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Introduction

This paper is concerned with the p-by-1 time series y(t)

which, for time periods t = I, -+ -, n has the linear regression struc-
ture
(1) y(t) = X(£)B(t) + e(t),

where X(t)' is a known p-by-r matrix of fixed regressvors, and e(t) is
a p-by—ll vector of equation errors having mean 0 and known p-by-p
variance-covariance matrix V,(t). The equation errors e(l), - T e(n)
are serially uncorrelated.

" In conventional regression theory the r-hy-1 vector of re-
gression coelficients g(t) is regarded as a fixed, honran(l(mn veelor,
In this paper, however, we investigate .varying parameter regression
models in thch B (t) is taken to be a random c:oeffi-éient vector formed

for time pefiods t=1, -, n from the transition equation
(2) , B(t) = T(t)B(t - 1) + u(t),

where T(t) is a known coefficient updating matrix of size r-by-r, and
the r-by-1 random coefficient error vector u(t) has mean 0 and known
r-by-r variance-covariance mafrix Vu“')' The coefficient errors

u(l), *++, uln) are also serially uncorrclated.  In addition, the



random coefficient errors u(t) and the random equation errors e(t) are
mutually uncorrelated both within and between time periods. Finally,

for the first time period (t = 1) we have
(3) B(1) = T(1)g(0) + u(l),

where the‘i r;by-l vector B(0), called the starting value, is taken to be
~a known, fixed, nonrandqm vector.

This class of models was first introduced by Kalman [4] and
by Kalman and Bucy [5] and it forms a part of the ;cheory of optimal
control. It haé been applied to many engineering ‘p.roblems and there
is an extensive literature on the theory and on these applications (good
survey papbeirs are [2] and [9]).

‘Application of the Kalman-Bucy model réq‘uires estimation of
the varying'regression coefficients é(t) from the’ob‘served data (the
y(t) and X(t)). Using an approach involving wide svense conditional
probability distributions and expectations, Kalman obtained recursive
updatiné eqﬁétions as orthogonal projections on ].im_sa‘r manifolds for
the minimum mean squared linear estimators P(L) x;f B(t) based on the
use of all the data through time period t. The. (j,s'tih'xators B(t) ai’e_
frequentlgf:’ciaglled filtered estimators. These eq'uét‘vti(‘)ns can be written

as follows:



(4) Ko = Belt- 1)+ St - DX'ODT (®)(y() - XOBEE - 1)
where

(5) - B(1f0) = T(1)8(0)

(6) s(1fo) = v, (1)

(7) | Bl - 1) = T8 -1 t=2,3, "+, n
(8) S(eft - 1) = T(t)S(t - DT'(t) + V() t=2,3, +++, n

(9)  S{t-1) = S(t-1}t-2) - S(t—1It-2)X'(t—1)D'1(t~l)X(t—l)S(t-llt;Z)
t=2,3, ', n

(10) D(t) = V(t) + X(th(tit-l)X'(t) t=1, 2, ++, n

and where the symbol ' denotes matrix transposition and the notation

tlt—l means that the associated variable is an estimate for time t based

on all the data through time t-1.

It is also shown that the differences g(t) - é(t) have means 0
and variance-covariance matrices S(t) and are uncorrelated with the
observations through time t. When the equation errors e(t) and coeffi-
cient errors u(t) have a Gaussian distribution the Kalman éstimator
é(t) of B(t) will be the minimum mean squared estimator rather than
merely the minimum mean squared linear estimator.

The relevance of Kalman-Bucy models for regression theory
has been examined recently by Duncan and Horn [3] who presented a

wide-sense random coefficient regression interpretation in which, as



a consequence of an extended Gauss-Markov theorem, the Kalman esti-
mators é(t)‘ are identified as minimum variance linecar (unconditionally)
unbiased estimators of g(t). Under the Gaussian assumption about the
distribut_iops of the errors e(t) and u(t) the Kalman estimator will be a
minimum variance (unconditionally) unbiased estimator of B(t).

Kalman-Bucy modelling has been applied in e‘conomet‘rics (in
[7] and [8]), and the present authors have used the approach in the
econometrié modelling and forecasting of short-term interest rates [6].
In the 1attér work a Kalman-Bucy varying parame'ter adaptation of the
reduced form of a standard, fixed coefficient econometric equation
system is studied.

It must be emphasized that applying the Kalman-Bucy model to
economic ‘timve series offers some interesting challenges because of the
problem .of.s‘pecifying T(t), B(0), Ve(t) and V,(t). "In engineering appli-
cations '_f(t) and g(0) are typically gi\}en by known physical properties of
some real world system, so most ;)f the attentién-in this literafure‘ is
given to an examination of V(t) and V (t). In (-“(:(‘vmomi(ts, however,
none of thzese parameter sets can he considered tv(v)‘ be known, and a
tractable and generally applicable method of eétiﬁm ation is not yet
available. For example, maximum likelihood estimation of these
parameter“sets jointly appears to be extremely cdmplex even in the

identifiable case. Moreover, in simpler cases in which maximum



likelihood estim ates are available, their determination requires simul-
taneous s_olution of systems of nonlinear equations. This in turn re-
quires extensive numerical analysis even for small systems (see [1]).

These complexities have led us to use simulation studies to
examine the influence of vafious specifications of the parameter sets
in the sihgle equation case. Specifically, we explore by means of
simulatiéri fhe question of how sensitive the Kalman‘—Bucy model is to
the specification of the four parameter sets T(t), B(O), Vo (t) and V(t).
In other words, are the properties of the Kalmém estimators g (t) of
B(t) and gr(t) 6f y(t) materially influenced by mis.s‘pecification of one or
more of.“tlﬁevse parameter sets?

‘W_'ve‘have developed a simulation model with which we can
(1) gener.afe simulated observations on 8 (t) and y(t) from a known
(specified) Kalman-Bucy model, (2) obtain filter.ed' estimates of g (t) and
y(t) f.rom'thé simulated data using parameter sets which have been both
correctly specified and then misspecified, and (3) compare the estimates
obtained by correctly specifying the model with thoée obtained by mis-
specifying it. In every case but one we have restricted our experi-
ments to .s.i'n‘vgle—equation Kalman-Bucy models in .which Val(t), Vylt),
and T(t) dov not vary with time, so in order to sirﬁplify notation we will
write thé's}.e parameter sets as Vo, Vg, and T whenever appropriate.

Finally, we have restricted our simulation experiments to the



misspecification of one parameter set at a time over what we feel is a

reasonably wide variety of underlying models."

Description of the Simulation Pi‘ogram
- The computer program used to generateA the results described
in the next section requires the following inpu’c.s;

1. A set of n observations on k-1 vindependent %rariab]es. Rather
than randomly generate such a set of i.nd(zpen(lent variables, we
héve used, for all of the experiments discgssed here, thirty
ohservations on three ecconomic time series (thus, n = 30,

k :‘ 4). The means ol Xl(t), XZ('L)_, and’-X3(t) arc 4.94, -.0014,
and -.0116, and the corresponding standard deviations arec . 694,
;6'018, and .0138. The correlation between Xy (t) and X,(t) is

‘_.. 8‘11, between X (t) and X,(t) is . 269? and between X, (t) and
"}I(é(t) is -.524.

2. The parameters g(0), V., (note that Vg, 1s a scalar in the single
.e.q‘uation case, Vy, and T (to be called the y_@lﬁ_liy_lgg parameters)
of the Kalman-Bucy model that are to grz used to generdte simu-
'I'ated__ observations on g(t) and y(t), t = ]I; <. ., 30.

3. Th;: parameters g>";(0), Ve, V:lj, and T* (to be called the
éssigned parameters) that will be u.sed.to» 'ot.)tain filtered esti-

fhatés of g(t) and y(t), t =1, .-+, 30, frérh the three independent
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Vari'ables and the simulated y(t) values. F‘(ﬁ' a given experiment
at moét one of the assigned parameters Wil]. diﬂ'er from the
underlying parameters. In most cases, exactly one will be
different. When the assigned and underlying parameters are
iden’tical, all parameters are then correctly specified and the
simulation results conform to the properties of the Kalrhan
estimators described above.
When the above information has been inpﬁtted into the program,
it proceeds as follows:

1. B(t,) a‘nd y(t) are generated from (1) and (2) for t=1, -+, 30
&sing_the‘underlying parameters. In all cases,1 the errors
e(£) énd‘u(t) are generated internally as pseudorandom selections
froﬁ independent normal distributions with means of 0 and
variances as specified by V, and V.

2. Given the resulting 30 x5 data matrix [y : X], where the first
célume of X is a column of 1's, filtered eétimates of B(t) and
y(_t), t=1, «++, 30, are then obtaincd using the assigned

paramelers.

lIn the case of a nondiagonal V;, k independent N(0, 1) variates
are selected; the resulting vector of four compon‘eni:s u(t) is then
premultiplied by an appropriate matrix P, chosen such that PP' = Vy,
giving u*(t)IWhich is distributed as N(0, V). v
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. Steps 1l and 2 are repeated as many times as desired, and various

w

statistics (described below) are accumulated. In each of the
experiments reported on here, we generated 30 such replications
(i.e., for a given set of input, steps | and 2 were repeated 30

times) and then printed a variety of summary statistics.

Description of Summary Statistics

The large amount of output generated by ‘o_ur simulation experi-
ments co‘:m.pels us to condense and summarize the results and limits the
summar‘y stéti_stics that can be discussed. Of the many statistics that
were acc'umli]_ated for each experiment, only two will be referred to
here: the aVérage sum of squares of error per trial, and the mean
error pér trial (and a related t-statistic).

Fpr trial j of any given experiment (j = 1, e , 30), we define
the: folloWir;g :
y.(t) = -éb‘s"erved value (simulated using the undg_r:lying parameters)

of the dependent variable at time t (a scalar).

"
[l
1

1x4 vector of observations on four i.ndbependent variables at
,. t’ifﬁe ‘t'(the first element in x(t) is equal to 1 fov’r all t) -- note
’ that x(t) does not vary over trials and qu is the same for all j.
{Zj(t) = 4x I vector of observed coef:.ficients (.si,mﬁla.ted using the
unv(‘_i.erlying parameters) at time t. The ‘el‘ements of Bj(t) are

denoted byj(t), i =0, 1, 2, 3.
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;rj(t) = the Kalman-Bucy filtered estimate of yj(t) derived using the
- assigned parameters.
éj(t) = the Kalman-Bucy filtered estimate of Bj(t) derived using the

‘assigned parameters; the elements of éj(t) are denoted Abij(t).

The summary statistics on which we will base much of the dis-
cussion in‘the next section are described below in terms of the yj(t)
and grj(t). Statistics similar to those described: below are developed
based o_n.b-lj(t) and Bij(t) in place of yj(t) and g’j (t)'for 1=0, 1, 2, 3.

Table I illustrates some typical output from several experi-
ments r.el.lated to the misspecification of V,. All three lines of statis-
tics apply to data generated using the same un»derl‘ying parameters, hut
each line represents estimation results for a different set of assigned
parame-t’ex"s. For these three experiments, the data were generated
with Ve_e;]ll.é.], to 1.25 and the estimates were derived by assigniﬁg Ve
the valueﬂ'-sv‘(')f 1.25 (Experiment 1), . 125 (Experiment 2), and 5. 00
(Experi"r'nei‘ntS). The values of g*(0), Vu and T* were assigned cor-

rectly (i,.v_é.,' equal to the underlying param.eteré) for all three experiments.

TABLE 1

ESTIMATING y(t) FOR VARIOUS ASSIGNMENTS OF Vi

L Estimation of y(t) .
Experiment Avg. SSE/Trial Mean Frror/Trial (t-stati; tic)

1 18. 342 20,0172 (-0.568)
2. 1. 843 -0.0026  (-0.482)
3 39.161 -0.0004 (-0.537)
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/

Avg. SSE/Trial. If we define the sum of squares of error for

trial j to be
30 >

SSEJ = t)z_:]_ (YJ(t) ~ YJ(‘L)) ’

then the average sum of squares of error per trial is given by

—_ 30
SSE = (I SSE.)/30
=1

Mean Error/Trial. A more accurate tit_lé for this statistic
would be "mean average error/trial.’ Il we define the average error
for trial j to be

30

Aj = (til (YJ(t) - Yj(t))/30

then the mean error per trial and its associated t-statistic (which pro-
vides a test of the hypothesis that the expected value of the mean error

per trial is zero) are given by

and

30 S
= MV'so/( ) (Aj - M)Z/Z‘))l/,/:
Discussion of Simulation Resﬁlt_s’

Since we restricted our experiments to the misspecification of

one parameter set at a time, it will be convenient to break this
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discussion of the sensitivity results into four parts, treating in turn

the effects of misspecifying V_, 8(0), V,, and T.

Misspecification of Vg

In vgeneral, the size of the equation disturbance variance rela-
tive to the size of the variance contributed by the coefficient distur-
bances détermines how well the y(t) are estimated by the 3;(1:). In fact
one can show that gr(t) will be identical to y(t) if-Vé(t) is identically
Zero forrall t. It also appears from the simulation results that the
smaller is the scalar V, for a given assignment o.f Vu -- whatever is

.the specification of T and B(0) -- the closer the ;r(t) will be to y(t).
HOWeVGf,» this result may induce considerable fluctuations in the esti-
mates é‘(’t.) of p(t) from onc time period to the next. Moreover, these
f].uctuatig)n‘s may be greater still if other paramete‘rs have been mis-
specifie;d:also.

In all of our experiments concerning V. (és well as those for
V,, and T.),‘ B(O) and B*(0) were sot equal to (.67, .85, -220., 9.92)
and Vy a-ﬁd vu were of the form Of‘ll. In the first twelve experiments,
T and T* were set equal to the identity matrix aﬁd the relative magni-
tudes of Ve and Vy were varied. The final twalfv._e cxperiments were
identical to the first twelve except that T and T were speci.l'ied to be

the matrix
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1.0 0 0 0
I.3 0 0 0
0 30.0 0 -25.0
0 0 0 1.0

The general conclusion that can be drawn from the first twelve
experiments Iis that, regardless of the relative sizes of the variances
of the equation and coefficient disturbances, miss-p'ecifying Ve has con-
siderable effect on the estimation of y(t) and comparatively little cffect
on the estimation of B(t) (given that Vy, B(0), and T are correctly
specified). To illustrate, Table 2 contains partiai results of Experi-
ments 1, 2, and 3, i‘n which the data were generated with V, = .125
~and Vy : ( 025)I, and the estimates were derived by assigning Ve the
values .:1'25',_.0125, and 1.25. The results for by(t) and bs(t) are
similar 'an‘é have heen omitted. The differences. in the Avg. SSE/Trial
and Mean Error/Trial figui‘es for estimating the.y(t)’s are dramatic,
particulétrly in light of the comparatively stable analogous figu'res for
estimating the coefficients. None of the t-statistics associated with
the abov.e”me'an error figures had an absolute value larger than 0.6,
so those figures were deleted from Table 2.

Experiments 13 through 24 were identical to the first twelve
except that T and T* were not the identity matrix. The overall resvults
for these‘ éxperi‘ments were similar to those desc'r']ibedvfor the first

twelve experiments, although using a non-identity T matrix greatly
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reduced the average sum of squares of error per trial and the mean
error pér.t‘.r'ia] for estimating bo(t) and b (t) as compared to the re-
sults préégr}ted in Table 2 above. The similar values for estimating
y(t) changed very little from those in the first twelve experiments.

_:' In none of the experiments conce1‘nir1_;_3.f-'Ve did any of the mis-
specifications of V, appear to bias the estimators when the othér

parameter sets were assigned correctly.

Mis specific’étion of 8(0)

YW.e ran 56 experiments representing .a‘ {/griety of underlying
models to examine the effect of incorrectly specifying B(O).. In general,
we found the Kalman-Bucy model to be very sensitive to the choice of
the startihg value B(0). In some of the experim.ékhts, each element of
B(0) was ‘rni‘sspecified with an error of approximat-ely 10 percent of
the trué_,:vlfalue. In other experimen.ts, the error was closer to 50 per-
cent. In still other experiments, only one eleme‘ht of B(0) was mis-
'spe‘cifi.é'd’: by varying amounts. The relative siée's-_of. V. and V,, were
varied Qvefr a number of the experiments and,-soi'_ne experiments used
aT mgtrix which was not the identity 1rr1atri.x.j |

‘ The most significant results can be beétér underst_ood by

rewriting (4) in the form
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where K(t) = S(tft-1)X'(t)D~1(t) is the so-called Kalman gain and v(t)
is a scalar equal to y(t) - x(t)f%(tlt—l). If T is the identity matrix, (11)

can be rewritten as
(12) B(t) = B(t-1) + K(t)v(t) (t=1, -, n).

Ob\‘/iously.;‘ the.n, particularly in'the T =1 case, the amount of correc-
tion that f%_(‘c')'will realize from oné .time period to the next depends on
the elements k;(t) of K(t). The magnitude of k;(t) is considerably
affected b&r- the magnitude of x;(t) and the relative sizes of Ve and V.

For example, in many of our experimeﬁts concerning g(0),
we specifiéd vV, and Vu to be of the form 0\211' The mean of xq(t),

t=1, ..., 30, is approximately 5.0, but the mean of x3(t),

t=1, ---, 30, is approximately 1073, Consequently, if T =1 and

Vi = 01211, bl(t) is much more likely to correct tdwérd its true value
if misspecified than is by(t).

In gene‘ral, then, if T = I and vV, is dia‘g(ma]., the cffect of
misspeci-f;jing B(0) on the estimation of f(t) and y(t) depends on Lhe
ma'gnitucvl'e.o‘f- the specification error of b-l(O) relative Lo the magnitude
of k; (t). In addition, misspecifying only one of the elements of g(0)
may introduce bias in the estimation of the otherAc'oefficients that were

correctly specified. If T is not a diagonal matrix (i.e., if there are

interrelationships between the coefficients), it is easy to see that
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‘incorr(’-ctvly.speci‘fying one coefficient may lead to biased results for
several coelficients. This was observed in several of our experiments.
15.“(_)1' the most part, misspecifying g(0), in whatever way, had |
very little eflect on the estimation of y(t) unless f;he variances of the
cocfficient disturbances were very small compar’édv to the variance of
the equat.ion.di.sturbance. In this case none of the coefficients was
able to adjust itself if misspecified. Forvexamﬁl_e, in one pair of
experim(’eh_t's, the underlying parameters included T = I, Ve = . 125,
‘and V : ‘.‘.0251. The average sum of squares of'e‘rrbr for y(t) was
0.532 with g*(0) = g(0) and 0.771 with p*(0) approximately equal to
.5B(0). - rurthermore, the t-statistics associa#éd with the mean error
per trial..‘w'ere -0. 38 in the correctly specified case and -3.33 in the
n}isspecifiéd case. In contrast to those results, another pair of
experim.éﬁts was run in which the conditions were identical except that
Vu Was_':’s.et'evzqual to (.00025)I. The average sum of squares of error
for y(t) w‘as' 3.03 for the correctly specified ca\sé‘and 24.35 in the
misspec}ifié-d case. The corresponding t—statisti._cs. for the mean errors

per trial Were -0.43 and 43. 35.

Mis specificétion of Vy

It seems reasonable to believe that in a typical application,

Vi will be assumed to be a diagonal matrix. Thus, we limited these
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experiments to cases in which V{‘l was specified to be a diagonal
matrix whéther the underlying V,, was diagonal.or"not.

In the first nine V; experiments, we set T =1 and Vy = 01211
and looked at the effects of misspecifying oi for various relative
sizes of 0‘21 and V. In all cases (regardless of the size of Oﬁ relative
to Ve, at least in our experiments), misspecifying Oi cither on the
high or low side had virtually no effect on the estimation of 8(t). On
the other hand, underestimating oi effectively incfeases the relative
size of V, and the model then fits y(t) less well. Conversely, over-
estimating. (_Ji reduces the relative size of V aﬁd_the model fits y(t)
more clos'elAy than if Ui is specified correctly. -

- The next nine experiments were identical to the first nine

except that instead of setting T equal to I, we specified

10 0 0
o0 1 0 o0
0 30 -25 0
0 0 0 1

This trahéition matrix, if specified correctly as it.vwas here, provides
closer estimates of y(t) than were realized by porféctly specifying an
underlying vid}entity T matrix. Nevertheless, mi.ssbpecifying oi again
had little ﬁ(;ticeable effect on the estimation of B(t), so the results
were esséntially the same as those observed for thé first nine experi-

ments.
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The last eight experiments w.ere desi_gned to test the effect of
speci.fying a.diagonal Vy with correct diagonai .ol'emem;s when the under-
lying Vﬁ had numerous off-diagonal elements. In éther words, what
happens‘i:f there is correlation among the coefficient disturbances but
we fail fo recognize that correlation when estima_ting y(t) and B(t) ?

Ouf results, all derived with T =1, indiéate that as the cor-
relations émong the coefficient disturbances grovcf larger, so does the
error oiff‘e.stimation if those correlations are ign.obred, particularly
with reépe‘ct to estimating B(t). Eor example, in one pai.r of experi-
ments we: specified Vy to be a matrix with -each'diagonal element equal
to . 025 ana each off-diagonal element equal to.. 005. This gave a

correlation of . 20 for each pair (u;(t), uj(

£), i #j. In the first of

those two .hiperiments, we assigned Vu corrc.ctly,‘ and in the second

we set VUl = . 025)1. In another pair of experiments, the same approach
was taken, f_j)ut in this casc the off-diagonal el_eme'vn.ts of Vy were set
equal to':..'VZO_..' This gave a correlation of . 80. frable 3 presents the
results f.or'.'e,stimating y(t) and bo(t) only; note hé)'w'»mllch the results

for estimglting by(t) were affected, particularly whér_l the larger cor-
relatioﬁ was ignored in the estimation (the t-sfafistics associated with
the meér; error per trial were virtually the same whether the
correlatio‘p_ was correctly specified or not, so:the’y’are not

included in Table 3).
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TABLE 3

SELECT.ED RESULTS FOR VARIOUS SPECIFICATIONS OF V

u

v Estimation of y(t) Estimation of by(t)
Experiment Avg. SSE Mean Error Avg.A SSE Mean Error
1 (r=. zq; '_vj;:Vu) 0.339 0.00367 1.071 0.0625
2 (r=. 20, VIV 0,379 0.00394 1.877 0.0830
3 (r=.80, Vi=Vy)  0.423 0.00449 0. 1'85 0.0204
4 (r=. 80; Vﬁivu) 0.642 0.00578 4.010 0.1234

Misspecification of T.

Ofu‘f experiments with the transition ma’tr’;x involved four
matrice‘st,‘4Tl, Ty, Ts, and T4. T was chosén to be the identity
matrix aﬁd the rémaining three matrices were chosen so that each
matrix r‘éﬁr’esehted more complex interr‘elation‘shi:ps among the coeffi-
cients than the preceding one. Thus, T, was the least structured
transition rhétrix and T4 was the "most strucﬁtifé_d, " forcing the
largest‘n_li_)»mber of interrelationships among the coefficients. T>,
Ty, andT4 all were chosen in such a way that the clements of [(0)
(which w'evré,the same for all of these T experimehts) conformed to
the relatioﬁéhips imposed by those matrices.

:Wé conducted 16 experiments to examine the effects of mis-

specifying T. In the first four of these experim.e.nts, the underlying



