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ABSTRACT

Unpaced serial production lines with parallel service facilities are examined in order to
determine how their output rates may be improved through the manipulation of the various design
variables, such as the allocation of facilities to stations, allocation of workload to stations, and
placement of buffers between stations. The knowledge gained through many empirical
investigations is utilized to make observations and to formulate conjectures about the output
maximizing configurations for production lines which have multiple service facilities and finite
buffers at each of several work stations in series. Comparisons to recent related results are

provided.






1. INTRODUCTION
This paper considers the problem of improving the output rates from unpaced production
lines having a fixed process flow and finite buffers by manipulation of the following parameters:
1. the number of work stations;
ii.  the number of parallel facilities at each work station;
iii.  the amount of buffer storage between work stations; and

iv.  the distribution of workload among the stations.

These parameters arise as design variables when the production line is not mechanically
paced (e.g., by a conveyor belt) and when the sequence of a customer's or a part's service is fixed
(e.g., by precedence rules). Customers or orders arrive at the service system to be processed by
any one of the available service facilities at the first work station. They move through the
succeeding work stations as their current servicing is completed and one of the next service
facilities becomes free. The first station is assumed to have an infinite queue and a supply of
customers preceding it, while the last station has an ample number of storage locations succeeding
it.

While on its journey through the production line, the customer or part can experience one
of two states at any arbitrary time: being serviced or waiting for service. Service facilities, on the
other hand, can experience one of threevstates: busy servicing a customer, waiting for a customer
to arrive (starved), or waiting to pass a customer on to the next work station (blocked). Other than
the first work station that can never be starved and the last that can never be blocked, all work
stations' service facilities experience these three states.

One problem addressed here is to determine the amount of available service capacity, or
workload, that should be allocated to each station to maximize output rate. Another problem is to
determine the best configuration of facilities among stations to maximize output. Allocating both
workloads and facilities to stations is also addressed.

For the purposes of this study, all service mechanisms are assumed to have exponentially
distributed service times, which are independent from facility to facility. The observation that the

exponential distribution is sufficient in studies such as these was made by Hillier and So [1989],



who examined coefficients of variation ranging from .7 to 2.5. This variability is important to
consider in modern production systems to accommodate greater product diversity. The studies
provided nearly identical results for these values. In addition, all service facilities are considered to
be reliable to the extent that breakdowns are rare and can be excluded from the analysis.

There has been considerable work on improving the efficiency of such production lines,
but in most cases, only a single service facility is assumed at each station. For example, Wild and
Carnall [1976] consider the effect of buffer storage capacity on the output of a series of work
stations, each consisting of a single facility. Altiok and Stidham [1983], Buzacott [1963, 1967,
1971], Yamashina and Okamura [1983], Freeman [1964], and Barter [1962] show how buffers
can be used to improve the system performance. Muth [1973] considers the effect of service time
variability on system efficiency, while Payne, Slack and Wild [1972] show how a line is effected
by changes in the order of service. Hillier and Boling [1967a, 1967b, 1972] realized that
unbalancing the workloads in these systems can lead to improvements in system efficiency giving
rise to the "bowl phenomenon" that they conjecture is optimal. Generalizations of parameters and
improvements in computations have been done by them [1967a, 1972], in addition to Rao [1976],
Gershwin [1987], and Magazine and Silver [1978].

Some recent relevant research on allocating facilities to and/or workload among stations in
serial production systems has been done by Hillier and So [1989, 1991] and Hillier, Boling and So
[1990]. Hillier and So [1989] look at where to place a fixed number of extra facilities (over an
initial equal allocation to all stations) so as to maximize throughput. Among their conclusions are
that the interior stations, especially the center stations, should be given preference over the end
stations for receiving an extra facility when workload is balanced. Also, for the case where the
total number of facilities is an integer multiple of the number of stations, an equal allocation of
servers is optimal. Their study then focuses on allocating the extra facilities after an equal
allocation to all stations, and for queue capacities of zero or one.

Hillier et al. [1990] investigate the problem of determining the optimal allocation of buffer
storage between stations of a serial production line given an equal allocation of workload to the

stations. Their conclusions are that it is generally better to give preferential treatment to stations at



or near the center of the line and that when the total amount of storage space also is a decision
variable, the optimal solution follows a "storage bowl phenomenon" whereby the allocation of
buffer space follows an inverted bowl pattern. Because of the discreteness of the buffers, this
phenomenon doesn't always hold.

Hillier and So [1991] study the simultaneous optimization of facility and workload
allocation. One very interesting result is the "L-phenomenon," whereby throughput is maximized
by assigning all extra facilities over one per station to just one of the end stations, while also
allocating to this station by far the largest workload per server. They also find that extra facilities
add far more throughput per facility than an initial single-facility per station (the "multiple-facility
phenomenon").

There is a related literature in some studies on the optimal allocations of facilities to work
stations and of workloads to work stations using closed networks of multiserver queues. See
Dallery and Stecke [1990], Shanthikumar and Yao [1986, 1987, 1988, 19891, So [1989], Stecke
[1986], Stecke and Kim [1989], Stecke and Morin [1985], and Stecke and Solberg [1985]. The
latter shows the benefits from allocating both unbalanced workloads and unbalanced facilities per
station.

The most important contributions of these papers deal with the qualitative statements that
can be derived from them. We know that these production lines can be made more efficient by:
reducing the variability of service; increasing the amount of storage; or reducing the number of
work stations. We even have an understanding of where we can expect to have the greatest
marginal improvements when several of these alternatives are available to us. We want to increase
this understanding by éontinuing the work on production line design intuition. Previous work has
looked at the tradeoffs involved regarding these parameters mentioned above. We introduce a new
parameter, that of dividing the allocated work at a station into several parallel facilities. Such an
instance could come about if the work itself can be split, such as in piece work, where the
processing time on each item is small relative to the total processing time in the time period; or,

where the work capacity can be divided--this could be workers, although our continuity



assumption would make this unlikely unless the number of workers is large. Finally, the
workload may consist of several operations, which can then be partitioned.

It would be useful for design purposes to be able to make additional design statements,
regarding the effect of multiple facilities at each station. Would a single faster server be more
efficient than several slower servers in parallel? Where is storage most critical when a particular
design configuration is presented to us? Does the bowl phenomenon still lead to optimal-shaped
allocations? We hope to help answer these and other questions by examining a variety of situations
and making several observations and conjectures. The motivation behind these conjectures will be
from computational results.

Some of our results are similar to previous results in the literature, while some results are
different. This can be because of the particular models used, the particular scaling of the
parameters chosen, and the assumptions made. Following the presentation of our model and
results, we compare our model, assumptions and results with those of previous studies, to try to

explain the observed similarities and differences.

2. MODEL FORMULATION
Our production line consists of N serial work stations. Each work station has Fi (i=1,
2, ...,N) service facilities in parallel and a finite number of storage locations, Si (i=1,2,...,N-1),
after it as depicted in Figure 1.

Mathematically, we can state the problem as:

Maximize R(N; Fi; “ij; Si)

N [Fi }-1
s.t. Y | Xu..| =N,
i=1 Lj=1 Y

'“Lij >0, i=1,2,...,.N and j=1,2,...,Fi
where

= expected output rate for the production line

z
]

number of work stations

number of parallel service facilities at work station i (i=1,2,...N)
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the mean service rate for the jth service facility at the ith work station
] (j=1,2,...F;5 i=1,2,....N)

—
I

Si = the number of storage spaces following work station i (i=1,2,...,N-1).
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Figure 1. An N-Station Production Line.

The measure of effectiveness considered here is the expected output rate, or throughput, of
the production line. So that various systems can be compared, the objective function is constrained

by the amount of service time capacity available, i.e.,

N [F T
& & TN @

This is the total workload required by the system. One of the design parameters is how to allocate
this fixed amount of work or service time capacity to the stations in the production system. This is
equivalent to allocating service rates to the work stations, as we will see in the next section. If each
server is always busy, then one customer will leave the system each time period, on the average.
We assume that the rate of service at each parallel facility at a particular station is the same,

because of the symmetry of these facilities. This is easily verified for two facilities at a given
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station. Therefore, thi:In oy =Hip = "'uiFi (i=1,2,...,N), then jzl uij = Fi Moy =1y and

equation (1) becomes: '§1 [ui]-l =N.

If Ry=Hy= "':MN = 1, then the production line is said to be "balanced". When the
service times are constant (i.e., the variance Gizj = () then balancing maximizes R, which is then
equal to 1. The value of R, therefore, can be used to measure the efficiency of the system, relative
to the deterministic balanced case.

To find exact solutions for these problems, we would have to work with state space

equations whose number explodes as the size of the problems grow. A general recursive formula

for the number of states is:

S8y =SSy Py +Sn.g +Fy+ D -SS +1)2,

N-1 N-2 FN-1 B

where SSn = the number of states when there are n work stations
SS

=1 and SS, =0.

1 0

Table 1 indicates this explosiveness. Because of the computational burden, we investigate serial

lines with two and three work stations, up to seventeen facilities, and up to six buffer spaces.

Table 1. State Space Explosion.

Number of Work Stations
Number of 2 3 4 5
Storage
Spaces Number of Service Facilities
1 2 3 1 2 3 1 2 3 1 2 3
0 3 5 7 8 22 431 21 95 259 55 409 1555
1 4 6 8| 15 33 58] 56 180 416] 209 981 2980
2 5 7 9 24 46 75| 115 301 621] 558 1668 4899

Because of this computational burden, theoretical results, for the most part, have not been
tractable. We have verified our conjectures (summarized in Section 5) for small problems. The
mathematics, however, adds nothing to our understanding of these systems, and will not be

repeated here.
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3. EFFICIENCY OF TWO SERIAL WORK STATIONS
To understand how different parameters affect the output of serial work stations, let us first
analyze a two work station configuration, i.e., N = 2. An obvious advantage of this instance is
that we can analytically determine R for several different parameter configurations. In addition,
some properties of serial production lines can be verified for N = 2.
The problem is then to:
maximize R (2; Fl’ F2; R By S)
s.t. l/u1 + 1/u2 =2
Hy and Hy > 0.

Here we can clarify the relationship between the average service rates and the average
service times. For a two-station system, the sum of the average service times equals the number of

stations, which is the total service capacity:
1/u1 + llu2 =2.

Solving for the average service rate at station 2,

__ M
M= 2y -1

Then the sum of the average service rates is:

2

+lL, = :
ity 2 - 1

This can help to clarify one of the differences in scaling between our study and those of
Hillier and So [1989, 1991b]. Although all of these studies examine workload and/or facility
allocation, there are different scalings of the output rate. For example, Hillier and So [1989]

require that

N
F.=F. 2
151 ! @

Hillier et al. [1990] constrain the output according to the number of buffers:



N-1
¥ S.=S8.
i=1 1

Hillier and So [1991b] constrain both the sum of facilities (2) and the sum of workloads (1). One
difference is that because of equation (2), the output rate of Hillier and So [1989, 1991b] is usually
greater than one, but cannot exceed the minimum number of servers at any station. Such
differences in scaling may sometimes cause the occasional differences in results.

As a result of our choices of scaling (see equation (1)), our output rate is always less than
or equal to 1 and the capacity of the system remains constant. In Hillier and So [1989], the
addition of extra facilities adds additional capacity to the system and makes comparisons difficult.
In addition, our results aren't as intuitive. Itisn't surprising that additional capacity would increase
the throughput. It is, however, less obvious what would happen if we split the capacity allocated
to a workstation. Results from classical queueing theory suggest that the two slower parallel
servers may not be as efficient as the single faster server. We believe this is an important
difference in our results,

The design parameters that we consider are: (1) the addition and placement of facilities; (2)
the allocation of the two units of work capacity, i.e., 1/p,L1 and 1/].[2; and (3) the effects of changes
in the buffer storage S. Through direct comparison of R, we can verify first, that each facility is
given equal amounts of the service capability afforded to that station and therefore, specifying K
and Fi determines uij’ j= 1,2,...Fi and secondly, that the "reversibility property holds." This
property says that for any design configuration, (Fl’ 1_32, ﬁl’ EZ’ S) leading to output R there is
another configuration, where F1 = _152, F2 = 1_31, Ry = ;_12, Hy = ILI’ and S = S having the same
output rate. This result has been proven for single facility systems by Muth [1973] and for
somewhat more general systems by Dattatreya [1978] including serial systems of parallel stations
when N = 2. However, it has been shown to not hold for serial systems of parallel stations with
N > 2 (see Yamazaki et al. [1985] and Hillier and So [1989]). They show that although
reversibility does not hold, the differences in throughput for the mirror image lines are very small,
0.0015, for lines with multiserver stations. They conclude that reversibility is close enough that

only one of the two configurations needs to be tested. The purpose of each of these facts is to use



them to reduce the number of possible configurations that we must look at in order to feel confident
about coming to conclusions. It is sufficient for us to investigate only one of the mirror images.
The mechanism we use will be to hold all but one of the controllable parameters fixed and
systematically vary only this one parameter at a time. Values of R are computed in each instance
and patterns follow. R is calculated from thé steady-state balance equations. After much tedious

algebra, we arrive at:

F
2
R=p,/(2u; - 1) ll-P ngo [(F - n) {F,(2u, - 1)}n/F2n!]],

where
F2 n F S n
P=11+ 2‘,1[{F2(2u1-1)} /] + [Fyn, - D]"2/F,y! nzl(zul-l)
n= =

1) Fa+S J Fy! n, n|l-1
2 (2}11 -1) /FZ!‘ nzl [Eﬁl“:r'l—)—' (2}11 - 1) /Fl .

+F

Although it is possible to present lengthy tables showing R for various parameter values,
we feel that the information we wish to convey is better done with curves. For readability, these

are drawn continuously, by interpolating the results from discrete trials.

3.1 Unbalancing Workloads When F, = F

1772

To begin with, there is an equal number of facilities at each work station and there is no
storage between stations 1 and 2. Figure 2a shows the effect of unbalancing workloads for several
configurations F 1/F2, where F = F1 + F2. As we move away from the balanced case, Hy=Hy=
1.0, it is evident that R decreases. In addition, as F increases, both the output rate and the
importance of balancing increases.

From Figures 2a and 2b, we note that the detrimental effect of unbalancing on R grows as
F increases. Hence, the larger the number of facilities, the larger the penalty for not balancing.
These results agree with those of Stecke and Morin [1984] and Stecke and Solberg [1985] using

closed queueing networks of multiserver queues.
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3.2 Unbalancing Workloads When F1 # F2

The above results do not hold when the number of facilities at each work station is not the
same. To illustrate this, let us examine the extreme case where F1 =1 and F2 =F-1. (From
reversibility results, this is the same as F1 =F-1and F2 =1.) The direction of unbalance is
important in these cases. From Figure 3a, we can see that R increases as we shift the burden of
effort or increased workload (decreased service rate) towards the station with fewer facilities.
Here, the single-facility station receives the most work (or equivalently, it works at a slower rate).
The multi-facility station receives less work. Each facility works at a faster rate. An alternative
interpretation is the following. Given a fixed amount of work, output is increased by having each
facility of the parallel station working faster than the single facility. This does not agree with the
results of Stecke and Solberg [1985] using closed queueing networks of multiserver queues. In
that model, it is best to assign a higher workload per facility to the station with more facilities.

Clearly, there is a point below which decreasing Hq will also decrease R. We know that
this number is less than 1.0, but will withhold discussion of the optimal allocation of workload for
now. Once again, as is indicated in Figure 3b, the effects on R of unbalancing are magnified as F
increases.

It is also the case that unbalancing in the direction of allocating greater workloads to those
stations having fewer facilities increases R for those intermediate cases, where 1 < Fl’ F2 <F-1
See Figures 3c and 3d. As we might expect, the closer the configuration is to the balanced case,
the less unbalancing is necessary before R starts decreasing. It is also the case that unbalancing too

far creates a more dramatic fall-off in R when F is large.

3.3 Arrangement of Service Facilities when Workloads are Balanced

We know for any configuration of facilities, in which direction we should unbalance. Let
us assume now that this configuration is a design parameter and under our control. Specifically,
we first assume that workloads are balanced (ul =, = 1.0) and S = 0. We start with F1 = F2 =

1 and increment, by one facility at a time.
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Figure 2b. Marginal % Decrease in R as Workloads Vary.
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Figure 4 indicates the effect on R for different values of F1/F2. It is clear that the best
configuration attempts to equalize F1 and F2. Hence, if one facility is to be added to the system, it
would be best to place it in the station with the fewest number of facilities. It should also be noted
that configurations with larger F need not be better if they aren't carefully allotted. For instance,
configuration 3/3 (with an output rate of .79070) is a little better than 6/1 (with output rate of
.79056) in spite of the additional facility. These results also agree with those of Stecke and
Solberg [1985]. The results here are more directly comparable particularly since in this section,
there is the constraint that workloads are balanced. Of course the 6/1 configuration can provide a
higher output rate than 3/3 if the workloads are allowed to be unbalanced, as we shall see in

Section 3.5.

3.4 Effect of Storage Spaces

The third design variable, and the most significant in terms of its effect on R, is the number
of available buffer spaces between the two work stations. Figure 5a illustrates the increase in the
output rate for balanced workloads and evenly (when possible) split facilities. Note that the
increase in R (by almost 13%) from configuration 1/1 by changing S from 0 to 1 is the same as
incrementing the facility configuration to 2/2.

In Figure 5b, the marginal percentage increases in R are shown as S changes from 0 to 1,
2, or 3. The positive effect of adding storage spaces diminishes as F is increased. From Figure
5c, the converse is also seen to be true. That is, for larger S, the positive effect of adding facilities

also decreases.
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3.5 Determination of "Optimal" Parameter Values

Understanding the effect of changes in the parameters assists us in choosing the best
configuration under our control. Obviously, R increases asymptotically to 1.0 as S or F are
increased. We would like to determine the best allocation of fixed resources by fine tuning the
maximum value of R. We say fine tuning because of the, sometimes, very small improvements in
R over the balanced configuration. For example, for the configuration 1/6, the optimal
unbalancing of the service rate at station 1 by 4% (from Hy= 1.0 to Hy= .96) results in a .19%
increase in R. Also, some parameters have to be changed in discrete amounts.

Figure 6a shows the locations of the maximum values of R for various fixed configurations
of facilities when S = 0. As F increases, not achieving optimal unbalancing has a marginally
increasing effect when F is very unevenly split, e.g., 1/F-1. The effect of increasing F, however,
is diminishing as the configuration approaches the evenly split case. In addition, the amount of
unbalancing workloads required to maximize production increases with F for the extreme case
(1/F-1) and decreases as the configuration approaches the evenly split case.

Finally, it should be noted that if unbalancing and distributing facilities is left to our
control, both should be as balanced as possible. This is the opposite conclusion to that of Stecke
and Solberg [1985], where for a closed network of two connected/queues, the maximum expected
output is achieved by unbalancing both the configuration and the workload. Reasons for the
different conclusions may be the different situations, assumptions, and models. Here, there is no
buffer and a fixed route. Stecke and Solberg allow random routing and allow adequate buffer
space to hold all waiting customers.

Figure 6b illustrates the effect of increasing S for a fixed F (7 in this case) with various
configurations. For each configuration, the amount of unbalancing that is necessary to attain the
maximize the output rate for any fixed S decreases as the facilities are more evenly split, but, the

fall-off from too much unbalancing is faster in these cases.
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4. PARAMETER SENSITIVITY WHEN N =3

It would be difficult to try to draw general conclusions concerning the best configurations
simply from the two work station case. We might expect similar behavior for several parameter
changes as the number of work stations increases to three, but certain differences are also
anticipated. For instance, when N = 3 we first encounter the "bowl phenomenon" described in
Hillier and Boling [1967a, 1967b] for serial systems.

The design parameters we now consider are the addition and placement of facilities, the
allocation of total workload among the stations, the increment and placement of storage buffers
after the first and second stations, and the increase in the number of stations from two to three.
Once again we can assume that the facilities at each work station have the same mean service rates
and that reversibility is close enough that we need not explicitly consider the symmetric
configurations.

In the subsections that follow, we again, by means of curves, attempt to describe the
behavior of R as each parameter is allowed, separately, to vary. From this, we attempt to make
statements regarding optimal design configurations when several parameters can vary. We use F
and S to denote the total number of facilities and storage spaces available. We also use F1/F2/F3

to denote the allocation of the facilities to the different work stations.

4.1 Arrangement of Service Facilities

All combinations of configurations of service facilities from F = 3 to F = 12 were examined
to see the effect of different permutations on R. It is assumed initially in this subsection that S =0
and that the workload is balanced. Figure 7 depicts the output rate for many of these
configurations. Table 2 provides the best configuration of facilities for each value of F. It is
apparent for each F > 3 that the optimal configuration has F2 > F1 = F3. As F increases, this bowl
phenomenon" effect increases and the unbalancing of the configuration in favor of the middle
station increases. In other words, as F increases, the middle station needs to be more efficient, so
it takes the largest number of the available facilities. As F is increased to F + 1, the optimal

allocation of facilities continues to add a facility to the middle station until the unbalancing is too
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Table 2. Optimal Configurations for Various F When All K = 1 and S1 = 82 = 0.

Optimal Configurations of F
F F1 Fy F3
4 1 2 1
5 1 3 1
6 | 4 1
7 2 3 2
8 2 4 2
9 2 5 2
10 2 6 2
11 2 7 2
12 3 6 3

severe. At this point, a facility is taken away from the middle station and a facility is added to the
first and third stations. In any case, the optimum allocation preserves symmetry. (Note the cases
of going from F = 6 to 7 and from 11 to 12.) Also, it is evident that the marginal effect of
increasing F decreases as does the penalty for not using the optimal configuration.

These results can also be used to determine the best placement of a new facility when a
given configuration (not necessarily optimal) is provided. For instance, if the present design is
2/1/1 and a new facility can be added, we can see that R(2/2/1) > R(2/1/2) > R(3/1/1).

Hillier and So [1989] observe a more subdued bowl phenomenon than occurs here. For
example, here the configuration 1/4/1 is better than 2/2/2. See Figure 7. This is not true for Hillier
and So. Both are modeling three-station serial production lines with no buffer and balanced
workloads. One difference is in the scaling of the output rate. Ours is always less than one. For
Hillier and So, R is less than the minimum number of facilities per station for a particular
configuration. This scaling allows 2/2/2 (R < 2) to be better than 1/4/1 (R < 1) here. Further

research is required to better understand this. In all cases, there is a bowl phenomenon.

4.2 Unbalancing Workloads
It is not surprising that when the i (i=1,2,3) are allowed to vary, the symmetric "bowl"
configuration is not necessarily optimal. Figure 8 provides optimal values for Hy and Hy for
various configurations. S is still 0 and Hy = ulu3/(3u1 u3-u1-u3). When F; = F3, we can see
that Hy=Hg. In addition, at optimum, My and My are less than one for all configurations

considered. This means that Ky is always greater than one.



25.

7
/
98 1T '/'/
/
7
/
ul 41/4 —wp'
7
/
/'/
96 -+ 41414, 3/1/3 —
/
3/3/3 —9
/
4
e '/
/
20212 —=pf
I/'
94 W2 —ey | o <—3/112
/
/
Service Rate at Work /,/' o——72/3/1
Station One (1) -+ <1/4/1
1 S=—113/1
S=—112/
92 + €=—1/1/1 o <221
T o <—3/2/1
90 T o <——2/1/1
1 o <~ 3/l
.88
86 T
L | ] ] [ 1l | ] ]
[ | 1 | ] l 1 ]
92 94 96 98

Service Rate at Work Station Three (13)

Figure 8. Optimal Workload Allocations for Various Configurations when S = 0.



26-

It certainly appears that, at least for configurations F1/F2/F3 that are close to optimal, the
bowl phenomenon is once more present. As F increases, the amount of unbalancing of the optimal

workloads seems to decrease. Finally, when F1 > F3 (for any F2), then Hy <K

4.3 Allocation of Storage Spaces
Table 3 presents the optimal storage space arrangements for various configurations with
balanced workloads. When the production line is symmetrical (F1 = F3), then the maximum value
of R is achieved when S1 =|s2] (|_XJ is the greatest integer in x) or 82 =|.S/2]. When S is odd,
both arrangements of Sl’ 82 give the same R. For example, configuration 1/3/1 with S = 3,
S1 =2, and 82 =1 (or S1 =1 and 82 = 2) gives an output rate of .74555.

Table 3. Optimal Buffer Space Arrangements for Various Configurations
and with Balanced Workloads.

Optimal Storage Space Arrangements
Facility
Configurations S=1 S=2 S =3 S=4 S=5 S=6
F1 F2 F3 S1 82 S1 82 S1 82 S1 32 S1 S2 S1 52
1 1 1 1 0 1 1 2 1 2 2 3 2 3 3
or 0 1 orl 2 or2 3
1 2 1 1 0 1 1 2 1 2 2 3 2 3 3
or0 1 orl 2 or2 3
2 1 1 0 1 1 1 1 2 2 2 2 3 3 3
3 1 1 0 1 1 1 1 2
2 2 1 0 1 1 1 1 2
2 1 2 1 0 1 1 2 1
or 0 1 orl 2
1 3 1 1 0 1 1 2 1
or( 1 orl 2
4 1 1 0 1 0 2 1 2
3 2 1 0 1 1 1 1 2 2 2
3 1 2 0 1 1 1 1 2 2
2 3 1 0 1 1 1 1 2 2 2
2 2 2 1 0 1 1 2 1
or0 1 orl 2
1 4 1 1 0 1 1 2 1
or 0 1 orl 2
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When F1 > F3,

work station. The integer restrictions on S1 and 82 may still keep them equal until the difference

then there is an attempt to provide more storage spaces before the third

between F1 and F3 grows sufficiently to make them unequal. This can be seen when S =2. The
two buffer spaces are split equally when 2/1/1 is the configuration, but when it is 4/1/1, the optimal
use of the two spaces is S1 =0 and 82 =2.

In Table 4 depicting output rates, we can see that the general trend is for R to increase, but
at a decreasing rate as S is increased. For example, from configuration 2/3/1 of Table 5and S =1,
2, 3, and 4, we have marginal % increas_es in R of 5.66%, 4.14%, 3.25%, and 2.58%,
respectively. This decreasing rate is not monotonic, however, as can be seen from configuration
2/1/2 of Table 5. At times, the more efficient split of S is a dominating factor over the decreasing
effect of increments in S. This is especially true when F1 = F3 and S is incrementing from an odd
to an even number, where an even split can be best.

Table 4. Output Rates from the Optimal Buffer Space Arrangements for
Various Configurations and with Balanced Workloads.

Facility
Configurations Output Rate from Optimal Storage Space Arrangements
F, F, F; S=0 S=1 S=2 S=3 S=4 S=5 S=6

66572 | 69758 | 73230 | .75330

1 1 1 56410 | .61333 | .67047 | .70032 | .73402 | .75434 | .77671
1 2 1 61513 [ .65716 | .70217 | .72788 | .75575 | .77347 [ .79253
2 1 1 59310 | .64695 | .68751 | .71957 | .74541 | .76687 | .78489
3 1 1 .60982 | .66609 [ .69791 | .73136

2 2 1 63940 | .68315 | .71666 | .74360

2 1 2 .62618 | .66345 | .70638 | .73063

1 3 1 04746 | .68452 | .72253 | .74555

4 1 1 62107 | .67915 | .71000 | .73975

3 2 1 05392 | .69854 | .72567 | .75342 | .77102 .80447
3 1 2 .64410 | .68369 | .71753 | .74298 | .76539 79920
2 3 1 .66834 | .70620 | .73544 | .75933 | .77895 .80973
2 2 2

1 4 1

67101 | .70342 | .73764 | .75888
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Table 5. Marginal % Increase in R for Increments in S with Fi
Constant and with Balanced Workloads.

Facility
Configurations Marginal % Increase in R

F F2 F, S=1 S=2 S=3 S=4 S=5 S=6
1 1 1 8.73 9.32 4.45 4.81 2.77 2.97
1 2 1 6.83 6.85 3.66 3.83 2.34 2.46
2 1 1 9.08 6.27 3.29 4.66 2.88 2.35
3 1 1 9.23 4.78 4.79

2 2 1 6.84 491 3.76

2 1 2 5.95 6.47 3.43

1 3 1 5.72 5.55 3.19

4 1 1 9.35 4.54 4.19

3 2 1 6.82 3.88 3.82 2.34

3 1 2 6.15 4.95 3.55 3.02

2 3 1 566 | 4.14 3.25 2.58

2 2 2 4.79 4.98 2.87

1 4 1 4.83 4.86 2.88

From the selected cases in Table 6, it also appears that R increases more slowly as F
increases and S is held constant. For example, for S = 0 and configuration 1/1/1, as a facility is
added incrementally to the middle station, the marginal % increase in R is decreasing, from 9.05%

to 5.26% to 3.64%, respectively.

Table 6. Marginal % Increase in R for Increments in F with S Constant
and with Balanced Workloads.

Facility Configurations Marginal % Increase in R
F1 F2 F3 S=0 S=1 S=2 S=3
1 1 1 - - - -
1 2 | 9.05 7.15 4.73 3.94
1 3 1 5.26 4.16 2.90 2.43
1 4 1 3.64 2.76 2.09 1.79
1 1 1 - - - -
2 1 1 5.14 5.48 2.54 2.75
3 1 1 2.82 2.96 1.51 1.64
4 1 1 1.84 1.96 1.73 1.15
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4.4 Unbalancing Workloads as Fine Tuning

There is more potential for improving R by unbalancing workloads when N = 3 rather than
2. In particular, unbalancing is applicable for non-optimal configurations. Consider, for instance,
the case of F = 6. The optimal configuration of facilities is 1/4/1 when balancing workloads
occurs, with an output rate of .67101. If, however, the given configuration were 2/3/1,
unbalancing workloads is not only better than the balanced workload case for 2/3/1 (.67283 versus
.67101), but it is better than the balanced workload R for the 1/4/1 case. This éuggests that, in
general, the optimal allocation of workload when the facilities are nonsymmetrical would be
unbalanced.

Unbalancing can't always help poor facility design. For instance, when we distribute the
six facilities 2/2/2, no amount of unbalancing workloads will make it dominate the 1/4/1 balanced
case. The balanced workload allocation for configuration 2/2/2 gives an output rate of .66572.
Hence, there seems to be great potential for unbalancing "near optimal" configurations to further
improve the output rate. A possible explanation may stem from the fact that facilities may only be
moved discretely and facility changes may overstep the optimal R, whereas the workload can be

continuously varied.

4.5 Optimal R for Constrained Variables
Table 7 demonstrates the effects of fixing a parameter on the optimal R for fixed resources.
In particular, consider F = 6 and S = 4. The values which are in boldface were fixed in each of

these cases.

Table 7. Optimal Output Rates When Some Parameters are Fixed.

Configuration Output
Case Rate
No.| Fy M S Fp ) Sy | F3 %] (R)
1 1 0.965 2 4 1.078 2 1 0.965 78355
2 2 0.960 2 3 1.072 2 1 0.975 78156
3 1 1.000 2 4 1.000 2 1 1.000 | .78084
4 4 0.995 1 1 1.061 3 1 0.950 .76333
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In the first case of Table 7, each parameter was allowed to be free. The other three cases
fixed one of these parameters at non-optimal values and permitted the other two parameters to be
design variables, chosen to maximize the output rate. It is difficult to draw conclusions from the
results of Table 7, but it appears that moderate deviations from the optimal values of these
parameters do not always significantly effect R. The effect is greatest when an available resource
is small and changes in the associated parameters are discrete. It seems that when F and S are
fixed, but large, and the W, are nearly balanced, then moderately non-optimal configurations will

have output rates which are close to the optimal unconstrained arrangement.

4.6 Increasing N from 2 to 3
There seems to be a significant effect on R when the number of stations is increased from 2
to 3. Table 8 shows a small example, where the main change of interest has been to increase the

number of stations (and, therefore, the amount of service capacity given by equation (1)) from

2 to 3.
Table 8. Output Rates as a Function of the Number of Stations.
Configuration Characteristics Output Rate | % Change in
F1 S1 F2 82 F3 N F S (R) R
1 o 1 - - 2 2 0 .66667 -
1 o 2 - - 2 3 0 71429 +7.1
1 0O 1 0 1 3 3 0 56410 -15.4
1 | 2 2 1 .75000 -
1 1 2 - - 2 3 1 7778 +3.7
1 1 1 0 1 3 3 1 .61333 -18.2
1 2 1 - - 2 2 2 .80000 -
1 2 2 - - 2 3 2 81818 +23
1 1 1 1 1 3 3 2 .67047 -16.2
1 3 1 - - 2 2 3 .83333 -
1 3 2 - - 2 3 3 .84615 +1.5
1 2 1 1 1 3 3 3 .70032 -16.0

In each case of Table 8, the optimal allocation of p is used to calculate the optimal
production rate. It is expected that further increases in N would cause a further reduction in R. A

possible explanation for this is the increased probabilities of blocking and starving for any
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workpiece as N is increased. It is anticipated, however, that this effect would decrease as N is
increased from higher values.

If one has a choice of whether to add a facility to an existing station or to form another
station, then it is always better to add it to one of the existing stations. Some examples of four
facilities with various storage sizes show decreases of 15-18% in the output rate by forming a third
station, rather than adding a facility to one of the existing two, which increases R. The table is

omitted here for space consideration.

5. OBSERVATIONS FOR GENERAL SYSTEMS
From Sections 3 and 4, it is possible to identify many trends that we would expect to
continue if the number of stations were allowed to grow beyond three. We don't reiterate each of
these, but only the most salient, by stating the general expectations in the form of conjectures and

observations.

Conjecture 1. For two stations, if F1 # Fz, then the optimal workload allocation is unbalanced

by giving most work to the station with fewer facilities.

Conjecture 2. For two stations, output rate is maximized by balancing the facilities per station

and the workload per station as much as possible.

Conjecture 3. For any set of parameters that maximizes R, given fixed resources, the

symmetrical allocation property holds, i.e., Fi = FN Lo i=12,..,N

No= BNgLp i=12,.,N
S. = Sy ., i =1,2,..,N-1.
i N-j i=1 N-1

Conjecture 4. For any set of parameters that maximizes R, the bowl phenomenon holds, i.e.,

F1<F2<...<FLN_I
2

andul<u2<...<uLNJ.
2
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Conjecture 5. A unit increase in the number of work. stations decreases R, even if this is
accompanied by unit increases in each of the resources, i.e., R(N; F; u; S) >

RN+ 1; F+1;u; S+ 1).

Conjecture 6. AsS or F — oo, the optimal distribution of workload approaches a balanced
situation and R — 1.0. In addition, for large S and F, the balanced workload

line is approximately equal to the optimal unbalanced distribution of workload.

Conjecture 7. If there is a choice between adding one facility or one storage space to a
production line, while keeping the distribution of service constant, the expected

output rate is always increased more by adding a storage space.

The work of Hillier and Boling [1967a, 1967b] began as an empirical study of single-
facility stations with several conjectures, the main one being the bowl phenomenon. We have
observed a similar pattern even when the stations may have parallel facilities, as have Hillier and
So [1989]. It appears that the general principle is to make the stations towards the center of the line
more efficient. This can be done by increasing the service rate per facility for the middle stations
(that is, decreasing the workload) or by increasing the number of parallel facilities at these center
stations. Also, as the number of storage spaces (or, as the number of facilities) increases, blocking
and starving occur less frequently and deviations from balanced systems have lessened effects.
This is also experienced in the single facility per station case.

There is an improvement in output rate by adding parallel facilities. This is not obvious
because parallel stations are not better in M/M/1 queues. Splitting a station into several facilities is
counter to previous queueing theory results. One explanation is that parallel facilities gives us a
mechanism for protecting against blocking and starving, by providing additional storage.

The assumption of exponential service times is convenient and not realistic, but has a
certain robustness. Hillier and So [1989, 1991] conclude that the approximation of an exponential
distribution should suffice whenever the coefficient of variation is between .7 and 2.5. The
problems of blocking and starving occur because of the variability of service times from station to

station. Exponentially distributed service times lead to this high variability and, hence, we would
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expect to need unbalancing. Realistic distributions would likely have lower coefficients of
variation. Analyzing extreme cases, such as deterministic and exponential distributions, provides
us with information on the sensitivity of such parameters.

Some of the results on the optimality of unbalancing configurations and/or workloads are
similar and some different from the results of several queueing network studies. In particular, as
opposed to the observations in this paper, the results of Stecke and Solberg [1985] indicate that
expected production is maximized by unbalancing both the configuration and the workload
allocation when N > 2. However, another difference is that there is no bowl phenomena observed
in the queueing network studies. Some reasons for these differences are that the queueing
networks are modeling different systems. In particular, the closed networks of arbitrarily
connected queues are modeling job shop types of systems where workpieces have alternative
routes. Also, the queueing network models require an adequate buffer in front of each work
station to hold all parts that may need to wait.

The problem of designing or improving production facilities is likely not amenable to
general solution procedures until we have a better understanding of the effects of the parameters
inherent in these systems. One of the aims of this paper is to increase our understanding of some

of these effects.
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