Dynamic conversation structures

Scott A. Moore
University of Michigan Business School
samoore@umich.edu

Abstract

Models of communication that emphasize convention
and those that emphasize inference each have their
" uses as a theoretical basis for a system of formal
communication. Systems based on the former are
less computationally intensive at the expense of be-
ing more complex to maintain and modify. Those
based on the latter result in the opposite. Certainly,
what is desired is a system that combines the best of
both types. This paper explores the issues involved
in building such a system.

1 Introduction

Recent research in agent communication languages
(AcLs) has focused on the semantics of messages
(F1PA’s AcL (Foundation for Intelligent Physical
Agents 1997), FLBC (Moore 1998b), kQML (Labrou
& Finin 1997)). Much of this research has focused on
languages whose semantics are expressed in terms of
the beliefs, desires, and intentions (BDIs) of the par-
ticipants in the exchange—or at least the comput-
erized simulation of such states. Neither researchers
nor the marketplace have come to any kind of agree-
ment about what messages should mean nor how they
should be interpreted. The reasons for this failure
are deep and will not be going away soon; for exam-
ple, one basis for this disagreement is the diversity of
agent models. Agents are built for different purposes
and need correspondingly simpler or more complex
agent models.

In this paper I present a means of modeling con-

versations composed of messages in an ACL. This
is an area fraught with trade-offs because of com-
peting criteria. On the one hand, companies want
to have models that are not complex to interpret (to
ease maintenance) or to execute (to increase response
time and decrease technology investment). On the
other hand, they also want to have flexible conversa-
tion models that can both handle many alternative
responses and integrate unexpected responses. If it
were possible to implement such a system, it would
benefit those who use and deploy agents in several
ways. First, the ability to share models would make
it easier to get started. Organizations could build
on the expertise and experiences of others instead of
having to start from scratch when building commu-
nicating agents. Second, focusing on and explicitly
specifying how messages are being used to do things
would make it clearer than current practice allows
how a message should be interpreted and responded
to. Finally, changing from an inference-based inter-
pretation system—such as that used by FLBC and
FIPA's ACL—to one based more directly on conven-
tion should simplify and speed up the interpretation
of frequently used messages. However, care will have
to be taken to keep the system flexible so that it can
meaningfully respond to messages from a wide vari-
ety of partners. This is something that, I propose,
KQML has not been able to do.

In this paper I define what I mean by “conversation
policy.” I then develop a solution to a general, but
relatively simple, communication problem. Through
this analysis I progressively reveal an approach to
implementing conversation policies. Next, through

an extended example I demonstrate how this system
of managing message exchange by conversation pol-
icy (a method that relies heavily on convention) con-
trasts with a system based on inference. I also show
how these two can be integrated to gain some of the
advantages of both. I conclude by discussing the ben-
efits and drawbacks of the proposal.

2 Conversation policies

In this section I present my views on conversation
policies. As a basis for understanding that presenta-
tion, I first discuss my assumptions regarding agents,
ACLs, and conversations.

~ Researchers have deployed many types of agents.

These agents have been built to accomplish many
different tasks and have widely differing capabilities.
This situation shows no signs of stabilizing. One of
the main differences relates to mobility. As discussed
by Labrou et al. (Labrou, Finin, & Peng 1999), the
current situation is so bad that researchers of mobile
and (non-mobile) agents even mean different things
when referring to agent interoperability. For mobile
agents it means being able to make remote procedure
calls on its current host. For (non-mobile) agents it
generally means being able to exchange messages in
some ACL. Other differences, while less dramatic, of-
fer similarly difficult obstacles to overcome if agents
of all types are to ever to cooperate or interoper-
ate. The point of this work is to describe a means
for allowing—in the sense used by the (non-mobile)
agent community—agents, mobile or not, to commu-
nicate with each other so that one can get information
from another or get the other agent to do something
for it.

In this paper I assume as little as possible about
agent architecture and communication language so
as to increase the chances that the framework might
be widely applied. Later in the paper I narrow the
focus a bit and show the benefits that accrue when
this approach is applied to the FLBC. An underlying
assumption to minimizing assumptions is that if a
fully formal specification for both responding to mes-
sages and handling conversations in a heterogeneous
environment were specified, it would be difficult, if

not impossible, to completely verify the conformity of
any random agent to that specification. One impor-
tant impediment would be the political reality of the
verification process: Does a third party handle the
verification? Do they have to look at the code that
makes up the agent? A second impediment would be
to determine what is meant by verification. Would it
mean that an agent is able to reply to a message in
that ACL or all messages in the ACL? Would it mean
that the agent is able to generate a response to a mes-
sage no matter how simplistic that message might be
(e.g., replying "yes” to all messages)? Another im-
pediment is determining what the specification looks
like. Would it be a static document? Would it change
every time a new type of message were defined, ev-
ery time a new message were defined, or not at all?
To summarize, I assume that if all agents were able
to conform, then that would imply that either 1) the
specification was so simple as to be of limited benefit
to those who are deploying systems, or 2) the speci-
fication was so complex and had so many exceptions
that it could not be usefully, easily, or meaningfully
deployed.

What I am going to assume is that developers can
understand a formal specification and can implement
it in whatever way they see fit given the needs of
their application. For example, in FLBC the standard
effects of a request message are that 1) the hearer be-
lieves that the speaker wants the hearer to do some-
thing, and 2) the hearer believes that the speaker
wants the hearer to want to do that same something
(Moore 1998b, Appendix B, D). Some agents might
implement these effects within a defeasible belief sys-
tem that models its own and others’ beliefs. Other
agents might not have such sophisticated technology,
might not model the beliefs of speakers, and might
focus on the second standard effect and simply do
what it is that the requesting agent asked. I assume
that agents can have any capabilities (e.g., use a be-
lief system, have deontic reasoning) but they have
to be able to implement procedures that can follow
the conversation policy specifications. I base the ex-
amples in this paper on a specific language but the
principles concerning conversation policies should be
applicable to a wide range of languages.

In order to communicate with other agents, some

2 CONVERSATION POLICIES

Page 2

particular ACL must be used. For the purposes of
discussing conversation policies in this paper, the
specifics of any one language are mostly irrelevant.
It should be possible to add these facilities for de-
scribing and managing conversations to almost any
ACL, though the benefits of such an addition may
vary from one language to the next. That said, in this
paper I refer periodically to FLBC (see (Moore 1993;
1998a; 1998b), among others; more information can
be found at the Web site http://wuw-personal .umich-
.edu/"samoore/research/flbc/). FLBC is a language
similar to KQML. Its message types are based on
speech act theory; in contrast with KQML, this set
of types has not needed frequent additions.

An FLBC message is an XML document (Cover
. 1998; Light 1997) and has deep foundations in
speech act theory. The flbcMsg XML DTD is lo-
cated at http://www-personal.umich.edu/~samoore-
/research/flbcMsg.dtd. An FLBC message has the
form

<?xml version="1.0" encoding="UTF-8"
standalone="no"?>
<!DOCTYPE flbcMsg SYSTEM
"http://www-personal.umich.edu/~samoore/-
research/flbcMsg.dtd">
<flbcMsg msgID="M">
<simpleAct speaker="A" hearer="B">
<illocAct force="F" vocab="N"
language="L">
X
</illocAct>
</simpleAct>
<context>
<resources>
<actors>
<person id="A"/><person id="B"/>
</actors>
</resources>
<respondingTo message="V"/>
</context>
</f1bcMsg>

The interpretation of this message is fairly straight-
forward. This is a message, identified by M, from A
to B in reply to a previous message identified by V.
Speech act theory hypothesizes that all utterances
have the form F(P) where F i the illocutionary force
of the message (e.g., inform, request, predict) and P

is the propositional content of the message (what is
being informed, requested, or predicted). In confor-
mance with the theory, the structure of this and all
FLBC messages is F(X). The content X is written using
the language L and the ontology N.

When using FLBC, a message’s sender constructs
and sends a message knowing that he cannot know,
but can only predict, how it will be interpreted. The
message's recipient receives the message, interprets
it, and then uses it as a basis for inferring how he
should respond. The “standard effects” of a mes-
sage are those specific to the message type; for ex-
ample, the standard effects of all request messages
are those defined above. The “extended effects” are
those effects that depend on the message's content
(the propositional content in speech act terms) and
context. Part of the context is the conversation to
which the message belongs. This separation increases
the probability that an agent will be able to usefully
interpret a message it has not received before since
1) each agent developer knows the definition of the
standard effects of each message type, 2) the standard
effects contain a significant portion of the meaning of
any particular message, and 3) the set of currently-
defined message types covers a significant portion of
the messages that agents need to say.

A conversation among agents is an exchange of
messages. This exchange is generally done toward
the accomplishment of some task or the achievement
of some goal. In its simplest form it is a sequence of
messages in which, after the initial message, each is
a direct response to the previous one. More compli-
cated structures occur when subdialogs are needed.
Linguistics and philosophers have not come to any
consensus about subdialogs, but several types consis-
tently appear (Litman & Allen 1987; Moore 1998b;
Polanyi 1988): subordinations, corrections, and intet-
ruptions. A message begins a subordinate conversa-
tion when it elaborates on a point made in a previous
message. This message should be about the previous
message, probably as a clarification of some fact. A
message that begins a correction subdialog indicates
that the message somehow corrects a previous mes-
sage in the conversation. A message interrupts the
current conversation when it is neither an expected
nor the standard reply to the previous message. This

2 CONVERSATION POLICIES

Page 3

should be used only if the other two do not apply.

A conversation policy (CP) defines 1) how one or
more conversation partners respond to messages they
receive, 2) what messages one partner expects in re-
sponse to a message it sends, and 3) the rules for
choosing among competing courses of action. These
policies can be used both to describe how a partner
will respond to a message (or series of messages) it
receives and to specify the procedure the partner ac-
tually executes in response to that message (or those
messages). The policy is a template describing an
agent’s reactions to an incoming message, its expec-
tations about upcoming messages, and the rules it ap-
plies to determine its own reactions. In a linguistic
sense, it moves the conversation from an inference-
_ based process to a convention-based one. Inference
acts now as a backup, providing a more computa-
tionally expensive way of understanding unfamiliar
messages for which CPs have not been defined. The
means by which this backup can be implemented is
demonstrated in §4.

A ©p is said to be well-formed if it does not contain
contradictory directions for what a partner should do.
These rules may assume any underlying agent model
but, clearly, cannot assume more capabilities than
the associated agent actually has. A specific CP is
invoked upon the receipt of a message and specifies a
series of actions that usually, but not always, includes
sending messages related to the received message.
Two dimensions of this approach differ a bit when
a CP specifies actions for all the partners in a conver-
sation (instead of simply one of them), specifically
well-formedness and differing agent models. In addi-
tion to the requirement above, a well-formed multi-
agent CP specifies a coherent set of actions that does
not lead the conversation to a deadlock—a situation
in which each agent is waiting for the other. As for
agent models, just as no specific one is required for
a single-agent CP, a multi-agent CP does not require
that all agents share the same model; thus, the rules
for picking alternate courses of actions for one agent
might be based on that agent’s beliefs, another agent
might have rules that automatically reply to all in-
coming messages (the degenerate case), and another
might look at the status of environmental variables
(such as indications of whether a machine is on).

The ACL actually used should not much matter;
however, there is a specific, and to the point of
this paper, quite relevant way in which FLBC and
KQML differ—how each treats a response to a mes-
sage. (This difference applies to the version de-
scribed in (DARPA 1993) but not in Labrou (Labrou
1996).) As I have previously argued (Moore 1998a,
p. 216), information about discourse structure should
not define a speech act. If we were to go down
this path, agents might need, in addition to reply,
acts for reply-request (if a message is replying to
a question but is asking for more information) and
reply-request-reply (if a message is replying to a
question that was asked in response to a question)
and a reply-predict (if a message is a prediction re-
plying to a question) and so on. These are not what
we want. I propose that discourse information, as
much as possible, be represented in a message's con-
text term, separate from the speech act (illocutionary
force and content) itself.

3 Proposal

In the following I describe my proposal for how agents
should handle and how ACLs should represent conver-
sation policies.

Agents should work with conversation policies that
are represented using the statechart formalism de-
fined by Harel (Harel 1987). This is a graphical
language which developers would find easier to work
with than the underlying XML representation which
the agents themselves use. Harel states, more clearly
than I could, why statecharts were developed and
why I think they are appropriate:

“A reactive system. . . is characterized by be-
ing, to a large extent, event-driven, contin-
uously having to react to external and in-
ternal stimuli. ... The problem [with speci-
fying and designing large and complex reac-
tive systems] is rooted in the difficulty of de-
scribing reactive behavior in ways that are
clear and realistic, and at the same time
formal and rigorous, sufficiently so to be
amenable to detailed computerized simula-

3 PROPOSAL

Page 4

send advaertise with broker
ask if . .
broker receives reply (yes)/ receive acknowledgment/ receive
msg with] send inform that selling | Proker | seng description of product {broker sent] ack broker has
’\’ broker 'l ":";0;”:" I description description

»
eo o
e/;,e S rop

~®

not a broker

Figure 1: A sample statechart representation of a conversation policy

tion. The behavior of a reactive system is
really the set of allowed sequences of input
and output events, conditions, and actions,
perhaps with some additional information
such as timing constraints.” (Harel 1987,
pp. 231-2). “Statecharts constitute a visual
formalism for describing states and transi-
tions in a modular fashion, enabling clus-
tering, orthogonality (i.e., concurrency) and
refinement, and encouraging ‘zoom’ capabil-
ities for moving easily back and forth be-
tween levels of abstraction.” (Harel 1987,
p. 233)

Everything that Harel states about reactive systems
applies to agent communication systems; thus, state-
charts are an appropriate technology to investigate
for modeling cps.

Every CP begins with a message being either sent
or received. An agent maintains a database of both
CPs it can use and a set of currently executing CPs.
Figure 1 contains a sample statechart representation
of a conversation policy. The whole statechart is la-
beled advertise with broker. It has six states: advertise
with broker, msg with broker, broker knows we sell, broker
sent description, not a broker, and broker has description.
Transition labels have the form t(c)/g, each part of
which is optional. When the event represented within
the trigger t occurs, then, if the condition c is met, the
transition between states is made. If the g is present
on the transition, then the event g is generated as the
transition is taken.

To interpret the statechart in Figure 1, start at the

left, think of the broker as some external agent, and
think of these figures as representing our agent’s CPs.
When the send ask if broker event is generated some-
where within the system (that is, when a message
asking if someone is a broker is sent), then this state-
chart is invoked. No condition (c) or generated event
(/g) is on this transition. The transition is taken
and this statechart is invoked because that event is
the trigger for this statechart. The system's deci-
sion rules will favor specificity so it will choose the
CP whose trigger provides the most specific match
with the event that occurred. Specificity of triggers
grouped by the type of the message provides one way
of hierarchically organizing cps. The unlabeled arrow
with a dot on the end signifies that the system should
start in the msg with broker state by default. The sys-
tem stays in this state until a reply to this message is
received. If the reply is “no”, then the system takes
the transition to the not a broker state. If the reply
is “yes”, then the transition to broker knows we sell is
taken. When this is taken, the send inform that selling
event is generated (that is, the system sends a mes-
sage informing the broker that we sell some particular
product). The system stays in this state until it re-
ceives acknowledgment. As it takes the transition to the
broker sent description state, it generates the event send
description of product. The system stays in this state
until it receives an acknowledgment of this message.
At that point it takes the transition to the broker has
description state.

In the figures and body of this paper I infor-
mally represent the triggers, conditions, and gener-
ated events. I think of this as being the business

3 PROPOSAL

Page 5

Event Occurs when

entered(S) State S is entered

exited(S) State S is exited

true(C) The value of condition C is set
to true

false(C) The value of condition C is set
to false

Table 1: A sample of the operators defined by The
Open Group

analyst’s view of the statecharts. This could be uni-
versally shared. Again, an XML DTD for statecharts
- could define the interchange vocabulary for describ-
ing statecharts that agents would be able to send, re-
ceive, and process. I envision that the tool supporting
the definition of these statecharts would also contain
more formal (even executable) specifications more ap-
propriate for the system designer’s needs. These for-
mal descriptions could provide a more detailed and
clear definition of the statecharts for all who see them;
however, I do not believe that it is realistic to expect
that this formal specification would be universally ex-
ecutable. The most that might be expected is to have
a certain core set of operators (see those defined by
The Open Group (The Open Group 1999) and Ta-
ble 1) that are shared by all and that have a shared
semantic meaning.

I expect that CPs will be stored in a public repos-
itory that people can browse. The process of pub-
lishing a CP would assign it a unique identifier. After
finding an appropriate CP in such a repository, the
person could download it and subsequently adapt it
or its implementation (depending on the program-
ming language the agent is written in, etc.) so that
his or her agent could use it. The more modular it
is, the smaller it is, and the more it uses just the core
statechart operators, then the simpler this adapta-
tion process will be.

As for using this cP, when the agent is following a
publicly-available CP, it would include the CP’s name
in any related message’s context. This would have
varying effects on the message recipient. First, if

the recipient is not aware of that CP and does not
want to change, then this information would simply
be ignored. Because of the default standard effects in
FLBC, an agent can usefully reply to many messages
without being aware of the structure of the sending
agent's CP. Second, the recipient may not have this
CP implemented but may have noted that it has re-
ceived many messages that use this cp. This could
lead the agent designer to add this cP—or, more ap-
propriately, a CP that could be used to interact with
or respond to messages under that CP—to the agent’s
set of cps. Third, if the recipient is aware of the CP,
it may have already implemented a CP that it uses
to interact with messages from that cp. If so, the
receiving agent could simply invoke the appropriate
CP, knowing that this is the most efficient and effec-
tive way both to handle the incoming message and to
respond to the reason or goal underlying that mes-
sage.

The statechart in Figure 1 describes a process in
which an agent confirms that another agent is a bro-
ker, tells the broker that it sells a product, and then
describes that product. This process could be rep-
resented by different statecharts—for example, the
statecharts in Figure 2. This pair of statecharts is
equivalent to Figure 1 except that two separate state-
charts are composed to accomplish what, previously,
one statechart accomplished. In the top statechart in
Figure 2, when the system generates the send inform
that selling event, the inform broker about product we sell
state is entered. The bottom statechart in this figure
has this same name and is invoked with this same
event. Benefits of the representation in Figure 2 are
that 1) the function of the advertise with broker state-
chart is more apparent because of the new, descrip-
tive state, and 2) the inform broker about product we sell
statechart can be used separately from the advertise
with broker statechart. This modularization should be
applicable to a wide variety of procedures.

An alternate representation of the bottom state-
chart in Figure 2 is the statechart shown in Figure 3.
Though it is close, it is not equivalent to the original
representation. The system no longer waits for the
receipt of the acknowledgment message before tran-
sitioning to the broker sent description state. It also
eliminated the need for the broker has description state

3 PROPOSAL

Page 6

send advertise with broker

ask if
broker

receives reply (yes)/

-

msg with | send inform that selling
broker

send | inform broker about product we sell

Inform

that receive acknowledgment/ receive

selling broker [send description of product [broker sent | 20k broker has
vkvlogl ™ description description

Figure 2: A sample statechart representation of a conversation policy using composition (this is equivalent to Figure 1)

inform broker about product we sell

broker | /sand description of product
knows
we sell

~®

Figure 3: A statechart representation of a conversation
policy that leaves a few messages out com-
pared with the bottom statechart in Figure 2

send
inform
that

selling broker sent

description

by dropping the last receive ack trigger.

This raises one of the general difficulties with spec-
ifying conversation policies that are not shared by all
conversants: each conversation partner may handle
the same message in different ways. In this instance,
the bottom CP in Figure 2 assumes that the part-
ner returns an acknowledgment. If the partner does
not return this message, then the conversation never
progresses without some sort of external intervention
(e.g., sending an email to the partner and asking him
or her to send an acknowledgment—clearly not the
solution we're looking for). The alternate represen-

tation shown in Figure 3 removes the requirement
that the partner send acknowledgment messages but
also no longer specifies how these messages would fit
into the conversation were they actually sent. This
is where the proposed method really shines. The fol-
lowing shows how this would work.

To this point I have ignored the process of how a
statechart used to describe a CP becomes a statechart
used both to define a set of executable activities and
to monitor and control their execution. I describe
that process here. Suppose both that the agent has
just sent a message to another agent asking if that
agent is a broker for a certain kind of product (i.e.,
send inform that selling) and that our agent uses the cp
depicted in Figure 3. When the system determines
that it is going to use this statechart, it puts it inside
a state that has a unique (random and meaningless)
conversation identifier. The original statechart (in
Figure 3) is a normative specification for how the
conversation should proceed. This new outer state
(in Figure 4) is used to individuate this conversation
among the set of all other conversations (not shown)
this agent is currently (or has been) involved in. This
allows the agent to carry on simultaneously multiple
conversations that use the same cp.

3 PROPOSAL

Page 7

conversation823

send inform broker about product we sell
inform

that

salling broker | /send description of product {broker sent
knows "1 dascription

.K. wa sell

Figure 4: A statechart representation of a current con-
versation

Now, suppose that the broker agent informs our
agent (via an inform message) that it received our mes-
sage that we sent informing it that we sell a product
(i.e., send inform that selling). The message our agent
receives contains a term that indicates the message is
a reply to the original inform message our agent sent.
This term tells our system that the reply should be
part of this conversation (conversation823 in Figure 4);
thus, the CP should specify how the system should re-
spond to it. Given all this, the figure clearly does not
specify how to handle this message since there is no
trigger receive inform in the figure. However, there is
more to the system than has been described and there
actually is a defined procedure for responding to this
message. It simply is not shown. To that we now
turn. Recall that the agent has a database of CPs.
For FLBC the database contains a CP for the standard
effects of each message type; these CPs are invoked
only when other, more specific CPs do not apply.
Thus, for every incoming message, a procedure can
unambiguously choose one appropriate statechart.

Suppose our agent has just received this message—
informing it that the broker agent received the orig-
inal message—that the CP does not specify how to
handle. Further, suppose that our agent has the
statechart depicted in Figure 3 in its database of nor-
mative CPs. The system follows a procedure such as
the following:

1. It looks for an appropriate cP. In this case it
chooses standard effects for inform. See the bottom
portion of the statechart in Figure 5.

2. The system draws a transition from the state im-

conversation823

send | inform broker about product we sell
inform

that

selling broker | /send description of product [broker sent
knows description

W el

~®

;:f;;e when done
(reply)
standard effacts for inform
jconsider that -
speaker belleves possible
someone content that speaker
believes

wants to
Inform
something

content

possibly
belleve
content

/OOnSK ;
Beligyy, '

/‘® Conteny 9

Figure 5: A statechart representation of a conversation

policy with an unplanned-for subdialog

mediately following the transition containing the
message that the incoming message says it is a
reply to. In this case, the message is a reply to
the send inform that selling message on the left of
the inform broker about product we sell state. The
state immediately following this one is the bro-
ker knows we sell state. The transition is drawn
from this state to the statechart representing the
CP identified in the previous step (standard effects
for inform). This transition should be labeled
with a description of the reply. This label is
descriptive—so as to show what caused the sys-
tem to take this transition—and restrictive—so
as to keep the system from taking it again after
the system returns to the inform broker about prod-
uct we sell state (described below). In Figure 5
this is represented by the transition labeled re-
ceive inform (reply).

. The system now draws a transition from the cp

chosen in the first step. The transition is drawn
from this state back to the original cp. This

3 PROPOSAL

Page 8

transition is labeled when done to indicate that
this transition should be taken when the standard
effects for inform state is completed. Not shown is
that each statechart contains a definition of the
conditions that must hold for it to be completed.

The new statechart is now joined to the old state-
chart within the context of this conversation. In
terms of the statechart, this means that the sys-
tem has finished joining the original statechart to the
statechart for the standard effects; this is all shown in
Figure 5. Now that they are joined, the system can
execute the appropriate steps: The send inform that
selling message was sent (before these two statecharts
were joined) and conversation823 was begun. The in-
- form broker about product we sell state was entered. The
default state broker knows we sell was entered. Because
it was entered, the transition to its immediate right
is taken and the event send description of product is
generated. This takes it to the broker sent description
state. At some later time (or even concurrently with
the last transition) the system receives the reply to
the first message, joins the statecharts as described
above, and enters the standard effects for inform state.
The default state is entered which immediately causes
the system to take both transitions and generate their
associated events. The system then determines that
the statechart standard effects for inform is done and
takes the when done transition back to the original
statechart.

This is where the H* (history) node is useful. This
signals that the statechart should restart in the node
it last finished. In this case, since the transition was
immediately taken into the last state, this statechart
has already been completed so the system does not re-
enter it. If the transition had not been taken because
a trigger had not been fired or because a condition
had not been met, then the system would go back
into the broker knows we sell state.

Figure § is possibly incomplete in two ways. First,
later messages might add further subconversations.
At some later time the broker might send something
back in response to the send description of product mes-
sage. Second, the cP does not plan for all contin-
gencies. For example, if the agent had been informed
that the broker does not sell the product, then a mes-

acknowledge new product
recei
i nforr“rlle (we se\\)fs‘;?:
selling someone | inform of
product is selling

a product

(We don-
on't sefyy we do not
: Send infoy,) sell product

™ of this
Figure 6: A statechart that describes the process of
acknowledging a new product

sage (the send description of product message) would be
erroneously- sent. This might happen if the broker
receiving our inquiries employed the CP depicted in
Figure 6. The inform broker about product we sell CP, as
it is currently constructed, essentially assumes that
the broker is not going to say anything that would
convince the agent to not send the product descrip-
tion. If this were a common occurrence and if the
sending of the product description were expensive,
the CP inform broker about product we sell should cer-
tainly be refined.

The above discussion has mostly applied to the ac-
tions, messages, decisions, and conversation policies
for one participant in a conversation. Using FLBC as
a communication language, this agent cannot know
what the other does with this message. The sending
agent can only know that the receiving agent knows
what the sender wants the hearer to consider believ-
ing as a result of the message. Consider the message
send inform that selling that the agent sends to the bro-
ker. The broker agent—not our agent, but the broker
agent—may have a CP defined like the one shown in
Figure 6 or it may simply use the standard effects
for inform. The sending agent simply does not know
which one the broker uses. This incomplete knowl-
edge is highly applicable to many circumstances since
agents need not be cooperative, friendly, or trustwor-
thy. It is unreasonable to expect that these types
of agents should be required to share specifications
of the effects of messages or that they would even
have to believe this information were they told it.
However, even under these circumstances it should

3 PROPOSAL

Page 9

find appropriate broker

advertise with broker

- . broker
th | receives reply (yes
) e Py (425) ! for this
product
\ ’ocs/y
=S reply (no;

asked if appropriate broker for & product

send
askif
broker

asked if appropriate broker for a product

receive ae)

gf(':kgr broker
roduct

(B, not A) P

wants to
know

Figure 7: A statechart that describes the activities of
both parties in a conversation

be possible for one agent to effectively communicate
with another. Further, even if a CP is not defined,
the FLBC standard effects provide a “fail soft” mech-
anism. If a CP is not defined, then the system would
be able to do something useful with the message and
not always require manual intervention.

Some situations call for less uncertainty. In these
situations communication partners can get together
and define multi-agent CPs. Figure 7 contains an ex-
ample of such a policy. The dotted line is the state-
chart feature that expresses concurrency and, for CPs,
also separates the actions taken by separate conver-
sation partners. The idea behind these multi-agent
CPs is that each participant is committing to making
public the messages it generally sends in a conversa-
tion and the rules it employs in choosing among al-
ternatives. The exposure of these messages and rules
are expected to result in CPs that have fewer unex-
pected subdialogs (as shown in Figure 5). This would
certainly be more effort than defining a single-agent
cp and would, therefore, only be attempted with con-

versation partners with whom many messages are ex-
changed and who have special needs.

Defining a multi-agent conversation policy does not
bind the partners to never sending a message that
does not conform to the cp. In fact, it opens up
new ways in which the partners can deviate from the
cp—for example, with subordinations, corrections,
and interruptions. Consider the following situation
in which two agents, A and B, use the CP shown in
Figure 7. Agent A uses the top of the CP while Agent
B uses the bottom.

1. Agent A has started the CP by sending a message
asking Agent B if it is a broker for disk drives
(top half of the figure). It asserts that this mes-
sage is part of a new conversation identified by
conv874.

2. Agent B receives this message (bottom half of the
figure) and tries to determine an answer to the
question. Now, Agent B is only a broker for disk
drives of a certain price range. In order to answer
Agent A’s question, Agent B sends a question
back to A starting a subordinate conversation
(identified by conv921) to determine the price of
the disk.

3. Agent A receives this message that is a question
and which states that it is related to conversa-
tion conv874 in that it is starting a conversation
subordinate to it. Agent A composes a response
that states the price of the disk drive, adds the
information that it is a reply to another message
and is part of conversation conv921, and sends it
back to Agent B.

4. Agent B receives this message and determines
that it has completed the subordinate conversa-
tion. It returns to executing the original conver-
sation. In this CP it is in state someone wants to
know. It attempts to make a transition out of
it. Agent B's knowledge base now contains the
information necessary to determine that it does
sell the product so it takes the top transition and
generates the event send inform of this.

5. And so on...

3 PROPOSAL

Page 10

The question Agent B sent in step 2 is not part of
the CP but was sent as part of the process of answer-
ing Agent A’s question. The way the CP is defined
suggests that Agent A’s question is not a common
one. If it were, then these two agents should proba-
bly get together and refine this CP.

4 Extended example

In this section I explore in-depth an example adapted
from Greaves, et al. (Greaves, Holmback, & Brad-
shaw 1999, Figure 1). Their example is specified for
the KAoS system (Bradshaw et al. 1997) using a
form of finite state machine. In Figure 8 this conver-
sation policy is shown as a statechart; the sequencing
and policies covering the conversation are essentially
equivalent to the specification by Greaves et al. The
top half of this figure describes the contracting pro-
cess for the contractor; the bottom half is for the
supplier. The purpose of the exposition of this exam-
ple is to demonstrate how a multi-agent conversation
policy can be used to control the flow of messages,
contrast this with how messages are handled via an
inference-based process, and show how the inference-
based processing can be integrated with the policy-
based handling in order to deal with exceptions to
the policy.

In the following I list the messages that might be
sent in fulfillment of this conversation policy. I use a
Prolog-based representation for the FLBC messages
for space considerations. The send(A, B, C) predi-
cate should be interpreted as Agent A sends message
Agent C to the agents listed in B. Further, msg(s, R,
F, C, X) should be interpreted as speaker S sending
a message to recipient R with illocutionary force F,
content C, and with relevant context X.

4.1 Basic processing

The following message is sent from Agent C to Agent
S1 (line #1). This is a request from the sender to
the recipient that the recipient send back to Agent C
an offer in which Agent S1 reserves a hotel room for
Agent C in Delft from June 6 to June 10.

send(c, [s1], [Message #1]
msg(S, R, request,
send(R, S,
msg(R, S, offer,

[reserve(z),

Agent(z, R),
Object(z, x),
room(x),

beginDate(z, time(1999, 6, 6)),
endDate(z, time(1999, 6, 10)),
location(x, delft)])),
[cp(contractProcess),
convID(v423),
ackPolicy([S, R], [parse], yes),
timeSent (time(1999, 5, 11)),
msgID(c45)1))

Of course, predicates in this term are simplified ver-
sions of what actual applications would require; for
instance, information about the room and the loca-
tion would have to be markedly more detailed.

When this message is sent by Agent C, the “con-
tract process” conversation policy is invoked since
both the cp() term in the context matches the pro-
cess’s name and the message itself matches the pro-
cess’s trigger (see the transition at the far left of Fig-
ure 8). The default transition in the top half is taken
to put the contractor in the “supplier knows” state.

When the supplier receives this message, it de-
termines from the ackPolicy() term that it must
acknowledge to the contractor when it successfully
parses this message. This requirement of “parsing”
is more restrictive than simply receiving the message
but is less so than fully processing the message. This
acknowledgment should indicate to Agent C that the
sender has been able to parse the message and knows
what each of the terms mean. This acknowledgment
does not tell Agent C either that the sender has eval-
uated the original message or that the sender is going
to respond to the message. The purpose of this mes-
sage is to confirm that the receiving agent is on-line
and that the agent communication system is success-
fully routing messages.

send(sl, c, (Message #2]
msg(S, R, inform,

parse(S, msgID(c45)),

4 EXTENDED EXAMPLE

Page 11

[contract process
require ack

send request
for bid

(R

recelve bid/
evalqate

supplier
knows

contractor

done = contractor stop process or bad bid or contract made or suppller stop process

evalDone(stop)/
send withdraw

contractor
stop process
bad bid

contract
made

evalDone(bad)/
send reject

require ack

receive
request
for bid/
evaluate

done = contractor stop process or contract made or supplier stop process

evalDone(desired)/
set bid, send bid

supplier
stop process

supplier

receive
a
oPy{ contract
made
contractor
stop process

contractor
has bid

Figure 8: Contract conversation policy

[cp(contractProcess),
convID(v423),
msgID(s56)1))

Agent S1 sends Message #2 back to Agent C. Hav-
ing received this acknowledgment, Agent C can rea-
sonably assume that Agent S1 received the message.
This takes one level of uncertainty out of the pro-
cesses of interpreting messages and managing con-
versations.

For the most part these acknowledgment messages
lie outside the part of the message processing frame-
work that I want to concentrate on. Notice, however,
that the sequencing of the contract process conver-
sation policy remains the same whether or not an
acknowledgment is requested. The decision about
acknowledgment could be defined as a variable to
be agreed upon by the conversants before the con-

versation begins. It could even be agreed upon for
all conversations between the two parties when they
first begin to exchange messages. This provides one
means of reducing the frequency of the specific prob-
lem addressed in §3. For the rest of this explication I
assume that these acknowledgment messages are be-
ing properly sent, received, and processed.

The supplier, having received the request for bid
(Message #1), takes the transition to the left of the
“supplier knows” state in the bottom half of the state-
chart. Taking this transition fires Agent S1's “evalu-
ate” event. The agent evaluates the request to send
a bid. How this evaluation is to proceed is not spec-
ified by the conversation policy. It is not observable
by Agent C; its inner workings do not affect Agent C;
and it does not need to be known by Agent C. The
evaluation function would have to accept arguments

4 EXTENDED EXAMPLE

Page 12

with the following form:

avaluate(request,
send(s1, ¢, msg(sl, ¢, offer, (...1)))

Thus, Agent S1 will evaluate a request that Agent S1
send an offer to Agent C on a certain item (described
above in Message #1). Assume that the output of
this evaluation is a term whose internal representa-
tion is

determination(msgID(c45), desired)

This assumption does not affect the generality of this
discussion; it simply provides specifics we can use to
proceed. :

Whenever an evaluation is completed, it sends the
" event evalDone. This triggers the statechart to at-
tempt to take the two transitions leading out of “sup-
plier knows” in the bottom half of the statechart.
Since the value was determined to be “desired,” the
system takes the top transition. In doing this the
system sends the events that cause the system to set
the bid and then send it back to Agent C.

send(si, c, [Message #3]
msg(S, R, offer,
[reserve(z),
Agent(z, si),
Object(z, x),
room(x),
beginDate(z, time(1999, 6, 6)),
endDate(z, time(1999, 6, 10)),
location(x, delft),
price(x, $200)],
[convID(v423),
msgID(s57)]))

This message contains the information from the re-
quest for an offer message plus the price() predicate.

The contractor receives this offer. It determines
that this message belongs to conversation v423 so it
invokes the already-begun “contract process” conver-
sation policy. It currently is in the “supplier knows”
state. Having received the offer, it takes the tran-
sition to the “bid known” state and simultaneously
fires the evaluate function. The evaluate function
would have to accept arguments with the following
form:

evaluate(offer, [...])

Thus, Agent C will evaluate an offer for a reservation
of a room at $200. Again, when this evaluation is
done, it sends the event evalDone. This triggers the
statechart to attempt to take the three transitions
leading out of the “bid known” state in the top half
of the statechart. Assume the value was determined
to be acceptable. This directs the system to take
the transition to the “contract made” state. In doing
this, the system generates the event that causes the
message accepting the bid to be sent:

send(c, si, [Message #4)
msg(S, R, accept, msgID(s57),
[convID(v423),

msgID(c48)]))

The supplier receives this acceptance. It deter-
mines that this message belongs to conversation v423
so it, again, invokes the “contract process” policy. It
currently is in the “contractor has bid” state. Having
received the acceptance, it takes the transition to the
“contract made” state.

The above example demonstrates how a conver-
sation policy can provide fairly straight-forward mes-
sage processing. The complexity of message handling
is dramatically lessened by the pre-defined structure.
One cost of this simplification is the added require-
ment that the conversation partners have to agree be-
forehand that they will use this policy. Further, for
them to agree to use this policy it must already be
defined and they must both have access to it. This is
a difficulty that grows increasingly difficult with the
number of conversation partners and with the types

‘of conversations the agent engages in.

4.2 Inference-based messagé

handling

For a moment let us consider how the system can pro-
cess messages without defining conversation policies.
Assume that Agent B receives the following message:

msg(a, b, request, [Message #5]
send(b, a,

msg(b, a, inform, [x]:name(b, x))),

4 EXTENDED EXAMPLE

Page 13

(ackPolicy([a, b], (parse], yes),
timeSent (time (1999, 5, 12)),
msgID(a63)])

This is a request from Agent A to Agent B that Agent
B inform Agent A of Agent B’s name (more directly,
“x such that x is the name of Agent B”). According
to the definition of the standard effects of request
(Moore 1998b), the following are the results of this
message.

considerForKB a wants do(b, send(b, a,
msg(b, a, inform, [x]:name(b, x)))

considerForKB a wants (b wants do{(b, send(b,
a, msg(b, a, inform, [x]:name(b, x))))

- This specification indicates to the developer of Agent
B that Agent A wants the effects on Agent B of this
message to be the following two items: 1) Agent B
should consider adding to its knowledge base that
Agent A wants Agent B to send a message to Agent
A informing it of Agent B’s name; 2) Agent B should
consider adding to its knowledge base that Agent A
wants Agent B to want to send that message. Be-
cause of the diversity of agent models, it is basically
impossible to provide a general accounting of what
the agent would do in response to this message and
these two items in particular. What I provide be-
low is an accounting of two reasonable approaches to
defining a general means of handling these demands.

4.2,1 Simple agent

What I am describing here is how a simple agent
might implement the receive function when this “re-
quest to inform” message is received:

receive(msg(a, b, request, [Message #6]
send(b, a,

msg(b, a, inform, (x]:name(b, x))),
[ackPolicy([a, b], [parse], yes),
timeSent(time (1999, 5, 12)),

msgID(a63)]))

Little about the agent model can be assumed other
than the agent’s ability 1) to receive FLBC messages,
2) to interpret them, and 3) to use the FL-SAS (Moore

receive(msg(From, b, request,
send(b, From,
msg(b, From, inform, WhatInfo),
Context))) :-
rightToKnow(From, WhatInfo),
determineAnswer (From, WhatInfo, Answer),
createNewContextTerm(Context,
responseTo, NewContext),
send(b, From,
msg(b, From, inform, Answer),
NewContext) .

Figure 9: Processing a request to inform with a simple
agent

1998b) to initially process the message. In the FL-
SAS process, the agent verifies that the message is
valid and well-formed, composed of terms it knows
the meaning of. It then ensures that it knows all
the referents in the content of the message. In this
message, the only referent is “b”, the recipient of the
message. Agent B next verifies that the message’s
content is compatible with its force; that is, it ensures
that it i$ possible to “request” to “inform about the
name of b.” Finally, it ensures that the message as a
whole makes sense.

After the above steps are completed for this mes-
sage (as they are for all incoming messages), Agent
B is reasonably sure that it can process this mes-
sage. This should simplify later processing of this
message in something like the same way that compil-
ing a Java program simplifies the process of executing
that program—it removes, early in the process, whole
groups of errors. The agent can now get on with the
process of completing that part of the process de-
fined by the considerForKB items above. These are
not meant to be directly executed because so little
can be assumed about the agent model. Thus, these
two considerForKB statements tell the developer of
the receiving agent what the message sender meant
to convey with the message but does not tell him or
her how to implement the considerFoxKB function nor
how to respond to the message. In this simple agent
the developer has chosen 1) to not maintain a model
of the sending agent’s intentions, and 2) to do what

4 EXTENDED EXAMPLE

Page 14

receive(msg(From, b, request, send(b, From, msg(b, From, inform, WhatInfo), Context))) :-
considerForKB(wants(From, do(b, send(b, From, msg(b, From, inform, [x]:name(b, x)))))),
considerForKB(wants(From, wants(b, do(b, send(b, From,
5 msg(b, From, inform, [x]:name(b, x))))))).
considerForKB(wants(Other, do(b, Action))) :-
/* do some processing, for example, the following */
isBelievable(Other),
worthRemembering(Action),
addToKB(wants{Other, do(b, Action))).
considerForKB(wants(Other, wants(b, do(b, Action)))) :-
/* do some processing, for example, the following */
isBelievable(Other),
worthRemembering(Action),
addToKB(wants(Other, wants(b, do(b, Action)))),
considerForIntentions(wants(b, do(b, Action))).

considerForIntentions(wants(b, do(b,
gsend(b, From,
msg(b, From, inform, WhatInfo),
Context)))) :-
/* do some processing */
rightToKnow(From, WhatInfo),
determineAnswer (From, WhatInfo, _),
addToIntentions(do(b, Action)).

fulfillIntentions(do(b, send(b, From, msg(b, From, inform, WhatInfo), Context))) :-
determineAnswer (From, WhatInfo, Answer),
createNewContextTerm(Context, NewContext),
send(b, From,
msg(b, From, inform, Answer),
NewContext).

Figure 10: Processing by a complex agent

4 EXTENDED EXAMPLE Page 15

the sending agent wants the receiving agent to do.
Figure 9 shows a simplified Prolog representation of
how this might be handled. The agent determines the
recipient’s right to know what it’s asking, determines
the answer to the question, creates a new context
term (that might, for example, retain the conversa-
tion identifier and stack information, add a term in-
dicating this is a response to a message, and add a
new message identifier), and sends the reply.

4.2.2 More complex agent

While the above addressed how a simple agent would
respond to a request to inform, the following looks at
how a more complex agent might handle this same
 message. The process for this agent begins as it did
for the simple agent: the FL-SAS is applied with ex-
actly the same steps. After this the actions of the
agents diverge. In this agent the developer has chosen
to implement a BDI (belief, desire, intention) agent
model, to maintain a model of the sending agent’s
intentions, and to implement an agent that can make
deductions about these intentions. A preferred agent
could reason defeasibly about time and obligation
(see (Kimbrough & Moore 1993) for a discussion of
what is needed for such a system and why it might
be needed).

Figure 10 shows some snippets of Prolog code that
might be used to reason about this message and how
the agent would handle it. The receive() predicate
is a fairly direct mapping from the terms shown in
the beginning of §4.2. The first considerForKB() term
specifies the restrictions on adding information about
another agent’s beliefs to the knowledge base. The
second one does the same but also begins the process
of determining (by invoking considerForIntentions)
if the receiving agent’s intentions should be affected
by this incoming request. The agent's intentions are
only affected if the requesting agent has a right to
know the information and if the receiving agent can
actually answer the question. (Of course, all these
predicates could be more complicated and effective.
For example, maybe the receiving agent cannot deter-
mine the answer but knows someone who might know
the answer—in some cases this might be sufficient
and appropriate.) Finally, the fulfillIntentions

term would be called by some process when the agent
is attempting to do what it desires to do.

4.2.3 Summary

I have described agents with two different agent mod-
els. Each uses the FL-SAS to handle the initial mes-
sage processing, and each interprets FLBC messages.
Other than these similarities, the underlying struc-
ture of the agents differ. However, as the sketchy
existence proofs I have given in these two sections in-
dicate, each agent will create a similar response to the
incoming message, and each was able to process the
message without a predefined conversation policy.

4.3 Exception handling

Another cost of the use of conversation policies (ex-
pressed as statecharts) versus inference-based meth-
ods is that—this is not going to be a surprise—they
limit what can be said in a conversation. The conver-
sation policy limits what messages can be said and
when. Consider again Message #1 (at the begin-
ning of §4.1), in which the contractor requests that
the supplier send an offer for a room reservation. In
response to this message the supplier begins to eval-
uate what it should do. The form of this predicate is
shown on page 13. Suppose that the evaluate predi-
cate requires more information to reach a conclusion
than is provided in the incoming request. The full
predicate might look something like that shown in
Figure 11. This predicate has three main clauses.
The first does some processing if it is able to deter-
mine that the agent desires to make an offer. The
second does something else if it is able to determine
that it does not want to make an offer. The last
clause, and the one that is elaborated on, does some
basic checking and determines that the description of
the offer does not contain enough information to de-
termine the attractiveness of the request. In this case
the predicate specifies that the agent should send a
message back to Agent C requesting that it inform
the supplier about the number of beds in the room
the agent wants.

Agent C receives this message, examines it, and
determines that it is part of the contract process it

4 EXTENDED EXAMPLE

Page 16

evaluate(request, send(sl, c, msg(sl, ¢, offer, Description))) :-

((/* some processing if desireable */)

(/* some processing:if unwanted */)

(/* some processing if not enough information */
not contains([beginDate, endDate, beds], Descriptiom),

send(s1, [c], msg(S, R, request,
send(R, S, msg(R, S, inform,

[b] : [reserve(z), Agent(z, sl1), Object(z, x), room(x},
beginDate(z, time(1999, 6, 6)), endDate(z, time(1999, 6, 10)),
location(x, delft), beds(x, b)])),

[cp(contractProcess), convID((v441,

v423]), subordinate,

timeSent (time(1999, 5, 11)), msgID(s62)1)))).

Figure 11: Evaluation that sends unexpécted message

is already involved with. It also notes (from the in-
coming message’s context term) that this message is
part of a subordinate conversation and that this mes-
sage does not match any of the triggers coming out of
the “supplier knows” state in the top half of the con-
tract process statechart. Using the technique shown
in Figure 5, the system is able to link the conversa-
tion policy described in §4.1 with the inferential pro-
* cessing described in §4.2.1 and §4.2.2. Either of these
methods should result in Agent C sending back a mes-
sage informing Agent S1 about the number of beds it
prefers in the room it wants to have reserved. Having
received this information, Agent S1 would re-start the
evaluate predicate shown in Figure 11. From the ad-
ditional information it received in this last message,
the agent should be able to come to a determination
as to whether or not it wants to make an offer and,
thus, continue with the conversation policy.

The above demonstration provides reason for be-
lieving that the system for managing conversation
policies described in this paper can be integrated with
an inference-based system for interpreting messages.
Certainly, the contract process conversation policy
could have been re-defined to handle the request for
information discussed in §4.3; however, that is not re-
ally the point. If that message were the only one that
might be sent in violation of the conversation policy,

then of course the policy should be revised. Unfor-
tunately, many such messages might occur and it is
not at all certain that all these messages might be
foreseen. Further, if these exceptions were built into
the policy then the policy would become ever-more
complex and difficult to implement. And all for the
benefit of exceptions that may not ever be seen by the
agent. The ability to gracefully handle exceptions al-
lows conversation policy definitions to describe a flow
of conversation directly without needlessly focusing
on the myriad strange twists and turns it might take.

5 Conclusion

In this paper I have described at a moderate level of
detail the needed capabilities of an agent communi-
cation system that implements conversation policies.
In developing this approach I guarded against several
pitfalls that would limit its applicability. First, con-
versation partners do not have to specify down to the
last detail every possible outcome that might result
from sending a message. This is unreasonable and
would discourage people from undertaking the appli-
cation of the technology. Second, these CPs are not
inflexible. They should allow different agents to im-
plement features in different ways and should allow
deviations (in specified ways that are not overly re-

5 CONCLUSION

Page 17

strictive) from defined cps. Third, agents have only
minimal requirements placed on their architecture in
order to use these CPs. Fourth, and finally, these
CPs are effective under various levels of cooperation.
Agents are able to apply a CP without another agent’s
cooperation but, if that other agent chooses to co-
operate in the use of a multi-agent CP, agents gain
benefits from cooperation.

I envision agents that use this system of managing
conversations as a system that will evolve. The core
of the system for agents that use the FLBC is the set
of ¢ps for the standard effects associated with each
message type. These CPs are the only context-free
portion of the system and are, thus, the most widely
applicable. This core is shared by every agent. What
will happen next as the agents are used more is that
the developers for each agent will develop CPs for
those messages that the agent receives frequently. If
it is a generally useful CP, then the developer would
post it to a public repository so that others could
use it. Other CPs will develop that are domain spe-
cific and still others will develop that are conversation
partner specific. Each of these will have their place
in the agent’s repertoire of conversation management
tools. Further, not only will the population of CPs
grow but CPs themselves will evolve. Nuances and
special cases will be added to the cps that weren’t
foreseen when the CP was originally defined. Thus,
when initially deployed, an agent will have a small
set of simple cps. Over time the agent will gain more
cps, and those CPs will be more complicated and
more specialized for specific tasks. If all goes well,
they will still be composed of reusable modules that
can be shared among different agents and different
agent developers.

There is much that needs to be tested and refined
concerning this system. The XML DTD for statecharts
must be defined. The set of core operators on state-
charts must be defined. A set of scenarios must be
defined that would test the capabilities of and demon-
strate the effectiveness of this approach—and then a
system must be built to actually operate within those
scenarios. The usefulness of a single-agent CP and
default standard effect cPs (both single- and multi-
agent) must be demonstrated. A system for publish-
ing and naming CPs must be developed. Further, this

system must allow CPs to evolve but at the same time
must synchronize the version of a CP among conver-
sation partners. The usefulness of allowing commu-
nication among agents of differing capabilities must
be carefully examined to determine how those differ-
ences effect what is said and how it is interpreted.

Even given all these needs, the promise of this sys-
tem is encouraging, pointing to a future in which co-
operation and knowledge-sharing might be more eas-
ily realized.

End notes

Thanks to Prof. M.S. Krishnan for his helpful sug-
gestions for improving this paper.

For the “Workshop on Formal Models for Elec-
tronic Commerce,” organized by Yao-Hua Tan and
held at the Erasmus University Research Center for
Electronic Commerce, Rotterdam, the Netherlands,
June 2-3, 1999,

A previous version was published in the “Work-
shop on specifying and implementing conversation
policies,” held preceding Autonomous Agents ’99,
Seattle, Washington, May 1, 1999, a workshop or-
ganized by Jeff Bradshaw, Phil Cohen, Tim Finin,
Mark Greaves, and Munindar Singh. File: dynamic-
conv-policies.tex.

References

Bradshaw, J. M.; Dutfield, S.; Benoit, P.; and Wool-
ley, J. D. 1997. KAoS: Toward an industrial-
strength open agent architecture. In Bradshaw,
J. M., ed., Software agents. AAAI Press. chapter 17,
375-418. .

Cover, R. 1998. Extensible markup language
(XML). Accessed at http://wwu.sil.org/sgml/xml-
.html,

DARPA Knowledge Sharing Initiative External In-
terfaces Working Group. 1993. Specification of the
KQML Agent-Communication Language. http:-
//www.cs.umbc.edu/kqml/kqmlspec.ps. Down-
loaded on July 14, 1997.

REFERENCES

Page 18

Foundation for Intelligent Physical Agents. 1997.
FIPA 97 specification part 2: Agent communication
language. Geneva, Switzerland.

Greaves, M.; Holmback, H.; and Bradshaw, J. 1999.
What is a conversation policy? In Greaves, M., and
Bradshaw, J., eds., Proceedings for the Workshop on
Specifying and Implementing Conversation Policies,
1-9. Seattle, WA: Autonomous Agents 99,

Harel, D. 1987. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming 8:231-274.

Kimbrough, S. O., and Moore, S. A. 1993. On obli-
gation, time, and defeasibility in systems for elec-
tronic commerce. In Nunamaker, Jr., J., ed., Pro-
ceedings of the Hawaii International Conference on
System Sciences, volume III, 493-502. University of
Hawaii.

Labrou, Y., and Finin, T. 1997. A proposal for a
new KQML specification. Downloaded from http:~
//wwv.cs.umbc.edu/kqml/ in January 1998 (Tech-
nical Report CS-97-03).

Labrou, Y.; Finin, T.; and Peng, Y. 1999. The
interoperability problem: Bringing together mobile
agents and agent communication languages. In
Ralph Sprague, J., ed., Proceedings of the 32nd
Hawaii International Conference on System Sci-
ences. Maui, Hawali: IEEE Computer Society.

Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University
of Maryland, Computer Science and Electrical En-
gineering Department. UMI #9700710.

Light, R. 1997. Presenting XML. SAMS.net Pub-
lishing, 1st edition.

Litman, D. J., and Allen, J. F. 1987. A plan recog-
nition model for subdialogues in conversations. Cog-
nitive Science 11:163-200.

Moore, S. A. 1993. Saying and Doing: Uses of For-
mal Languages in the Conduct of Business. Ph.D.
Dissertation, University of Pennsylvania, Philadel-
phia, PA. :

Moore, S. A. 1998a. Categorizing automated mes-
sages. Decision Support Systems 22(3):213-241.

Moore, S. A. 1998b. A foundation for flexible auto-
mated electronic commerce. Working paper at the
University of Michigan Business School.

Polanyi, L. 1988. A formal model of the structure
of discourse. Journal of Pragmatics 12:601-638.

The Open Group. 1999. Statechart specification
language semantics. http://www.opengroup.org-
/onlinepubs/9629399/chap8.htm. Chapter 8 of
CDE 1.1: Remote Procedure Call, 1997,

REFERENCES

Page 19

