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SUMMARY

We show that the scale mixture of uniform family generalises the scale mix-
ture of normal family. We also show that inference for the former fam-
ily is more straightforward and can easily accommodate both mean and
variance regression functions. Illustrative analysis for the autocorrelated-
heteroscedastic regression model is provided using data obtained from 14 US

banks.
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1 Introduction

We start this paper by considering the scale mixture of normal family of
distributions (Andrews and Mallows, 1974; Karim and Paruolo, 1996). As is
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well known these provide generalisations to the normal family; for example,
the exponential power and Student ¢ distributions. Their practical use is
in providing probability density functions with heavier tails compared to
the normal, useful for modeling robustness (Box and Tiao, 1973; Choy and
Smith, 1997). The heaviness of tails is measured by kurtosis. The normal
density has zero kurtosis whereas a scale mixture of normal density can have
positive kurtosis (leptokurtic).
Consider the density function for X, defined on (—o0, +o0), given by

fx(z) = [ N(alu, o N)m(3)a,

where N (g, 0?) denotes a normal density with mean g and variance o? and
7(.) is a density defined on (0, +00). The exponential power arises when 7(.)
is an inverse positive stable density and the Student ¢ arises when (.) is an
inverse gamma density. However, a surprise is why interest has focused on
these two alone. After all, if

EN=1 and var[A]=71/3

then
EX]|=p, varX]=0? and &(X)=r,

where «(X) denotes the kurtosis. Note then that the kurtosis must be posi-
tive.

Our work is based on the fact that we can express the normal distribution
as a scale mixture of a uniform distribution. Therefore, any distribution
which has a scale mixture of normal representation, also has a scale mixture
of uniform representation. Moreover, the scale mixture of uniform family
includes densities with negative kurtosis (platykurtic).

Here we present a result which does not appear to be widely known, at
least, if known, its relevance for making statistical inference. In the following
G represents a gamma distribution and U a uniform distribution. We state
without proof:

Theorem 1. If X|[V = v] ~ U(p—-oyv,p+0v) and V ~ G(3/2,1/2)
then X ~ N(p,0o?).



2 Scale mixtures of uniform distributions

We introduce the scale mixture of uniform family by considering the scale
mixture of normal family and using the result of Theorem 1. Suppose then

= /N(a:|p,a2/\ m(A)dA

We can write this in a three level model, given by
X|V=v]~U (g — oV, p+ o),
vV ~G(3/2,V3/2)
A~

We can combine the last two to give

frlv) = 55 / N exp (—ov/A/2) (A)dA
The family of distributions we will be looking at in this paper has the repre-

sentation:
X|V = 0]~ U (4= ovio,p+ 0/0)
V~ fy(.)

Here we note that the Student ¢t and exponential power distributions arise
as scale mixtures of uniform distributions. The Student ¢, with o degrees of
freedom, has the representation

X¢ ~ N(u, 0*/8),
£ ~ Glaf2,a/2).
We can write the first level as the scale mixture of a uniform:
X[V = o]~ U (4~ ovi,u+0v0),
VI[E ~ G(3/2,¢/2).

We can then combine f(v]€) and f(£), integrate over ¢, to obtain the marginal
distribution of V and hence obtain the scale mixture of a uniform represen-
tation:



Theorem 2. If V has density given up to proportionality by

/o

Jv(v) (a + v)@rar

and
X|V=v]~U (g - ovio,p+0V7),

then X has a Student ¢ distribution with mean p, scale parameter o and o
degrees of freedom.

We state the result for the exponential power distribution:

Theorem 3. If V has density proportional to
o) o/ xp (—o0),
so VY7 ~ G(147/2,1), and |
X|V =v]~U (p=avo,u+ayv),

2/1)

This characterisation of the exponential power distribution appears to be
more tractable than the alternative scale mixture of a normal characterisation
(West, 1987), which is only valid for € (1,2]. We can obtain an mterestmg
result by combining the result of West with ours:

Theorem 4 (West, 1987). If X|\ ~ N(0,}), here A denotes 1/(variance),
and f(A) o A™Y2py,(A), (1 < 7 < 2), where p,(.) denotes the density of
the positive stable distribution with index a (0 < a < 1), then fx(z)
exp(—|z|*/7).

We can now insert the uniform and gamma mixture to replace the normal,
leading to the following 3 stage mixture:

X|[V = o] ~ U (=5, +v2)
VIA ~ G(3/2,M/2)

then

z—p
g

fx(z) x exp (-—

where 7 € (0,2].
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and
FO) o A2y (N).

Combining the last two stages implies:

T2 eyp( o) o v [T X3 exp(—~0.5X0) A" 2py 1, (A)dA.

A=0
Therefore,

Theorem 5. If V|\ has the exponential distribution with mean 2/A and
fQA) = py-(A), (1 < 7 < 2), then fy(v) x o7 Vexp(—v!/T), a Weibull
distribution.

There does not seem to be any reason why we should just consider the Student
t and exponential power distributions.

Consider the generél family of distributions:

X|[V=v]~U(;t—U\/z7,p+a\/5)

Vo~ fo
Then the following hold: E[X] = p, var{X] = 02E[V]/3 and
_ 9E[V?]
"= sEE

So the mean and variance of V determine the variance and kurtosis of X. To
obtain var[X] = 0? and x[X] = 7 we require E[V] = 3 and var[V] = 57 + 6.
Note that we must have 7 > —6/5 which is the kurtosis for the uniform
density. A particular distribution which satisfies these requirements is given
by '
fv =G(9e, 3‘1),

where @ = (57 + 6)~!. This new family of distributions has parameters
{p,0,7), with mean p, variance o? and kurtosis 7. We recover the normal
distribution when 7 = 0 (& = 1/6). '

The scale mixture of a uniform family coincides with the class of uni-
modal, symmetric distributions:

Theorem 6. If fx is a unimodal, symmetric density about 0 and fy(x)
exists for all z then

@) =172 [ fu(w)dv/ Ve,
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where fy(v) = —fx(v/v)-

Therefore, we can write X|[V = v] ~ U(~v/, +/) with V ~ fy, provided
fv is a density on (0,00). Note that — [ fi(v/v)dv = 1 which follows from

1= [T e =112 [ IV [ [

=5

da:] dv,

and fy(v) > 0iff fx(z) is unimodal.

We have already seen that the scale mixture of uniform family gener-
alises the scale mixture of normal family to include platykurtic shapes. In
this section we demonstrate one other advantage of using the scale mix-
ture of uniform farnily which is the easy analysis involving a variance re-
gression model. Suppose we wish to model data on covariates Z and W,
such that E[X;] = Z; and log var[X;] = 2W0, where 8 = (B1,--, B,) and
9 = (64,---,0,). This is difficult to implement using the normal model,
even within a Gibbs sampling strategy. However, for the uniform model it is
analysis via the Gibbs sampler is remarkably easy. The model is given by

Xi|[Vi = vi] ~ U(Z:B — exp(Wib) /i, Zi3 + exp(Wif)/vi)
Vi ~iig fr(o):

The condition for the variance is satisfied provided we constrain E[V] = 3.
For the implementation of a Gibbs sampler we require the full conditional
distributions. We will concentrate on those for 8 and § and the V;. There
will be a parameter associated with fy but the full conditional for this pa-
rameter will be based on the V; being iid from fy and so should not pose
any problem. If 7(.) represent the priors, assumed independent, then the full

conditional for f is

S(Bel--+) o< w(B)I(Bx € Ax),

where
A = (maXi.z, 20 {Xi — exp(Wi)y/vi — vix} , mini.z, 20 {Xi + exp(Wil)v/vi — vie } )
and ik = Lyzx Zubi. The full conditional for 6y is

F(0c]- ) x exp (_ [Z W,»k] 6,,) 7(0x)1(0x € Bx),
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where

B = (maxs:w,po {0-5 logéi— ) Wu@r} , Mg, <o {—0-5 log&i + ) W;rﬁr}) :

Ik £k

where & = (X; — Z;8)*/Vi. Therefore, if priors are normal, then these full
conditionals are simply truncated normals. The full conditional for V; is

fvi(v] ) o exp(=v/2)I(v > (X; — Z:;5)? exp(—2W;8)).

These straightforward full conditionals mean that implementation of this
mode] via the Gibbs sampler is ‘automatic’, in that no rejection and/or
Metropolis steps need to be tuned each time a new data set is analysed.
Therefore, we have provided the basis for routine mean/variance regression
models. This could have dramatic impact for financial time series data which
typically includes the model of volatility via variance regression; for example,
the stochastic volatility model (Jacquier et al., 1995).

3 The autocorreiated-heteroscedastic model

'We now discuss the likelihood (expressed as a scale mixture of uniforms),
prior, and posterior conditional distributions for the autoregressive-heteroscedastic
model. In particular, the simplifications for the Gibbs sampler resulting
from the scale mixture of uniforms representation is noted. Following Zellner
(1987), chapter 4, we consider the following model.

¢ Likelihood:

Yie = o + Bz + €,

€it=Pi5it—1+Uft, i=1,"‘)N1t=t0+11"'sT

where u; ~ N(0,02), these two equations is equivalent to

Yir = pilfir-1 + BTt — pizi—1) + (1 — p;) + uie



¢ Scale Mixture:
YitIVit ~ U(/J'it - Vi:nr#it + Vz}ﬂ)a

where

it = Piyit—l+ﬂ($it—ﬂi$u—1)+a(1-'l)i), t= 1. ,N,t = {o+1, -

where tg is the initial time period. And

VielA ~ G(3/2,/2),

where A = o2

e Prior Distributions:

(@) ~ N(pta, 0 ]

a)
m(8) ~ N(up, 0p)

m(p:) ~ N(pi, of),
m(A) ~ Glan, By)-

b]

3

o Posterior Conditional Distributions:
i) Vi
P(Vidla, B, p, A, Yar) = G(1, A/ 2) i —¥i0),00]s
i=1,---,N,andt =ty +1---,T.

i) a
P(GIY, Vaﬂspa /\) = W(Q)HP(I/&, V;'t,ﬁ,/’i,/\la)

1t

@) H Iu;-V-l,/z,u.+V.’/2](K")
i.t ' o



Let a; = 1 = pi, b = piyie—1 + Blzie — piziem), © = 1,...,N and
t=1o+1...,T, such that u; — V,%/? <Yi<p+ V,-tl"2 is equivalent to

| {x-t—b,-t—vf}”} .{m—mwl’z}
max _——"'——— < o< min

a; Q;

for all 2 and ¢. And the posterior distribution for « is truncated normal:

b, — YL s 1/2
N{pa, o)1 [ma.x{yt ie = Vi },min{y‘t bu + Vi .

a; a;

iii) 3
P(BIY,Vya,p,A) = n(B) [] P(Yie, Vis, @, i, A|B)
it

o« m(8) I]: I[u.--V,-‘,”.p.'+V,-§“](Y“)

Let Civ = (xz't - Pl’mii-—-l)) dfi = piYit-1 + a(l = pi)) 1= 1)-"’N and
t=1+1,...,T, such that g; —V,-,I/2 <Yi<uy -}-1/1-:/2 is equivalent to

o d .1/2 . ‘1/‘2
mw{m @.Mt}<ﬂ<mm{m ¢+Kf}

Cit Cit

for all 7 and ¢. The posterior distribution for 8 is truncated normal:

mew%W}nm{m—@+mﬂH

Cit Cit

N{pg,o5)1 [max{

iV) Pi, 1= L...,N
P(pdY,V, e, 8,0.) = (p:) [] P(Yat Viry 0, B, 0 pi)

t
(o) [] Tt avim(Yi)
¢

Let e; = (yit—l - B — a), fu = a+ Pzy, 1 = l,...,N and ¢t =
to+1,...,T, such that p; — V;}N <Yi<u+ V,-}/z is equivalent to
Yie = fu=Vi"* Yi~ fut Vi

€t €t

< pi <



for all i and t. And the posterior distribution for p; is truncated normal:

Yoo — fiu— V,-:’?} . { Y — fu + V2 H
,min .

€it €t

N(pi, o)) [max{

v) A

P(/\lZ, M arﬂap) = 7!'(/\) I-Ii,t P(Zita V;'t) a,ﬁ,/’il/\)

o< (A TTie P(VelA) oc A=Tehad \aN(T=)/26=3 TV
= G(an + 3N(T = 10)/2, Bx + Lt Vie/2).

Since most of the conditional distributions above are truncated normals, a
new and simple way of sampling truncated normal distributions developed
by Damien and Walker (1997) is described in the Appendix.

4 Data Analysis

Simulated Data Analysis

Two scenarios for the model developed in the previous section were stud-
ied: the ezplosive (p = 1.25) case; and the non-explosive (p = .50) case.
Following Zellner, without loss of generality, we omitted the intercept term
and set the slope parameter, g to equal 3.0. The prior distributions for g
and p, respectively, were Normal(5.0,4) and Normal(0.8,1.0). Under each
scenario, we simulated 50 samples. The Gibbs sampler detailed in the text
was implemented. To ensure that the final samples were not autocorrelated,
we took every 100th iterate after executing the chain for 100,000 iterations,
and which took approximately 1/2 an hour on a Sun Sparc station, using
FORTRAN. Based on the 1000 samples, we estimated the posterior param-
eter estimates for # and p under the two scenarios; the standard deviations
are given in parentheses,

Non-ezplosive f = 3.03(0.04); p = 0.56(.09).

" Ezplosive = 2.98(0.08); p = 1.25(2.0F — 14).

Bank Data Analysis

In recent years, following the pioneer work of Stern & Stewart Company,
the financial metric, Market Value Added (MVA), is being recognized as a
robust indicator of the performance of a firm (Stewart, 1991, 1994; Uyemura
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et al. 1991, 1996; Copeland et al. 1996). Based on the concept of Eco-
nomic Value Added (EVA), a cash-based model founded on the economic
theory of residual income, MVA has been recognized as one of the most use-
ful measures to assess the performance of a company. A growing number of
FORTUNE 500 firms and investment analysts now subscribe to the Stern
Stewart Performance 1000 index. In companies such as Microsoft, General
Electric, Coca-Cola, Philip-Morris, Whirlpool, Quaker Oats, Berkshire Hath-
away, etc. senior management has made the pursuit of their MVA ranking as
the primary goal; FORTUNE magazine now reports on the performance of
companies using MVA as one of the financial indicators of a firm's viability;
see, for example, Dempster (1997).

What is MVA? The wealth of shareholders is maximized by maximizing
the difference between a company’s total value (TV) and the total capital
(TC) investors have vested in it. Hence,

MVA=TV -TC,

TV is also known Market Capitalization (MC). MC is defined as the product
of the number of outstanding shares and the share price of a firm. It is
this financial measure that is of interest in our context; i.e., MC forms the
dependent variable in our model; see, also, Chen et al. (1997).

So what influences or drives MC (and whence MVA)? Clearly there are
several macroeconomic factors (inflation, commodity prices, treasury bill re-
turn rates, foreign exchange rates, etc.) and microeconomic factors (price-to-
earnings ratios, corporate announcements, debt-level ratios, analyst recom-
mendations, etc.) that will likely influence MC. In fact, Stewart (1994) notes
164 factors (or measures) that are likely to influence the MC of a firm. But
he also goes on to note that only 5 to 10 factors are really used in practice;
furthermore, all such factors can be collapsed into a single influencing factor
— Economic Value Added (EVA) — that Stern Stewart have trademarked.

What is EVA? EVA is simply a firm’s expected performance discounted
at the cost of capital. By definition, there is no unique method to calculating
the EVA of a firm. The accounting protocols vary substantially among firms
in an industry and across industries; see, for example, Imhoff et al. (1991),
Uyemura et al (1996); Black et al. (1997 a,b). From a statistical perspective,
EVA is positively correlated to MC (or MVA). 1t is evident that EVA from
one time period will likely be affected by past EVA (autocorrelation); also.
note there is substantial variability across firms within an industry, such as
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the banking industry; hence the econometrician will likely entertain a random
effects model (heteroscedastic influences); see, for example, Zellner (1971).

The EVA concept has usually been implemented as a management tool
within an organization; see, for example, Baciadore et al (1998). Since
projects that generate a larger EVA will lead to an increase in wealth, man-
agement can be awarded or reprimanded based on whether or not they have
added or reduced value to the firm. Only recently, EVA is also being recog-
nized as a marketing tool. This challenge was posed by Citicorp Securities
to an MBA students team at the University of Michigan, which resulted in
the research reported in Black et al. (1997 a, b). Larger banks provide ser-
vices to customers of smaller banks for a fee. Before entering into a contract,
the service provider would like to assess the feasibility of its client partner.
Reversing this, a larger bank can market its services to smaller banks based
on its assessment of the potential client’s EVA. In this sense, EVA becomes
a marketing tool. Also, EVA assessments can pave the way for mergers and
takeovers.

A general EVA model for all banking institutions was developed in Black
et al. (1997 a, b). The details of financial accounting protocols need not
detain us. On the other hand we will concern ourselves with the questions:
given a firm’s EVA and MC is it possible to develop a statistical model
that will allow us to predict the firm’s future MC? how can we factor prior
knowledge to better forecast the future worth of a firm? can an iterative,
and straightforward mathematical system be developed so that a bank can
routinely update its data base and forecasts?

As noted in Black et al. (1997 a b), obtaining data to calculate EVA for
a given year is made substantially difficult by the inconsistency in the raw
data needed to calculate EVA. Two sources (SNL and One Source) contain
electronically stored bank profile data. Neither of the sources carry all past
data needed to compute EVA. To verify whether these two sources of data
could be combined for different years, for a specific bank, a consistency check
must be carried out by comparing accounting information detailed in a firm'’s
10K report. The latter itself is a source of substantial variability for various
reasons such as year-to-year changes in itemizing components in the balance
sheet. The difficulty is enhanced the farther one goes back in the past.

We originally targeted 26 banks that were representative in terms of the
US banking industry. These banks had varying asset structures (“large” to
“small”) and somewhat different internal accounting protocols. After close
analysis, only 14 banks' data proved to be “clean” and reasonably consistent
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for four years, 1993 to 1996. Thus the cross-sectional collection of 14 banks
data over four years netted in 56 data points for MC and EVA. Fortunately,
the 14 banks were representative of the US banking industry as a whole.
Further, we dropped a “large” bank from this set of 14 banks. The motivation
was to find out how well the model would predict these out-of-sample bank’s
market capitalization (or share price).

We chose not to include any macroeconomic variables in the model based
on the fact that the US economy was fairly stable with respect to the banking
industry during this time period.

We refrained from including any microeconomic variables in the model
directly mainly because the bank sponsoring the research was keen on study-
ing the effect of only EVA on MC. Also, we reached an agreement that this
would not be a one-off study; both the data-base and the statistical models
would be updated periodically. Also, somewhat to our surprise, we found
statistical practice in corporate finance to be somewhat archaic. We felt that
suggesting more sophisticated methods at the outset may be off-putting to
our customer. Instead, we were able to make a compelling argument in favor
of increasing the sophistication in stages by demonstrating the value in using
— to borrow a phrase of Arnold Zellner — sophisticatedly simple statistical
procedures.

Prior parameters

Based on discussions with the bank’s analysts, and the segment of data that
was “messy” we entertained the following prior choices for the parameters
in the model developed in the previous section. a ~ N(7.86e9,(3.0d8)?);
B ~ N(3.5¢3,(8.0¢2)?); and A ~ Gamma(5.0e — 22,0.1). Having classified
the banks into “large” and “small” groups, based on their asset base, resulted
in piarge ~ N(l.)873, .70) and psman ~ N(0.968, .70).

Posterior Estimates

As an illustration, the posterior distributions, along with summary statistics,
for B and the p parameters corresponding to the “largest” and “smallest”
bank are given in Figure 1.

The sponsoring bank was interested in forecasting the market capitaliza-
tion (or stock price) of another institution in its peer group. We used the
p (see, Figure 1) corresponding to the largest bank in the pool of 13 banks
as a proxy, and the EVA of the out-of-sample bank to forecast the latter's
stock price for the years 1994-1996; these predictions appear in Figure 2
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The posterior mean values from these predictions when compared to the ac-
tual values appear to be reasonable. We note here that these predictions
will likely be more robust as more (clean) data is included in the analysis.
Also, factoring in other variables would also help better assess the financial
viability of a banking institution over time. The sponsoring bank, as noted
earlier, have embarked on these as part of a long-term strategy within their
econometrics unit.

5 Discussion

The scale mixture of uniform family appears to be a very useful way to
encapsulate more realistic assumptions (such as heavy tailed behaviour) in
a variety of modeling contexts. In this paper, theory pertaining to this new
family was developed. A Bayesian illustrative analysis within the context
of modeling market value of financial institutions was provided using data
obtained from 14 banks. Further extensions of the general idea presented in
this paper, in a variety of economic contexts, will be reported elsewhere.
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Appendix

While the focus of this paper was on the use of EVA to predict MC, it may
be desirable to include macroeconomic variables in the model formulation
over time as the “clean” data base gets updated. This would then lead to
posterior conditional distributions that will be proportional to a truncated
multivariate normal. Sampling from such a distribution is accomplished as
follows; see, Damien & Walker (1997).

Fxy X (Z1y7 0, Tp) O €XP (—1/2(m — )2 Ve - p)) I(zeA),
where we assume that the bounds for z; given z_; are available and given by,
say, (i, b;). Therefore

Frax-i(@ile=i) oc exp (=1/2(z: ~ )*/of) I(ai € (as, b)),

for 7 =1,---,p, are the full conditionals, and ¥; = p; — ¥L;4:(zj — pi)eij/eii
and ¢? = 1/e;;, where e;; is the ijth element of %77,

However, since we are already in a Gibbs sampler it seems appropriate to
implement the auxiliary variable idea (Damien et al. 1997). We do not need

to introduce p latent variables, one is sufficient.
We define the joint density of (Xj,--+,X,,Y) by

7

Fvomoir (01, @) o exp(=y/2)L (y > (2 = w2z ~ ) I (2 € 4).
The full conditional distributions are given by
fxax_iy(zilz-iy) < I (z: € Aj),
where
A;i = (a;, b)) N B;,

and B; is the set {z;|z_; : (z — p) ' (z — p) < y} and so the bounds for B;
are obtained by solving a quadratic equation. The full conditional for ¥|X
is clearly a truncated exponential distribution which can be sampled using
the cdf inversion technique.

Therefore we have a Gibbs sampler which runs on p + 1 full conditionals
which can all be sampled directly using uniform variates.
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In the context of the analyses in this paper, the above algorithm reduces
to the following special case of sampling a univariate truncated normal. Sup-
pose we wish to sample from the density given by '

fx(z) « exp (-2%/2) I(z € (a,5)).

Again, we introduce the latent variable Y which has joint density with X
given by
Fxy(z,y) < Loexp(-z2/2))(¥) (% € (a,b)),

leading to the new full conditionals:

Y|(X =)~ U(0,exp(2%/2))

X|(Y=y)~ U (max {a,—\/:_Qm} , min {b, \/:ﬂog_y}) :

The algorithm extends the Gibbs loop by one more full conditional, which is
a uniform distribution. The new full conditional for X is also uniform.

There are alternative ways to sample truncated normal distributions; see, for
example, Devroye (1986). However, typically, these methods require rejec-
tion and “tuning”; these factors, of course, depend on the likelihood function
so that each time the database is updated maximization routines will have to
be engineered. The algorithm proposed above bypasses this difficulty. The
statistician implementing the model in a bank simply runs the Gibbs sampler
like a “black-box” method after merely updating the prior parameters. This
obviates specialized training needed to search for dominating densities, max-
imizing functions, or worry about “tuning” each time the likelihood/prior
gets updated. Of course, alternative methods may be more efficient, but we
found that simplicity in coding and execution was the preferred choice. In
any case, Damien and Walker (1997) demonstrate that the algorithm dis-
cussed above is af least as efficient as other methods.

Yet another reason for preferring a Gibbs sampler that involves no rejection
sampling and/or Metropolis-Hastings detours is for the reason given in the
first paragraph in this Appendix. We noted in the text that it is very unlikely
that the number of independent variables, in this context, will ever exceed six
or seven. Model selection in such cases is easily done within the Gibbs loop
using the method of George and McCulloch (1992). These authors’ method

18



is very elegant when the number of dimensions are few. Combining their idea
with the method in Damien et al. (1997) will result in an almost “black-box”
implementation strategy within a bank’s statistical services unit.
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Figure 1: Posterior distributions of a, # and p.
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Figure 2: Posterior predictive distributions of a “large” bank.

1994: Actual Price: 41.38; Predictive mean=50.4, std. dev=12.6,

1995: Actual Price: 67.25; Predictive mean=72.0, std. dev=34.3, .
1996: Actual Price: 103.0; Predictive mean=103.1, std. dev=_85.3.
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