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ABSTRACT

Automobile warranties and thus lifetimes are characterized in the two-dimensional space of time
and mileage. This paper presents a non-homogenous Poisson Process (NHPP) predictive model
for automobile warranty claims consisting of two components: a population size function and a
failure or warranty claim rate. The population size function tracks the population in the time
domain and accounts for mileage by removing vehicles from the population when they exceed the
warranty mileage limitation. The model uses the intensity function of a NHPP — the instantaneous
probability of failure - to model the occurrence of warranty claims. The approach was developed
to support automobile manufacturers’ process of using claims observed during the early portion
(first seven months) of vehicle life to predict claims for the remainder of coverage, typically
between three and five years. This paper uses manufacturer provided warranty data from a luxury

car to demonstrate the NHPP model by predicting claims for three vehicle subsystems. Warranty

predictions are then compared with the actual observed values.

Keywords: Automobile warranty data, Two-dimensional lifetime, Non-homogeneous poisson

process, Warranty claim predictions.

Karl D. Majeske Revised: 7-14-03 Page: 1



A Non-Homogeneous Poisson Process Predictive Model for Automobile Warranty Claims

1. Introduction
Manufacturers of consumer durable goods use many metrics to assess the quality and
reliability of their products. One class of measures, referred to as field performance, represent

how well a product has functioned during its life relative to customer expectations. Global

automobile manufacturers track customer satisfaction with the Initial Quality Study), a third party
measure of vehicle field performance. This survey primarily identifies items that annoy
customers or vehicle features that fail to meet their expectations, and manufacturers use this
information as an input into future designs. Warranty claims also measure the field performance
of automobiles. Items repaired under warranty cause not only an inconvenience to the customer,
but result in a direct deduction to the manufacturer’s profit generated by the sale. These claims
then represent an opportunity for cost reduction that manufacturers can glean through product and
process design changes. To quantify the impact on customer satisfaction and cost of warranty,
manufacturers use statistical techniques to model and predict the number and cost of warranty
claims. Manufacturers use warranty predictions for a variety of purposes: to assess customer
satisfaction, identify product and process design changes, and predict financial liability.

This research focused on predicting the number of automobile warranty claims, which
automobile manufacturers use as a measure of quality during the various stages of the product
development life cycle. After completing product design, automobile manufactures make pre-
production prototype vehicles. These vehicles are used in crash testing (to satisfy safety
standards) and reliability testing (to establish field performance). Manufacturers also make
warranty predictions based on the performance of these pre-production prototype vehicles. They
use these predictions to motivate the need for, and justify the expense of, product design changes

prior to the commencement of mass production. These early warranty predictions are also an

I The Initial Quality Study, an across manufacturer comparative study of new
vehicle quality, is published annually by J. D. Power and Associates, Agoura Hills, CA.
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input into product pricing and the viability of the vehicle in the marketplace. Sarawgi and Kurtz
(1995) propose a method for predicting warranty claims using bench test data. Majeske and
Herrin (1998) show an example where field performance dramatically differs from predictions
using bench test data.

Once a vehicle model reaches the marketplace, manufacturers predict warranty claims
and costs based on data observed early in the product life (the first six or seven months of usage).
Financial functions use these predictions to determine the amount of money to reserve to cover
the future warranty liability. Engineering functions use these predictions for many purposes:
identifying product design changes, identifying manufacturing or assembly process changes, cost
justifying various changes, and evaluating the effectiveness of these changes once implemented.
Wu and Meeker (2002) propose a method for early detection of reliability problems using
warranty data. They argue the earlier problems are detected, the smaller the financial and
goodwill costs that will result from the problems.

Current trends in automobile manufacturing and marketing have increased basic warranty
coverage from 12 months / 12,000 miles to as much as five years / 50,000 miles on the complete
vehicle and ten years / 100,000 miles on the power-train. This increase in coverage has
highlighted the lack of predictive validity of some automobile warranty forecasting techniques.
The motivation for this research was the need to develop a technique that provided the
manufacturer more accurate warranty predictions, especially in the later stages of warranty
coverage. This paper contains the result of that work, a non-homogeneous Poisson Process
(NHPP) predictive model for automobile warranty claims. This technique forecasts the number
of warranty claims that a population of vehicles will experience based on the claims observed
early in the vehicle lifetime. In addition to providing manufacturers a prediction of the total

number of claims, the technique also forecasts the timing of claims during the vehicle lifetime.
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The remainder of this paper is organized as follows. Section 2 defines the warranty
lifetime of an automobile in the two-dimensional space defined by time and mileage, and
introduces the usage function. Section 3 provides an overview of warranty claim predictive
models with a focus on automobile warranty. Section 4 develops the NHPP predictive model that
consists of two components. The first component is a time based population size that accounts
for mileage by censoring vehicles from the population when they exceed the warranty mile age
limitation. The second component, the failure rate or the warranty claim rate, is captured by the
intensity function of a NHPP. The model then predicts claims by integrating the product of the
population size and the intensity function over the time domain of the warranty coverage. Section
5 presents an application of the approach to three subsystems of a luxury automobile using
manufacturer supplied warranty data. Section 6 contains the conclusion.

2. Automobile Lifetime Under a Two-Dimensional Warranty

Manufacturers provide product warranties that can be described in a multitude of ways
(Blischke and Murthy 1992). Basic coverage describes the warranty included in the purchase
price of a product. This coverage represents a service contract that a customer must buy if they
wish to purchase the product. Extended coverage represents coverage not included in the
purchase price of the product (Kelly and Conant 1991). Moskowitz and Chun (1994) define three
major types of warranties: pro rata, free replacement, and lump sum. The pro rata warranty
defines a cost sharing function between the manufacturer and seller with the most common setup
transferring the repair burden from the manufacturer to the customer linearly over the coverage
(e.g., automobile batteries and tires). With free replacement coverage, the manufacturer agrees to
replace or repair the product during the coverage at no cost to the customer (e.g., automobiles,
computers). The lump sum warranty provides the customer with a fixed payment, determined at

time of sale, if the product fails.
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Manufacturers express warranty coverage using a quantitative definition of product
lifetime. When one variable quantifies product life (e.g., hours of use for a boat motor) the
product carries a one-dimensional warranty (Blischke and Murthy 1994). Defining product life in
a single metric like "time" has a great deal of intuitive appeal and facilitates warranty data
modeling. When two metrics define product life, the product carries a two-dimensional warranty
(Blischke and Murthy 1996, Moskowitz and Chun 1994, and Singpurwalla and Wilson 1993).
Manufacturers sell automobiles with a two-dimensional basic coverage characterized by time and
mileage that offers free replacement. The two-dimensional automobile warranty provides
customers a flexible coverage based on their personal usage pattern. The two-dimensional
automobile warranty also protects the manufacturer from replacing components on high mileage
newer vehicles and limits long-term manufacturer liability on low usage vehicles.

Figure 1 shows the two-dimensional lifetime space for automobiles characterized by time
and mileage. The date of final assembly establishes the physical existence of an automobile but
the warranty lifetime doesn’t begin until a customer purchases the vehicle. Let the random
variable L represent the sales lag, the time from final vehicle assembly to vehicle sale. Sales lag
is an unknown value at time of assembly; however, all vehicles at risk for warranty claims have
an observed value because they have been sold to a customer. Robinson and McDonald (1991)
show that the larger the sales lag, the more likely a vehicle will observe warranty claims. The
cutoff date is the calendar date of a warranty prediction. Let the random variable T represent
time in service — the elapsed time from product sale to the cutoff date — which captures product
exposure or the amount of time the vehicle was eligible for warranty claims. Due to the random
nature of sales lag, a population of vehicles assembled together will have varying values for time
in service at a given cutoff date. This phenomenon of varying values for time in service can

complicate the analysis and prediction of automobile warranty claims.
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Figure 1: Two Dimensional Automobile Lifetime Space
Figure 1 shows the usage function U (f) - the non-decreasing path through the lifetime
space that relates time to mileage - for two hypothetical vehicles. Defining the time limitation

and the mileage limitation of the two-dimensional coverage as f,,, and m,, , respectively, results

in a rectangular coverage region. In this example, vehicle 1 leaves the warranty coverage region
by exceeding the time limit while vehicle 2 leaves coverage by exceeding the mileage limit.

Because vehicles may leave coverage by exceeding the mile age limit prior to the time limit
U(t)>m,, fort<t,,, the duration of time that a vehicle will remain under warranty coverage
U™ (my,, ) is an unknown random variable at time of sale. The length of warranty exposure
varies within a population depending on the vehicles’ usage function U (¢), further complicating
predictions. Vehicles repaired while inside the basic coverage region, U (t) such that

(t<ty, NU(@F) <my, ), (may) result in warranty claims.

At a cutoff date, each vehicle is at an unknown point on their U (¢) function. Automobile

manufacturers track the sale of each vehicle and thus know vehicle location in the time domain.

Karl D. Majeske Revised: 7-14-03 Page: 6



A Non-Homogeneous Poisson Process Predictive Model for Automobile Warranty Claims

However, due to the uncertain usage patterns of customers, manufacturers do not know a vehicles
location in the mileage domain. Because not all vehicles stay at risk for claims through ¢, , the

remaining coverage — in both time and mileage — is unknown for each vehicle when making a
prediction. When vehicles have experienced one or more warranty claims prior to the cutoff date,
the manufacturer has an observed mileage corresponding to the time of the repair(s). For vehicles
without warranty claims, the manufacturer has no information regarding the mileage domain of
the lifetime path. Due to this limited information on mileage, many automobile manufacturers
make warranty predictions purely in the time domain.
3. Warranty Claim Predictive Models

Murthy and Djamaludin (2002) provide a comprehensive review of literature related to
the various aspects of new product warranty. This section presents some specific statistical
models applied to warranty claims, with a focus on automobile warranty claims. This section is
divided into three sub-sections based on the type of statistical model used: Poisson or discrete
models, stochastic process models, and repair per thousand vehicle models.
3.1 Poisson Models

Poisson prediction models have intuitive appeal to many reliability engineers. These
models assume X , the number of claims for a product, follows a Poisson distribution with
probability mass function

X

p(x) :e—M—‘ x=012,...
X.

For a one-dimensional warranty, reliability engineers allow the Poisson parameter lambda A to

be a function of time in service ¢

a0 (A)*

x!

p(x)=e x=012,... t>0. (1)
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Equation (1) allows fitting a Poisson distribution to a population with varying values of time in
service. Assuming A is independent of 7, you can predict the expected claims through the

warranty time limit #,,, for one vehicle as At,,, , and for a population of N independent and

identically distributed vehicles as NAt,,, .

Kalbfleisch, Lawless, and Robinson (1991) develop a Poisson model for predicting
automobile warranty claims in the time domain similar to Equation (1) above. They note that
their Poisson approach yields biased estimates due to vehicles leaving the warranty coverage
region by exceeding the mileage limit. Moskowitz and Chun (1994) suggest a Poisson model for
two-dimensional warranty coverage. They formulate the warranty problem as a Poisson

regression by fitting the cumulative Poisson parameter [l with various functions of time ¢ and

mileage m . One can easily estimate the parameters of the linear model

w=Pt+p,m
using ordinary least squares. Chen and Papova (2002) fit the bi- variate Poisson model to two-
dimensional warranty data with maximum likelihood estimation. In application, the lack of data
on the mileage domain limits the ability to use this bi-variate approach to model and predict
automobile warranty data.
3.2 Stochastic Process Models

Stochastic processes model a product or system that generates a series of (time) ordered
observations. Applications of stochastic processes to field performance data appear in the
literature as repairable systems reliability. The Poisson Process (Kingman 1993) assumes times
between failures are independent and identically distributed (i.i.d.) exponential random variables.
A renewal process relaxes the exponential assumption for time between failures but still requires
theses times to be i.i.d. The non-homogeneous Poisson Process (NHPP) does not require i.i.d.
time between failures and provides a great deal of flexibility when fitting observational data. The

NHPP is characterized by the intensity function
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V(D)= ljmo Pr(observe a faﬂureAm interval ¢,7 + At) )
t— t

that represents the instantaneous probability of a failure. The expected number of failures

(warranty claims) for the NHPP is the integral of the intensity function. For a one-dimensional

warranty, the expected number of warranty claims through the warranty limit £, is

E[C(t,,)] = jov (t)dt . 3)
Nelson (1988) suggested a graphical technique for evaluating either the total cost or number of
repairs for a population of products. This technique plots the mean cumulative cost mcc(f) or
mean cumulative repair mcr(t) versus time ¢. Nelson noted the derivatives of both mcc(f) and
mcr(t) becomeV (f), the intensity function of a NHPP. Wang, Suzuki, and Yamamoto (2002)
fit a NHPP to warranty data for products with an unknown sales date or products that don’t
observe a value for sales lag.

The power law process (Rigdon and Basu 1989a), a NHPP fit by Roberts and Mann

(1993) to repairable system data, has the intensity function

V()= (o). (4)
Crow (1974) showed that the power law process has the property that 7}, the time to first failure,
follows a Weibull distribution (Blischke and Murthy 2000, Meeker and Escobar 1998) with the
cumulative distribution function

Fit)y=1-¢ @' t>0. 5)
Authors have referred to the power law process as the Weibull Process (Crow 1982); however,
only the time to first failure follows a Weibull distribution. Huang (2001) presents a Bayesian

approach for fitting a power law process to repairable system data. Muralidharan (2001) extends

the power law process to allow the failure or repair affect the failure rate of the product.
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3.3 Repairs per Thousand Vehicles
The most common automobile warranty-data reporting scheme uses cumulative warranty
claims per thousand vehicles. While the notation differs between manufacturers, this approach

appears to be the industry standard. Majeske, Riches, and Annadi (2003) suggest the following

model for R(t) - repairs (warranty claims) per thousand vehicles. Let N, represent the number
of vehicles in the population with at least i months in service (MIS). Notice that N, can decrease

as i increases due to varying values for sales lag and vehicles exceeding the mileage limit. Let f;

represent the observed number or frequency of claims in time period i — manufacturers generally

track claims by month - for the N, vehicles. Then calculate

f
Ni

1
R(t)=) #1000
i=0

One method used to predict R(f) values utilizes transformed data. By regressing

log[ R(¢)] on log(¢), one can fit the simple regression model
log( R(1)) =B, + B, log(1) +¢, . (6)
To predict a future R(r) value, denoted R (¢), simply extend the fit line and transform back to

the original units of R() using

R(t) =exp(B, + B, log(1)) )

Wasserman (1992) developed a dynamic linear predictive model for R(¢) using data from

multiple product years of the same model vehicle. He shows that incorporating data from
previous model years can increase the accuracy of predictions. Singpurwalla and Wilson (1993)

developed a bivariate failure model for automobile warranty data indexed by time ¢ and mileage
m . They derived the marginal failure distributions and presented a method for predicting R(¢)

using a log-log model similar to Equation (6).
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4. Automobile Warranty Predictive Model

This section presents a non-homogenous Poisson Process (NHPP) predictive model for
automobile warranty claims. The approach presented here makes predictions in the time domain
but accounts for mileage by removing vehicles from the population when they exceed the mileage
limit. The technique models the warranty claims for an automobile with a NHPP that provides a
great deal of flexibility when fitting observational data.
4.1 Service Time based Population Size

Automobile manufacturers form vehicle populations based on assembly date. This
allows relating warranty claims and costs to time based events such as product design changes,
component manufacturing process changes, assembly process changes and vendor issues. Given
the variation in sales lag and the random nature of when vehicles leave warranty coverage, the
population size varies as it moves through calendar time. Specifically, the population size would
start at zero, and increase by one each time a vehicle is sold, and decrease by one each time a
vehicle leaves warranty coverage. To place vehicles in a common metric for warranty
predictions, automobile manufacturers characterize lifetime using time in service. As previously
shown in Figure 1, vehicle sale begins the warranty coverage and defines the origin for time in
service. Due to the random nature of sales lag, a population of vehicles assembled on the same
day will have different time in service values when making a prediction.

Let N(t) represent the population size or the number of vehicles at risk for warranty

claims at time in service f. For a one-dimensional coverage in the time domain, the

manufacturer would have complete information on N (). When making a prediction of total

claims for a population of size N,

t<ty,

N
N(®) ={ ©®

0 >ty
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When performing warranty data analysis, many automobile manufacturers use a population
definition similar to Equation (8) due to the limited information on vehicle mileage. Using
Equation (8) fails to remove vehicles from the population when they exceed the mileage limit
thus over estimating the population size at higher time in service values.

Define u as the rate a vehicle accumulates mileage, which is the derivative or slope of

the usage function U (f). Assuming a constant usage, a vehicle is no longer in the warranty
coverage region if the mileage exceeds the mileage limit or

ut > nm,, . )

By letting u, represent the (constant) usage rate of the ith vehicle, the variable

0. =

1

{1 if ut<my,
(10)

0 else

indicates if a vehicle remains in the population; that is, Equation (10) indicates vehicles still in the
warranty coverage region at time 7. To determine the population size at time ¢, sum the
indicator variables of Equation (10) to obtain

N

t<t,,

d,
N(t,m) = Z{ : . (11)
0 1>ty

Equations (10) and (11) define a time in service based population size that removes vehicles
when they exceed the mileage limit. N (¢,m) characterizes the population size in the time

domain while taking into account the effects of mileage on warranty coverage.

Automobile manufacturers do not have complete information on the population size
N (t,m) as they do for N(t), due to the lack of information on vehicle usage. To use N (t,m),
the manufacturer must estimate usage for each vehicle in the population. Vehicles with a
warranty claim have an observed value on the lifetime path that can be used to estimate u# . To

estimate usage for vehicles without a claim, identify a parametric model for u - such as a log-
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normal or gamma distribution — and estimate the distribution parameters using the observed data.
Then estimate usage values for vehicles without claims according to the probability distribution
fit to the sample data. Once each vehicle has a usage value (either observed or estimated) you
can determine N (t,m) using Equations (10) and (11).
4.2 Time Based Failure Rate

The second component of the predictive technique models the warranty claims associated
with a vehicle. A non-homogeneous poisson process (NHPP) provides a flexible model to
capture the varied warranty claim patterns observed in automobile warranty data. A NHPP is
characterized by the intensity function (instantaneous probability of a failure) of Equation (2). To
use the predictive approach in this paper, one must dentify an intensity function that captures the
time-based pattern of warranty claims. Once a manufacturer has identified the functional form of
the intensity function, they must estimate the parameters. Rigdon (1989b) estimated intensity
function parameters with multiple observations from a single system and developed confidence
intervals on parameters. Hossain and Dahiya (1993) develop a NHPP model for software
reliability with a data set that represented one system with 34 failures. These two techniques
provide methods for fitting a NHPP to a system with many failures. Automobile manufacturers
make predictions early in the vehicle life. At six or seven months in service, a relatively small
percentage of vehicles will have experienced multiple warranty claims. This limits the ability to
use the above techniques to directly fit a NHPP to warranty data.

Thompson (1981) shows that for any NHPP, the intensity function and the hazard

function of 7}, the time to first failure, have the same functional form

v(t)=h(t,). (12)

This provides an alternate approach to characterizing the intensity function. First, estimate the

distribution parameters for time to first warranty claim (failure). Then use these coefficients to
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characterize a NHPP intensity function. Majeske (2003) describes how to use maximum
likelihood estimation to fit the right-censored data encountered in warranty data analysis. By
including non-failed vehicles as censored observations, this incorporates vehicles without a
warranty claim when fitting the stochastic process. In some applications, manufacturers use a
parametric model for time to failure, which they could use as a starting point for modeling
warranty claims. To identify a parametric model for time to first warranty claim, one could use
the hazard plot method suggested by Majeske, Lynch-Caris, and Herrin (1997).

4.3 Predicting Warranty Claims with the Model

Let the function C(t) represent the cumulative number of warranty claims observed by

the population through # time in service. Using this definition, C() is a strictly increasing step

function that starts at 0. Let C(t) represent the predicted number of claims through time  as the

expected value of the cumulative warranty claim function

C(t) = E[C()].
Modeling a single vehicle with a NHPP, you can predict claims by integrating the intensity
function as shown in Equation (3). To predict claims for a population assume homogeneity; that
is, all vehicles in the population have the same intensity function or failure rate.

For a one-dimensional warranty coverage - use the population size function N (¢) of
Equation (8) - the expected number of claims is the product of the population size and the integral

of the intensity function

wr
Clty,)= EIC(t,, )= N [V (0)d . (13)
0
For the two-dimensional warranty coverage of automobiles, one can predict the expected number

of warranty claims by integrating the product of N (,m) - the population size function of

Equation (11) - and the intensity function
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Cit )= FIC(ty, ) = | Netmv (0. (14)

0

In some cases, manufacturers may want to relax the homogeneity assumption. Allowing the

model parameters to be a function of X (covariates such as vehicle option content) would allow
the manufacturer to make inference on how these variables affect warranty claim rates. Including

covariates makes predicting claims somewhat more difficult because vehicles are at risk for
different lengths of time. Letting ¢, represent the time the i" vehicle is at risk for warranty

claims, the expected number of claims for the population of vehicles is
A N 1; —
Cltyy) = EIC@y )= Y [ v(e, X )dr (15)
i=l

The complicating factor with this approach is that the 7, values depend on the vehicle mileage, a

random variable with limited or no information.

This research suggests predicting warranty claims by vehicle subsystem (e.g., powertrain,
wiring, fit and finish, etc.) and then aggregating subsystem predictions to obtain a prediction for
the population of vehicles. To account for differences in option content (e.g., V6 versus V8
engine) the manufacturer can stratify the population for each subsystem and make a prediction
with Equation (14) for each strata within each subsystem. Then, aggregate the predictions across
strata (option content differences) and subsystem (portions of the vehicle) to arrive at a prediction
for the population of vehicles.

S. Application of Predictive Technique

This section assesses the predictive validity of the NHPP using a set of 9,168 luxury cars.
To emulate the manufacturer's prediction process, this section makes predictions using the data
available to the manufacturer at a cutoff date approximately seven months after vehicle assembly,
termed the current date. Using the model developed in the previous section, warranty claim

predictions are made through a cutoff approximately 45 months after assembly, called the future
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cutoff. Because the vehicles have already observed the claims through the future cutoff,
comparing predictions with actual claims allows assessing the predictive technique.
5.1 Estimating the Population

To estimate the population function N (¢,m) through the future cutoff date, a usage value
u was calculated for each vehicle with a warranty claim prior to the current cutoff date. Using
maximum likelihood estimation, a two parameter gamma distribution, with probability density

function

fr)= ﬁr‘“e"” r>0, (16)

was fit to the data yielding the parameter estimates ¢ =3.548 and ¥ =16.629 . Figure 2 shows
a histogram of the observed values and the gamma distribution. To generate usage values for
vehicles without a claim, assume that the vehicles with an observed usage value (56% of the

population) are representative of the entire population. Usage rates were then simulated for
vehicles without an observed value from a gamma distribution with o@ =3.548 and y =16.629
to match the observed data. Table 1 contains the N (f,m) values through the future cutoff date

calculated using Equations (10) and (11). Table 1 also contains N (), the population size
ignoring the effect of mileage. Figure 3 plots the data of Table 1 to provide a graphical
comparison of the mileage censored population size N (f,m) with the time only population size

N().
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number of vehicles
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rate: miles / day in service
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Figure 2: Histogram of observed usage rates and best fit Gamma distribution

Table 1: Population size by time in service (months)

Time Time Time
in Service in Service in Service
(Months) 1 Nit.m) N¢t) | (Months) | Nitm) N(t) | (Months) | Nitm) N(t)
0 9168 9168 16 8480 9168 32 4561 9168
1 9168 9168 17 8296 9168 33 4328 9168
2 9168 9168 18 8082 9168 34 4098 9168
3 9168 9168 19 7875 9168 35 3903 9168
4 9168 9168 20 7620 9168 36 3705 9168
5 9168 9168 21 7360 9168 37 3538 9168
6 9166 9168 22 7131 9168 38 3340 9168
7 9166 9168 23 6849 9168 39 3173 9168
8 9158 9168 24 6601 9168 40 2979 9052
9 9141 9168 25 6341 9168 41 2810 8895
10 9109 9168 26 6059 9168 42 2586 8691
1 9061 9168 27 5794 9168 43 2383 8450
12 8992 9168 28 5523 9168 44 2156 8165
13 8881 9168 29 5290 9168 45 1963 7813
14 8754 9168 30 5054 9168
15 8620 9168 31 4806 9168
10000 T
9000 __n”\wwm‘mg\\gw\:\\:\:\:-—---——---——---——---—-.. ~~
4 W L]
8000 \\\\
7000 T \\\
£ 6000 T N
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t: Time in Service
Figure 3: Estimated population size with and without adjusting for mileage

Karl D. Majeske

Revised: 7-14-03

Page: 17



A Non-Homogeneous Poisson Process Predictive Model for Automobile Warranty Claims

5.2 Estimating the NHPP Intensity Function
This section characterizes the NHPP intensity function for three subsystems of the luxury
cars. First, a functional form is identified for time to first claim using empirical hazard plots.

The parameters are then estimated for each subsystem. A figure containing the empirical hazard

function A (#) - calculated using life tables with an interval width of seven days (Lawless 1982) -
and the fit line graphically shows the aptness of the model.
Subsystem 1:

Majeske (2003) derives the Weibull-uniform mixture model with cumulative distribution

function

p* L +q*(l—e'(“’)ﬁ) 0<r<A
F(t) = A

pra*li-e’) 2 A

(7

to fit warranty claims from subsystem 1 of these same luxury cars. The distribution was
developed to model warranty claims as a mixture of manufacturing defects and usage related
failures using the data available about two years after vehicle assembly. The mixture distribution

of Equation (17) defines a NHPP with intensity function

P29) | (1= pylapan® e’ |
o 0<t<T
v(1)=1 1_1{6 L — ) j—(l—p)(l—e(m)s) (18)
apt)”! t>T

To apply the prediction method, the mixture model was fit to the data available seven months
after vehicle assembly. Table 2 contains the mixture distribution parameter estimates obtained
via maximum likelihood estimation and the standard errors estimated with the observed Fisher

information matrix as outlined in Majeske (2003). Figure 4 shows the empirical hazard function
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h () and the mixture hazard function using the parameter estimates from Table 2. The mixture

model appears to provide a good fit to the data available at 7 months in service.

Table 2: Parameter Estimates for Time to First Warranty Claim.

Subsystem 1 Subsystem 2 Subsystem 3
Mixture Distribution Weibull Distribution Linear Hazard
Parameter Estimate Std Error | Parameter Estimate Std Error Paéameter Estimate Std Error
0.00027 0.000021 0.00324  0.00006 0 0.0001558  0.0000379
p 1.006 0.0339 1.057 0.0154 B, 0.0000174  0.0000022
619 0.047 0.0048
0.232 0.0295
0.0009 +
0.0008 T
i Observed Values
& 000077 " |— FitLine
£ 0.0006 T8
= . §m
& 00005 + _®°% ae
=
g 0.0004 T
«
= 0.0003 T
S 0.0002 T
0.0001 +
0 } } t t t {
0 5 10 15 20 25 30

Time in Service (Weeks)

Figure 4: Subsystem 1 — Empirical and mixture model hazard functions

Subsystem 2:

Reliability engineers often use the Weibull distribution of Equation (5) to model field

failure and bench test data for subsystem 2. Modeling time to first failure with a Weibull

distribution results in a special case of the NHPP, the power law process, with intensity function

of Equation (4). The Weibull distribution was fit to the time to first subsystem 2 claim data

available at the current cutoff. The parameter estimates and associated standard errors appear in
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Table 2. Figure 5 plots the Weibull hazard with the observed values for subsystem 2. Notice that

the Weibull does not capture the apparent decreasing hazard in weeks 15 through 30.

0.006 T
Bg
0.005 T
=
L2
2 0004 +
§ 8 : a8
T 0003 1
S @
Z 0002 .
2 Observed Values
0.001 + -
= Fit Line
0 t t } t } i
0 5 10 15 20 25 30
Time in Service (Weeks)

Figure S: Subsystem 2 — Empirical and Weibull hazard functions

Subsystem 3:

The manufacturer did not use a parametric model for subsystem 3 claims; rather, they
used the log-log R(#) approach of Equations (6) and (7). After evaluating the empirical hazard
plot shown in Figure 6, the linear hazard function

h(t)=B,+ Bt (19)
was identified for the Subsystem 3 data. The linear hazard of Equation (19) defines a NHPP with
intensity function

v(t)=B,+Pt. (20)

The parameters of the linear hazard model were estimated using ordinary least squares by fitting a
line to the empirical hazard function. The parameter estimates and associated standard errors

appear in Table 2. Figure 6 shows the empirical hazard along with the linear hazard, which

appears to provide a good fit to the data.
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0.001 +
0.0009 T Observed Values

0.0008 + —— FitLine

0.0007 1
0.0006 4

0.0005 1
0.0004 4

0.0003
0.0002 +°2

0.0001 T

- Hazard Function

h(t)

Time in Service (Weeks)

Figure 6: Subsystem 3 — Empirical and linear hazard functions

5.3 Predicting Warranty Claims

This section predicts warranty claims through 45 months in service using the population
size N (t,m) and NHPP intensify functions developed in sections 5.1 and 5.2 respectively.
Because months in service don’t correspond to calendar time, predictions were made for 30 day
(month) intervals. To make predictions, Equation (14) was evaluated for each monthly interval
Table 3 contains the observed claims by month at the current cutoff, the predicted claims through
the future cutoff, and the observed claims at the future cutoff for each of the three subsystems.
Comparing the total claims through 45 months, the NHPP approach predicted within 7% of
observed claims for all three subsystems.

Figures 7, 8 and 9 graphically depict the data in Table 3 by comparing the observed and
predicted claims by month for subsystems 1, 2, and 3 respectively. Evaluating Figure 7, the
Weibull portion of the mixture (¢ >4 MIS) over predicts in the period 9 - 22 MIS and under
predicts in the period 28 - 45 MIS. While the model has some correlation structure in the
residuals, it does provide a good fit to the subsystem 1 warranty claims. From Figure 8, the
power law process under predicts the subsystem 2 infant mortality failures and does not predict

the downward trend at 10 MIS. However, the model very accurately predicts claims from 30 to
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45 MIS and provides an accurate prediction of total claims. Figure 9 shows the linear intensity
model lends a good fit to the subsystem 3 data, yet slightly over predicts claims after 30 MIS.
6. Conclusion

Automobile manufacturers rely on predictions for the number, timing, and cost of future
warranty claims. Omitting the mileage data contained on automobile warranty claims, and
making predictions purely in the time domain, ignores vehicles leaving coverage prior to the
warranty time limit. Incorporating a two-dimensionalaspect will result in a predictive model that
better represents the process being modeled. This paper develops a NHPP predictive modelthat
has a parametric component (time to first failure) and provides a great deal of flexibility in
application. The NHPP approach also allows incorporating past experience when identifying the
failure process and bases predictions on early field performance of the products. Using the NHPP
will result in more accurate predictions of warranty claims and support decision-making when
implementing engineering design and manufacturing process changes. More accurate predictions

will also assist the manufacturer in allocating reserves to pay for repairs covered under warranty.
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Table 3 Observed and Predicted Warranty Claims by Month in Service
Subsystem 1 Subsystem 2 Subsystem 3
Time Observed Predicted Observed | Observed Predicted Observed | Observed  Predicted Observed
in Service | Claims at Claims through Claims at | Claims at Claims through Claims at | Claims at ~ Claims through ~ Claims at
(Months) 6 MIS 45 MIS 45 MIS 6MIS 45 MIS 45 MIS 6 MIS 45MIS 45 MIS
0 81 100 81 414 414 414 90 90 90
1 188 155 189 1010 786 1022 66 53 69
2 199 158 200 1039 844 1080 71 74 79
3 164 160 170 1241 869 1301 103 94 119
4 185 162 190 1576 886 1664 122 115 151
5 93 96 98 1059 899 1143 133 135 159
6 41 73 51 578 909 723 141 156 182
7 50 73 74 469 917 775 138 176 230
8 73 84 924 903 197 264
9 73 64 929 854 217 247
10 73 60 931 881 236 258
11 73 58 932 856 256 2901
12 72 57 929 694 274 252
13 71 61 922 587 290 238
14 70 40 913 605 306 263
15 69 43 903 554 320 263
16 68 41 891 522 334 322
17 67 49 875 521 345 307
18 65 32 855 522 355 420
19 63 41 836 468 363 389
20 61 43 811 534 369 391
21 59 45 786 530 372 350
22 58 39 764 529 377 407
23 55 56 735 507 371 393
24 53 42 710 461 378 345
25 51 43 684 437 378 348
26 49 52 655 491 374 329
27 47 38 628 502 371 360
28 45 47 600 501 366 359
29 43 50 576 526 363 371
30 41 46 551 567 358 427
31 39 43 525 618 351 420
32 37 54 499 603 343 395
33 35 62 474 561 335 325
34 33 46 450 522 327 290
35 32 51 429 530 320 290
36 30 43 408 476 312 261
37 29 48 390 436 306 212
38 27 35 369 399 296 166
39 26 33 351 384 289 174
40 24 36 330 351 278 149
41 23 36 312 397 268 181
42 21 40 287 374 253 204
43 19 33 265 388 238 154
44 17 19 240 373 220 150
45 16 21 219 332 205 131
1001 2786 2784 7386 30415 28418 864 12810 12175
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number of claims

250 T

200 T.°

9 Observed Claims at 45 months

—Prediction made at 6 months

Time in Service (Months)

Figure 7: Subsystem 1 — Mixture Model Prediction with Observed Claims

number of claims

Figure 8: Subsystem 2 — Power Law Process Prediction with Observed Claims
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Figure 9: Subsystem 3 - Linear Intensity Function Model Prediction with Observed Claims
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