select a mechanism to maximize his utility. By invoking the
revelation principle, the principal can without loss of generality restrict himself to direct
revelation mechanisms. In these, each agent reports her true type v; so that the principal
receives the n-dimensional vector v in total. The principal declares, prior to the agents
issuing these reports, the probability law that will map v into the allocation of the contract
and the expected payment by each agent. That is, the principal declares a mechanism,
which is a pair of functions p(v) and 2(v) both with ranges in R™. p;(v) is the probability
that agent ¢ will receive the contract, as a function of the vector of messages (v) received,
and z;(v) is the expected payment by agent 7, also as a function of the messages received.
The principal wishes to select a mechanism (p,z) to maximize his utility, given that the
agents will decide what message to deliver after they learn what p and z will be.

We assume that all parties are risk-neutral with additive and separable utilities for money,
so that the expected utility for agent i who reports her type truthfully is

Uilp,z,v;) = Zﬁ-i(V—z‘)[ViPz’(V—i, vi) — & (voi, 1))

Vi



We ignore the linear revision functions e; in Myerson’s model. The expected utility for the
principal is

Us(p,e) = ) w(v)[wo(1 - Zpi(v)) + Zmz‘(V)]-

As noted above, and consistent with Myerson’s development, we restrict ourselves to direct
revelation mechanisms without loss of generality. In these, the principal must choose a
mechanism that is consistent with several feasibility constraints. Specifically, a mechanism
(p,z) is feasible if it satisfies the following three conditions:

L. p must reflect a legitimate probability distribution, so that p;(v) > 0 for all i and v,
and Y31 pi(v) < 1forallv. 1— 37 pi(v) is the probability that the principal does not
award the contract to any agent (in this case the principal gets 1y).

2. No agent can be coerced into joining the bidding. That is, each agent must perceive
at least as high an expected utility from joining the game as staying out. Mathematically
this is the constraint that for all agents 7 and values v; € Q;, U; (p,z,v;) > 0.

3. No agent should be able to do better (in expected utility) by lying, relative to telling
the truth about her type. Mathematically this is

Ui(p, z,v;) > Zw_i(v_i)[vip(u_i, s) —z(v_i, )]

Vi

for all agents i, v; € Q;, and s € ;.

Much of the analysis here (and in Myerson) involves finding a more convenient, but equiv-
alent, form for feasibility. In the literature, (2) are called the “individual rationality” or
LR. constraints, and (3) are called the “incentive compatibility” or I.C. constraints. A
key result in the continuous type case is Myerson’s lemma 2, which provides an equivalent
form for the I.C. constraints. As we have noted, his argument relies on differential reason-
ing, which does not translate directly for finite type spaces. However, the following two
lemmas (which catalog results found in the references cited above) lead to essentially the
same result.

First, we define the following variables. Let Q;(p,v;) = Yo, T—i(v—i)p(v—i,v;). Thus,
Qi(p,v;) is the probability that agent i will be awarded the contract if she reports v;. Also,
define Us(slv;) = ), [vipi(v_i, s) — 2i(v—s, s)], which is the expected utility for agent i if
she reports value s when her true value is v;. If m; = 1 (there is only one possible type) for
any agent i, then the I.C. constraints for that agent are automatically satisfied. Otherwise
we can invoke the following.



Lemma 1: For any agent i with m; > 2, the L.C. constraints are equivalent to the
following:

a) Qi(p,v;) is nondecreasing in v; on ;.
b) U (VE|vE) > Uy (UF 1 [uF) for all 2 < k < m;.
c) Ui (VFIvE) > U (UF T uF) for all 1 < k < my; — 1.

Proof: The I.C. constraints are equivalent to U;(v;|v;) > Us(s|v;) for all i, v; € ©); and s €
{);. Hence, the L.C. constraints imply (b) and (c). But, the I.C. constraints also imply (a).
To see this, note that Us(sv;) =37, m_i(v_i)[spi(v=i,8) — 2i(v_s, s) + pi(v_i, s) (s — s)]

= Uilp,2,8) + 5, 7 s(vo)pa(vis ) (v — )
=Ui(p,z,s) + Qi(p, s)(vi — s)

for all 4, v; € ; and s € ©;. Now, the I.C. constraints imply (b) and (c), as noted, which
in turn imply that

Us(VEIvE) = Ui~ o) > 0 > U Wkl ™) = Uy (WF 1Y)
for all 4, and all 2 < k < m,;. We can rewrite this as

Ui(p,aj,ljf) U(p,.’l? V ) Q’L(p7 z )( @k I/f_l)ZUi(p’m,yf){-Qi(p’y{C)(yf_l—yf)—
Ui(p,z,v; "), which is equivalent to

Qi(p, vE ) (WE1 — vk > Qi(p, vE)(vE~1 — v¥) which is equivalent to

(p, vF Y (vF - vE) < Qilp, vF) (W - v*=1). Now, since vE > vF~1 we have that
Qi(p, Zk Y < Qilp,vF) for all i and 2 < k < m,. So, the I.C. constraints imply that
Qi(p,v;) is nondecreasing in v;. So, the I.C. constraints imply (a) - (¢). The proof is
complete if we can show that (a) - (c) imply the I.C. constraints.

To show this, suppose (a) and (b) hold, then

U (VE|VF) = Ui(p,z,vf) > Z/lz-(uf”ljz/f) = Ui(p,x,vf_l) + Q:(p, Zk 1)(1/{c - z/f_l). Likewise
by the same argument

Uilp,a, /™) 2 Up, v ) + Qulp, v ) (0! = 0f2)

Hence,

U (v |v)

= Uilp,,8) 2 Ui, 2,0 )+ Qulp f )™ = vE7%) 4+ Qi )0 — o)



which since @; is monotone is greater than or equal to

Ui(p, 2, v ~2) + Qulp, vF=2) (vl — wf = 4 F1 = v %)

= Ui(p,2, 757%) + Qulp, )0 = vE2) = U (020,

So, by induction if Q; is monotone we will have

Ui (vFIVE) > Ui(s|vF) for all 4, all 2 < k < m; and all s € Q; with s < k.

A symmetrical argument starting with the upward local constraints (¢) and monotonicity
(a) reveals that

U (vFIvF) = V)
> U(p, 2, ) + Qilp, vk = v
> U(p,a: Vk+2 +Qz(pa zk—l—z)( zk+1 *Vf+2)+Qz(p> zk+1)(yzk Vz‘k+1)

)
)+ Qulp, v ) (vf — v *?)

and by induction

Ui(p, =
)
> Uy(p, z, vFt?

Ui(vfIvE) > Us(p,,8) + Qi(p, s)(VF = ) = Us(s|vF) for all i, all 1 < k < m; — 1, and all
s € {; with s > k.

Putting these together, we see that (a) - (c) imply that

Ui(vfIvEF) > Uy(s|vf) for all 4, all v¥ € Q, and all s € ;. But, these are just the I.C.
constraints. QED '

Armed with this equivalence result, we can recast the principal’s mechanism design problem
as maximizing Uy(p, ) subject to the following constraints

4) pi(v) > 0 for all i and v, and Z?zlpi(?) <1 for all v.

5) Ui(p,z,v;) > 0 for all agents 7 and values v; € Q.

6) Qi(p, ;) is nondecreasing in v; on Q; for all agents i.

7) Us (VEIvF) > L[i(z/f_1|uf) for all agents i such that m; > 2 and all 2 < k < m;.

8) Us(vfIvF) > Us (VFT|uF) for all agents i such that m; > 2 and all 1 < k < m; — 1.

A key result allowing further analysis of this problem in closed form is the following.
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Lemma 2: In the principal’s optimal mechanism design problem of maximizing Up(p, z)
subject to constraints (4) - (8), for all agents ¢ with m; > 2, constraints (7) must be binding
at optimality, and when these are binding then constraints (8) are automatically satisfied.

Proof: Suppose (p, z) is an optimal mechanism, and constraints (7) are not binding. Then,

we must have Z/{l(yzklulk) = Ui(p,:z:,l/f’) > Ui(uf_lluik) = Ui(p,:r,yf_l) + Qi(p,v o~ 1)( k_

’ ’L 1«
vF71). This is equivalent to

Ui(p, z,vF) — Uy(p, z, Vf_l) > Qi(p, z/f'l)(l/{g ~v*1) > 0. So the left hand side must be
strictly greater than zero, or

Zu-i w_i(y_i)[yfp(u_i, vE) — zi(v_i, vF) - z/fc 1p(u_z, I/f 1) + xi(V—i, vk 1)] > 0.

2

Then, the principal can raise z;(v_;, v¥) slightly, increasing his objective but violating no
constraints. This contradicts the assumption of optimality. So, at optimality constraints
(7) must be binding.

But, now that we know (7) are binding let’s look at
Ui (v k) - Ui(VF|VF) for any 1 < k <m; — 1.
Ui (v uf) = Us (vF k)

= Ui(p, z, V") + Q; (p, vFF ) (WF - Vf“) —Ui(p, z,vF). Because we know (7) are binding,
we know that

Us(p,x, v ) = Ui(p, 2, vF) + Qi(p, vF) (V¥ = vF) s0 that
U (vETHUEY — Uy (UF|UF)
= Ui(p, 2, ) + Qi(p, vE) W = vF) + Qilp, vFTH) (vF — VY — U, (p, 2, vF)

= (W — ) (Qulp, v/ ¥} — Qi(p, vF™)) < 0 where the last inequality follows because Qi
Is nondecreasing in v;. So, when (6) is satisfied and constraints (7) are binding, (8) is
satisfied. QED

Hence, for any agent with m; > 2 we can without loss of optimality replace (7) and (8)
with the single constraint that (7) is binding, which is equivalent to

Ui(p,z, vt = Ui(p, 2, vF) + Qi(p, vE) Wt — k) for all i and all 1 < k < m; — 1.

This is an expression that is recursive in k and can be rewritten as

9) Uilp,z,vF) = Ui(p, z,a5) + ZJ Qi)W = V) for all i and all 1 < & < my

where we define a sum from 1 to 0 (that is, 23:1 which is the required sum for £ = 1) to
be zero.



Note that (9) is the discrete version of Myerson’s equation (4.3). Also, by defining Z
0 (9) holds for all m; > 1 and we can from this point forward analyze any mixture of agents
with singleton types (m; = 1) and more (m; > 2) in one unified way.

So facing agents with finite type spaces and m; > 1 for all t, the principal’s mechanism
design problem can be expressed as choosing (p,z) to maximize Uo(p, x) subject to the
constraints (4), (5), (6), and (9). It is apparent that (9) and Uj (p, z,a;) > 0 for all i will
imply (5). So, we can write the principal’s mechanism design problem as follows.

Maximize(p o) 3, 7(v) [vo(1 = Ly pi(v)) + i 2s(v)]

Subject to

10) pi(v) > 0 for all 7 and v, and 37, p;(v) < 1 for all v.

11) Ui(p,z,a;) > 0 for all agents 1.

12) Q;(p,v;) is nondecreasing in v; on §, for all agents 1.

13) Us(p, 2,vf) = Us(p, 2, i) + S5 1 Qip,v)) (! = ) for all i and all | <k<m,.

Now we can pick up Myerson’s reasoning and carry it forward, yielding at each step a finite
type counterpart to Myerson’s results. The next lemma shows that for any p the principal
can define an z to satisfy (11) and (13).

Lemma 3: If for any p satisfying (10) and any i and v = (v_;,vF) the principal defines
zi(v) = vipiv) = T35 0 = v)pi(vei,v]) then Ui(p,2,a;) = 0 and U(p,z,0F) =

7=1
Ui(p, , az)+Z] 1Qz(p, ,)( Sl »)for all7and all 1 <k <my

Proof: We have by definition

Ui(p,a,vf) = 3, m-i(v_s) [vEpi(v_i, vF) —2i(v—s, vF)] and want to choose z so that (13)
holds. That is, we want to choose z so that

U'i(p?xﬂ/zk) = Zy_- Tr-—i(l/~—i){ykpi(y—iayzk) — I (V—u zk:)}
=Ui(p,z,0:) + £521 Qulp, ) (W = o)

= Ui(p,:c, ai>+z Z 7T—'( —z)pz(V—uV )(VJ-H V@])
But these equalities are equivalent to

Ui(p>$7ai) = ZV—-i W_i(y")[y pl( Vis V. Zk) - xi(V“i’VZk)} - Zu_i 7'('_1-(1/_1) Zf;ll(yzﬁ—l -

Vij)pi(y*byg)



k-1, ' :
= 2 Tilv-d) [Vps(voi, vf) = wavoi, V) = Y5 03T — v )pi(voi, ).
k

- Soif for any v = (v_;, UF) we set

k=1, : '
n(v) =vipi(v) = 25 T = )pivoi V)

then we simultaneously get U;(p, z, a;) = 0 and Uj(p, , vF) = U(p, =, ai)+25;11 Qi (p, uf)(uﬁ“—
v)). QED
7).

We are now ready to prove the main result, which is the discrete analog to Myerson’s
Lemma 3. For any v; = v¥ and k < m; — 1 define Ay; = v¥TL _ Uk Define this to be zero
for k = m;. That is, for any v; € Q;, Ay is the upward difference to the next highest type
for agent 4, and for the highest type Ay; = 0.

Theorem 1: Suppose p maximizes

Zw(u) Zpi(y) [vi —vp — l;—j‘;—f—)@A%]

subject to (10) and (12). Suppose also that for any i and v = (v_;, uF)
o ' . |
2:(v) = vipi(v) = S0 (0 = v pi(vi, ).

Then (p,z) is an optimal auction.

Proof: The key is to rewrite the principal’s objective function as choosing (p, z) to maxi-

mize

1 —_ F i(’/i)
Y (Vz)

n n
Vo — Z Ui(p, z,a;) + Zn(u) sz’(l/)[vi - — Av;]
i=1 v i=1
subject to the constraints (10) - (13). But, x only appears in the second term in the
objective function and in the constraints (11) and (13). So, if we choose z to minimize
> iz1 Ui(p, ,a;) subject to (11) and (13) we are doing the best we can. If for any p we
define z as in Lemma 3, we have 3" | U;(p, z,a;) = 0 which is the best possible outcome
for the principal, and (11) and (13) are automatically satisfied. The result then follows. So,
the key is to show that the objective function can be written as claimed. The remainder

of the proof justifies this. The principal’s objective is

2, W) (1 = T pi(v) + X0 7i(v)]

=W+ Xiny 2, () [2:(v) — vopi (v)]

=+ Yy, o, (V) [CL‘Z(V) —vipi(V) + vipi(v) — Vop,-(l/)]
=0+ Ximg 2, T(0) [~ (vipi(v) = 2:(v)) + ps (V) (vi — v0))]
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=vo+ 2 2, () [pi(v) (vi — wo)]

Zz-—l Do W—Z( )Zk L mi(v; )[V pl(V—thk) - mi(V—iszk)]~
Note that this last term is just

Zz 1Zk iy ) i(p, )
We will now expand this using (13) to get
~ i by Ti(vF)Ui(p, , vF)

Zz 1Zk iy, )[U (p;z,0:) +Z] 1Q (payzj)(yﬁ_l VJ)]

:_Z? 1 ;cnzl"ri(yk)Ui(p’%az) Zz 12 j= 17r1( )Qz(pvyzj)( A l/z])

It can be verified that we can resequence the sums Y ;. Zm‘_l D ks yq 50 that
the term is

=2z 2 MO Ui(p, v, 00) = E, ST Y m(vF)Qulp, v ) (7 1),
Because Y3, mi(vf) = 1and Y5, mi(uF) = (1 - Fy(u))) this term is

= -V Uilpz,a) = X0, ST Qulp, v)) (v = o) (1 - Fi()).

By the definition of Q; this is

= =2 Uilp, v, a0) = Y0, S0, wi(v_)pi(vos, v)) (T = ) (1 = Fi(v))

w(u_z,u 5

Noting that for any v = (v_;, Vg), mi(V-i) = "

by the independent values assump-
tion, we have that this term is

== 2?21 Ui(p, =, ;) — Zz 1 Zml—l Z _‘Z:Z_’VLpz(V iy V])(VjJrl )(1 - Fz(Vg))

=~ T Uilna) - Xy 8, S 2y o) ) (1 - F)

Recalling that Av; = 0 when v; = /™ (and, anyway, 1 — Fi(lfg) = 0 under those condi-
tions), we can equivalently take the sum from j =1 to m;, and the term is

== Z?:l Ui(p»xa al) Zz 1 Zl/ s (1/1 pZ(I/_“ Vﬁ)Ayl( (VZ))

Now, adding this term back we get the principal’s objective function as

vy + Z?:l Zu (v )pi(v)(vs — vy) — Z?:] Ui(p, =, 0:) — Zl 1 ZV .y p%(” i Vi) Ay (1 —
Fi(vi))

=y — Z?_—.l Ui(p, T, ai) — Zu 7T(l/) Z?:l pi(l/) [Vi — V) — lwizyzj)l)Al/i}

which is the desired expression, completing the proof. QED
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Note that for any agent with a singleton type, m; = 1, principal will ask for the transfer
zi(v) = vipi(v) and Uj(p, z,v;) = Ui(p,z,a;) = 0. That is, with complete information
about an agent’s type, the principal extracts all potential rents from that agent, as ex-
pected.

Optimal mechanisms in the regular case

The beauty of this result is the simplicity with which optimal mechanisms can be identified,
almost by inspection. Myerson, again, provides the conceptual groundwork. However,
direct translation of Myerson’s results is complicated by the fact that Myerson’s paper
contains a minor error in his section on regular auctions, and in his continuous type case
ties need not be considered because they are probability zero events. This is not the case
with finite type spaces.

Refining Myerson’s results

We begin by refining Myerson’s results for continuous type spaces. Recall that we are
ignoring Myerson’s linear revision functions e;. In this case, Myerson’s “virtual value” for

agent ¢ is defined as
Vi 1 - Fi(v)
[ z(Vz)

An auction with continuous type spaces is called “regular” if this virtual value is strictly
increasing in type v;. It is apparent from the objective function in Myerson’s lemma 3 that
if all agents have virtual values less than v, the principal should not award the contract
(pi = 0 for all agents ). This defines the reservation price for the auction. Otherwise,
the principal will want to award the contract to the agent with the highest virtual value
(ps = 1 for that agent). Equivalently, one can consider the principal as another bidder, who
submits a bid with virtual value vy, and the contract goes to the bidder with the highest
virtual value. As noted, in the continuous type case ties are probability zero events and
can be ignored in expectation.

The problem with this easy prescription is that in the general case we might violate the
constraint that the probability of winning be nondecreasing in type (Myerson’s equation
4.2). However, this is not a problem for regular auctions. If the agent with the highest
virtual value gets the contract in a regular auction, then an agent’s probability of winning
is automatically nondecreasing in type (because the virtual value is). Hence, the optimal
allocation p is easy in the regular case, and then the optimal transfers z can be computed
directly from p as in Myerson’s lemma 3.

To make this explicit, Myerson defines the function z;(v_;) to be the infimal type for
agent ¢ such that agent i’s virtual value meets or exceeds both the principal’s value vy

10



and the virtual value of all other agents. This infimum is attained if the virtual value is
a continuous function, which is commonly assumed. In that case, z(v_;) is the minimal
winning type for agent 4 given the values of all other agents. Myerson’s equation (5.4) is
appropriate in his setting, in which ties can be ignored. However, with either continuos
or finite type spaces, the influence of a; (the lower support of the beliefs regarding agent
i’s type) on the optimal transfers cannot be ignored, as Myerson apparently does in his
equations (5.5) and (5.6). Myerson derives equations (5.5) and (5.6) as if zi(v_y) > a
always. It can be shown that this is guaranteed in the symmetric case, but not in general.
With continuous types, the correct expression for Myerson’s (5.5) should be

Vi
/ pi(v_i, s)ds = [1/1- — max{a;, Zi(l/_i}}+
a;
where [z]* denotes the greater of z and zero. It follows that the zi(v—;) term should be
replaced by max{a;, 2;(v_;)} in Myerson’s optimal transfer equation (5.6). It is apparent
that if agent 7 cannot value the contract below a; dollars, and the principal knows this,
then if the principal awards the contract to agent i he will ask for a; dollars even if all
competing bids are strictly below a;. This revision is not required for symmetric auctions,
which dominate current applications. In the asymmetrical case, however, the difference
can be significant.

Optimal mechanisms in the regular case with finite agent types

To construct optimal auctions in the finite type case we follow Myerson’s logic refined
as suggested above, using our theorem 1 rather than Myerson’s lemma 3 as a point of
departure. Define agent i's virtual value by ‘

1- Fi(l/i)

Tl'i(I/i)

Vi(l/i> =V; — Al/i.

We call the auction “regular” if V;(v) is nondecreasing in v for all agents i. It is easily
shown that if all agents have only two possible types the auction is always regular, whether
or not the agent types are symmetrical.

Again, we can consider the principal to submit a “bid” with virtual value vy and we will
want to award the contract to the bidder with the highest virtual value if that bidder is
unique. We discuss ties below. As before, by awarding the contract to agents with the
highest virtual value, constraint (12) is automatically satisfied in the regular case.

The simplest case is where a single agent, ¢ say, has the unique maximal virtual value.
Then p;(v) = 1 and p;(v) = 0 for all j # 4. If the lowest possible value in agent ’s feasible
set, a; = v}, is higher than any competing bid, it can be verified that the optimal transfer
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in Theorem 1 reduces to z;(v) = a; and zj(v) = 0for all j # 4. If, on the other hand, there
is an integer 7 such that v > a; is the smallest feasible winning bid for agent 4, yet still a
unique maximum among the competing bids, then the optimal transfer from the winning
agent is ¢ is v instead of a;. This is consistent with Myerson’s results, refined as above.

With finite agent types ties may occur with positive probability. This will always be the
case with symmetric auctions. The principal can break ties arbitrarily, but the choice can
affect transfers and hence the potential information rents to agents. We illustrate this with
an example motivated by Harris and Raviv (1981). Those authors prove the form of an
optimal mechanism by constructing an upper bound and then proving their mechanism
attains it. Here we will derive the result directly from Theorem 1.

There are two symmetrical agents each drawing her type uniformly from a finite set
[v!,12,...,v"]. Hence, the probability that any one type from this set is drawn is 1/r.
Further, the type levels are equally spaced, so that v¥ — %~1 = § a constant, for k > 2.
The principal’s value vy is fixed and known to all. In this case, 1 — E;(v*) = (r —k)/r and
the virtual value for agent i with v; = vEisvF — (r—k)dfor 1 <k < (r— 1). For the
highest type the virtual value is just v{. Hence, the virtual value is strictly increasing in
type, and this is a regular auction. The principal should award the contract to the highest
bidder, if that bidder is unique and has a virtual value exceeding vy (Harris and Raviv
assume that vy > 20! — " which is sufficient to imply that the contract is awarded with
probability one). It is implicit in Harris and Raviv that each agent has an equal probability
of winning in the case of a tie, but here we allow potentially weighted schemes. Assume
that in the case of a tie, the principal will give the contract to agent 1 with probability g,
and to agent 2 with probability (1 — q). We now look at the potential resolutions for this

auction.

Suppose that agent 1 wins the auction outright because v, = v¥ > vy = vk where k < k.
Hence, k denotes the winning bid and k the second price. In this case agent 1 is asked
to pay z1(v) = quic + (1 - q)l/’;’“. So, when ¢ < 1 she is asked to pay more than the
second price, the extra payment decreasing in her probability of winning ties. This is not
the case with a continuous type space. If agent 2 wins (v, = V% > 1, = VE, so k still
denotes the second price) she is asked to pay z,(v) = (1 — q)l/fC + qu’%“, with the same
interpretation except the payment increases in ¢. If they tie (v! = v?) then the contract
is awarded according to ¢ and the agents are asked to pay (in expectation) z1(v) = qun
and z3(v) = (1 — ¢)v®. One obvious implementation in the case of a tie is to award the
contract according to q and ask for full value from the winning agent. So, agents earn no
rent in the case of a tie. Harris and Raviv show that an optimal mechanism will ask for
payment equal (in expectation) to the second price plus half of § from a unique winner,
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and half the value from each agent in a tie. This is consistent with the above optimal
mechanism with ¢ = 1/2. The discrete nature of the type space decreases the information
rents to agents relative to a second price auction.

With the more general tie-breaking rule ¢ # .5 and a discrete type space, more information
rents accrue to the favored agent unless the agents tie.
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