Division of Research December 1988
School of Business Administration

LAYOUT DESIGN FOR
FLEXTBLE MANUFACTURING SYSTEMS

Working Paper #593

Ram Rachamadugu
The University of Michigan
and
Bharat K. Kaku
The University of Arizona

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the expressed permission
of the Division of Research

Copyright 1989
University of Michigan
School of Business Administration
Ann Arbor, Michigan 48109



Abstract

We model the layout design problem for Flexible Manufacturing Sys-
tems as a Quadratic Assignment Problem (QAP). Such systems include
machines of different dimensions separated by some required clearance be-
tween them; this means that distances between predefined locations cannot
be used as in the traditional facilities layout problem (FLP). We consider
the two most commonly used configurations—loop conveyor and linear-
track conveyor systems—and show how the design problem can be modi-
fied to fit the QAP formulation. A heuristic method for the facilities lay-
out problem is specialized to solve these problems. Computational testing
compares results obtained by these procedures to optimal solutions where
possible, and to results published in the literature for larger problems. The
procedures find optimal or near-optimal solutions for smaller problems,
and significantly impr.oved solutions, as compared to published results, for

larger problems.

Manufacturers of discrete parts face increasing demands for small- to medium-
sized lots of customized products, requiring a production process which can pro-
vide flexibility as well as economies. A Flexible Manufacturing System (FMS)
can offer such a blend of advantages. A typical flexible manufacturing system
consists of several processing stations (general purpose machining centers and
perhaps some specialized machines) connected by an automated material han-
dling system. Parts are loaded at load/unload stations, and once loaded are
automatically routed to the workstations needed to complete their processing.
The routings, as well as the operations and tooling required at each workstation,
will differ for different parts. The job of coordinating and controlling parts move-
ment and processing is done by computer. This combination of direct numerical
control machining with automated material handling enables such systems to
machine different parts simultaneously, in any sequence, and even use alter-

nate routings in case of breakdown or overloading at any machine. Detailed



descriptions and discussions can be found in several sources, e.g. Black (1983),
Browne et al. (1984), Buzacott and Shanthikumar (1980), Groover (1980), and
Stecke (1985).

1 Layout design for FMS

Existing research in FMS focuses on the general goals of maximization of the
production rate and minimization of the lead times. A review of the liter-
ature on FMS shows that the important issue of facilities layout design has
been largely ignored. We are aware of only the following efforts in this area:
Afentakis (1986,1987) has developed graph-theoretic based heuristic methods to
design layouts (the second paper concentrates on loop-conveyor systems which
are described below), while Heragu and Kusiak (1988) have developed construc-
tive heuristics for the problem. In this work, we study the problem of facilities

layout design for FMSs using a quadratic assignment problem formulation.

1.1 System Description

We consider a system in which parts are processed in some fixed ratio. This
situation is typical of a fabrication process that feeds a downstream assembly
process. Parts enter and leave the system through a load/unload station, and
the séquence of operations to be performed on a part is specified through serial
precedence requirements. The objective is to design a layout that will minimize

material handling,.

We consider two commonly used configurations for FMS layout (see Fig-
ure 1). The first employs a loop conveyor, with the machines located around
this loop. The second uses a linear-track material handling system with ma-

chines located either on one side or both sides of it. Both these configurations



are flexible with respect to access to any machine from any other, but the former
allows movement in only one direction around the loop while the latter moves
material in both directions along its linear track. We treat a load/unload sta-
tion as an additional machine (facility) in this work. In all of these cases, if the
process route is fixed for each part (including its entry and exit points) then
the problem can be formulated as a Quadratic Assignment Problem (QAP) as

explained in the next section.

1.2 Quadratic Assignment Problem Formulation

Consider an FMS with n machines (including load/unload station/s) to be as-

signed to as many locations. We define the following terms and variables:

fij = the number of loads moving from machine 7 to machine j

d;; = the distance from location ¢ to location j
¢i; = thefixed cost of installing machine ¢ in location j
p(t) = the location to which machine i is assigned

Then the objective is to find a one-to-one assignment of facilities to location
so as to

Minimize Z Cip(i) T Z Z Fij do(iyo(i) M)
i=1

i=1 j=1
1.3 Handling unequal area requirements for machines

The layout problem for flexible manufacturing systems (and other machine lay-
out problems) can be different from the traditional facilities layout problem in
one important respect. As pointed out by Heragu and Kusiak (1988), machine
sizes are generally not equal, and if the distance between two machines is deter-

mined by their respective dimensions and the clearance required between them,
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Figure 1: Types of FMS layout



then distances between locations are neither equal nor can be predetermined.
We show that the interaction and distance data for the two cases we study can
be manipulated to fit the QAP formulation given above in two ways. These are

summarized below.

Loop systems. We begin by looking at loop conveyor systems with one
load/unload (L/UL) station and a constant distance C' between adjacent ma-
chines. Two modifications can be made to the QAP formulation above. First,

the distance between any two locations can be defined as follows:

d _{C(q—p) if g>p
P71 Cn-p+yq) ifg<p

This simply means that to go from a higher-numbered location to a lower-
numbered location, a part must go past the L/UL station and start a new
circuit. Second, if the location of the L/UL station is fixed, we can number it

as facility n, and add the constraint:
Tpp =1

Define a part link movement as one part traveling one link (the distance
between adjacent machines), while a part circuit is defined as a part completing

one circuit of the loop, starting and ending at the L/UL station.

Proposition 1. In a loop-conveyor system with one entry and exit point, min-

imizing part link movement is equivalent to minimizing part circuit movement.

Proof. Consider any specific assignment of machines to locations, with the
load/unload station at location n. Without loss of generality, reindex the (n—1)
machines such that machine index coincides with location index. As defined
earlier, f;; is the flow from facility ¢ to facility j. Also, from the description of

the system above, it is clear that:
f in
frj

number of parts whose last operation is performed on machine 7

number of parts whose first operation is performed on machine j



Now consider a transformation of the flow data as follows, where the transformed

flows will be represented by Fj;:

Case I: i,j#n,1<j

(] E] = ft]

Case II: 4,7 #n,1> ]

L] ‘F"J = 0

. Fn=fnt+ ), fi
Lj#En, 1>

. Foj=fai+ Y, fij
1,J#n,1>]

In the transformed system, any flow from a higher-numbered location to a lower-
numbered location (7 to j in Case II above) is converted into two components—
the first terminates at location n (the L/UL station) and the second equivalent
flow originates at » and terminates at j. Since travel distances can be considered
additive (for ¢ > j,d;; = din + dn;j), this does not alter the material flow load
for the given machine to location assignments. In this transformed system, flow
is always from lower-indexed machines to higher-indexed machines, except for
the L/UL station. We can think of a part traveling past the L/UL station as
two distinct parts, one exiting the system at station n, and another entering
the system at the same point. Further, since the number of parts entering the
system must equal the number of parts exiting the system in any given time

period on the average, flow conservation requires that

n—-1 n-—1
Fn=) Fy; (2)
i=1 j=1



Each term is simply the total number of parts (including those defined by the
above transformation) that travel around the loop for exactly one circuit. Then

the material handling cost is given by

n-1
}: Fn x loop length = part circuits X (Cn) (3)

=1
Thus for any given assignment, the material handling cost is proportional to the

number of part circuits. a

Proposition 2. The part-circuit measure for material handling cost is valid

even if machines are not equally spaced in a circular layout.

Proof. The proof of this proposition follows immediately from the proof for
Proposition 1. To see this, simply replace Cn as the expression for loop length

in equation 3 by the term:

n—1

dui + Y dijp

i=1
This means that no assumption is made concerning inter-machine distances; we

only require distances around the loop to be additive. o

Afentakis (1987) proved Proposition 1 using graph theoretic concepts. Our
proof is simpler, and through its extension to Proposition 2, we also establish
the fact that the part-circuit measure is equally valid for unequal spacing of
machines in the circular layout. The objective changes from minimizing part
links traveled to minimizing part circuits traveled, which we have shown to be
equivalent problems for a loop conveyor. Identical solution methods can be
applied to both formulations, but the part-circuit formulation is not dependent
on the distances between locations; the cost of a solution depends only on the
sequence in which machines are placed around the loop. In other words, it is

not necessary that the distances between machines be the same, or even known

beforehand.



Linear-track systems. A different approach is used for linear-track sys-
tems. The orientation of any machine with respect to the travel path of material
is known, i.e., whether a length or a width will be parallel to the track. These
dimensions can be divided into some convenient module size. The modules of
a machine can be kept together in any solution by creating very high artificial
flows between them. Locations are all assumed to have dimensions equal to this
module size, and now the problem is a standard QAP, though of largef size. It
should be stressed here that machines do not have to fit some integer number
of modules precisely; a certain amount of expansion or contraction does not af-
fect the solution significantly when the layout is designed to exact dimensions
with appropriate clearances added for loading, unloading, safe operation, main-
tenance, etc., after relative locations have been determined. Kaku, Thompson ’
and Baybars (1988) have- discussed in detail the idea of breaking up unequal
sized facilities into equal sized modules in the context of layout design of an

office building with departments of unequal size.

2 Solution procedures for the layout problem

The solution procedures for both loop-conveyor and linear-track systems are
based on a heuristic method developed by Kaku, Morton and Thompson (1988)
for the general facilities layout problem (FLP) with equal area requirements
for all facilities. This method is a combination of a constructive heuristic and

exchange improvement, applied to several starting solutions, as explained below.

Starting points for the constructive procedure are generated by develop-
ing a limited number of nodes at the top levels of a search tree. Facilites are
ranked in decreasing order of interactions, and nodes at level one of the tree
represent assignments of the first facility in order to locations that minimize

the expected value of a completion as computed by the method of Graves and



Whinston (1970). Under each node at level one, nodes are saved at level two
representing assignments of the second facility in order to free locations, and so
on for the number of levels specified. Each node is then a distinct partial so-
lution to the problem, containing as ﬁany assignments as the number of levels
developed in the tree, and can be used as a starting point for the constructive
procedure which builds on this solution by adding assignments with the maxi-
mum “regret” or “alternative cost”, as computed in the process of calculating
the Gilmore-Lawler (1962,1963) lower bound. The completed solutions are sub-
jected to pairwise interchange and the best solutions are saved. These are then
subjected to triple-exchange improvement, and the best final solution is saved.
The number of nodes saved under each at the next level, the number of levels
developed, and the number of solutions saved for application of triple exchange
are parameters that can Be manipulated to suit the individual application. The
tradeoff is better average solution quality against smaller computation times.
This procedure has been adapted for use in layout design of Flexible Manufac-

turing Systems as follows.

2.1 Loop systems

Propositions 1 and 2 from the previous section allow us to change the distance
matrix and reduce it to a {0,1} matrix with zeros along the diagonal and above
it, and ones below the diagonal. The interpretation of this distance matrix is
as follows. Movement from the L/UL station to any machine has a cost of
one circuit (introduction of a part to the system), but after that the cost of
an additional circuit is incurred only if a part goes from a later location in
the loop to an earlier one. Two distance matrices for the same loop conveyor
FMS are shown in Table 1, one corresponding to the part-link formulation with

equal distances of one unit between machines and the other to the part-circuit

formulation.
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Table 1: Distance matrices for the part link and part circuit formulations

The general FLP procedure is used to solve the part-circuit problem, with
only one change to the pair-exchange procedure as discussed below. The number
of levels developed in the limited search tree is two for smaller problems and three
for problems with more than 10 machines; the number of nodes saved under each
at the next level is three; and the number of solutions saved for application of
triple exchange is one for smaller problems, increasing to three for problems with

20 or more machines.

The part circuit formulation lends itself to specialization in the pair-exchange
procedure as follows. In the standard version of the pair-exchange procedure
used for the QAP, if T is the set of facilities and p(¢) is the location to which
facility ¢ has been assigned in any given solution, the change in value of the ob-
jective function () due to the exchange of a pair of facilities 7 and j is evaluated
by the following equation:

§i o= Y, [(fjk - fix) (dp(i)p(k) - dp(j)p(k))
keI\{i.j}

+ (fr; = fri) (dp(k)p(i) - dp(k)ﬂ(f))]

+(fii = fij) (dp(i)p(j) - dp(j)p(i)) (4)

When working with the part circuit formulation, the effect of interchanging i

and j can be computed with less effort because we need only consider their

10



interactions with facilities that lie between the two. The cost of interactions
with machines that are before or after both i and j in the loop is not affected by

the interchange. Let ¢(k) denote the facility/machine in location k, and assume

pli) < p(j). Then

6 = fij—fii
5 (Fow + Fowi — Fawi — fiom) (5)
p(i)<k<p(s)

It should be emphasized here that the new pair-exchange formula does not affect

the quality of the solution found; only the computation time is reduced.

2.2 Linear-track systems

Two types of linear-track systems are studied: those with machines on only
one side of the track, called single-row linear track systems; and those with
machines on both sides, called double-row linear track systems. A different kind
of manipulation is necessary here to get around the problem of unequal machine
sizes and put the problem into the framework of a QAP. First, the procedure
for generating starting points for the constructive method has to be changed,
because distance data are not available for computing the expected values of
completions. Instead, permutations of the first few ordered facilities are used as
starting points. The number of machines in each permutation corresponds to
the number of levels required in the search tree. For example, if two levels are to
be developed, with three nodes saved under each at every level, and if machines
are indexed by order of decreasing interactions, then the nine partial solutions

generated would be (1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), and (3,4).

Each machine is divided into the number of modules corresponding to the
dimension (length or width) that is to be parallel to the linear-track material
handling system. The size of a module is the greatest common divisor of the

set of these dimensions for all machines. The flow (f;;) from any module ¢,

11



belonging to machine m,, to another module j, belonging to machine ma, is

calculated by the expression

fij = fmlmg/nln2

where nq and ng are the number of modules of machines m; and my, respectively.
The flow between modules of a machine is set to some number large enough to
keep the modules together in any solution. The size of the QAP to be solved is

then the total number of modules created.

In the next step, location modules are set up, equal in number and dimension
to machine modules. Placing modules of machines in these location modules
implies that no clearance is provided between machines at this stage; however,
clearances are included when the final solution is constructed. The distances
between these location modules can be calculated in a straightforward manner,
and they are ordered by increasing total (or equivalently, average) distance to

other location modules.

A partial solution to the modified problem can now be constructed by match-
ing the modules of machines in the permutation with the first location modules
in order. For example, consider the first permutation generated— (1,2). Suppose
that the number of modules in machine 1 (indexed by decreasing interactions)
is 71 and in machine 2 is n3. Then the modules of machine 1 are assigned to the
first ny location modules in order, and the modules of machine 2 are assigned
to the next ny location modules. The logic here is to place high-interaction
machines in central locations. This partial solution can then be completed by

the constructive heuristic, and improved by pairwise interchange.

A certain number of the best solutions is stored, and from each of these a
solution to the original problem is constructed. The modules of any machine
are located in consecutive location modules, and are joined to reconstruct the

individual machines. At this stage, the appropriate clearance is added between

12



machines. (Triple exchange is not attempted for linear-track problems.) Thus
for each solution saved from the modified problem, we obtain a layout design
for the original problem, for which distances between all pairs of machines can
be easily calculated. It should be emphasized that these are distances between
machines for a given layout, and not distances between clearly defined locations
as in the usual FLP. The exact cost of such solutions can be computed and the

solution with the least cost is saved.

The number of machines in a permutation used to generate a starting point
for the constructive heuristic is two for smaller problems and three for problems
with eight or more machines; the number of nodes saved under each node at the
level just above is three; and the number of solutions saved for reconstruction
of solutions to the original problem is equal to the number of machines, subject
to a maximum of 10 solutions for larger problems. This method, applied to

linear-track, single-row problems will be referred to as procedure LTSR.

Certain steps of the procedure outlined above need to be specialized for the
double-row linear-track problem, and the modified method will be called pro-
cedure LTDR. While solving the modified problem with modules, the distance
between the two rows is considered to be equal to the largest dimension of any
machine to be placed. This ensures the assignment of modules of a machine
to the same row. Also, the distance spanned by the machines (dimensions plus
clearances) in each row may be different, leading to the second modification.
(The number of machines in each row may also be different but the problem
arises from having different lengths of machine arrays, and not the number of
machines itself.) This can be overcome by adding dummy machines with zero
flows to and from all other machines, and dimension equal to one module. These
dummy machines allow solutions where the ends of the two rows are not nec-
essarily aligned, and also solutions where the distance between two adjacent

machines in a row may be more than just the clearance. The number of such
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dummy machines used was equal to the number of modules of the largest ma-

chine in the group.

One final refinement concerns the clearance provided between a dummy ma-
chine and any adjacent machine. It is obvious that any arbitrary value of such
a clearance is acceptable, as long as the clearance between two real machines is
respected. Procedure LTDR is designed to investigate this choice in the range
between zero and the specified clearance, as follows. In constructing a layout
from a saved solution, the procedure tries five different values for the clearance
next to a dummy module, increasing in equal steps from zero to the maximum
value. These minor adjustments did improve the solutions, but the reductions
in cost did not justify a search over smaller intervals. The clearance for dummy
modules corresponding to the best solution is saved and reported as part of the

final solution.

3 Computational results

The computational testing for this study is divided into two sections, one for loop
layouts and the second forA linéar—track layouts. In the first section, the layout
can be designed by an exact method published by Burkard and Derigs (1980)
for problems with as many as 15 facilities, and this has been done to validate
the heuristic method for the part-circuit formulation. However, computation
time required to obtain exact solutions to problems with more than 15 machines
tends to become prohibitive and hence larger problems were solved only by the
heuristic method. In the second section, results for smaller single-row linear
track problems are compared to optimal solutions obtained by complete enu-
meration, while solutions to larger single-row problems as well as all double-row
problems are compared to those found by Heragu and Kusiak (1988). The solu-

tion methods are tested on problems with as many as 20 machines for loop and

14



single-row, linear-track systems; and as many as 30 machines for double-row,
linear-track systems. A recent survey by Smith et al. (1986) indicates that these
sizes should cover practically all FMS installations.

3.1 Loop systems

The tests in this section were conducted on randomly generated problems, ob-
tained as follows. The problem generation program uses two parameters as
input—the number of machines including a load/unload (L/UL) facility (n),
and the number of parts (m). First, demand and process routes are generated
for each part. All process routes begin and end at the L/UL facility. Then
these are converted to flows between machines to obtain the interaction matrix.
The distance matrix is obtained for the part-circuit formulation as explained in
section 2.1 earlier. Finally, a fixed cost matrix is generated with a very high
cost for the assignment of the L/UL station to any location but location n, and
a very high cost for assigning any other machine to location n. This serves the

purpose of fixing the L/ UL station in a chosen location.

The solution procedure was not tested on the widely used set of problems
generated by Nugent, Vollmann and Ruml (1968) because the optimal solution
for these problems is trivially obvious for unidirectional-flow loop layouts. Flow
data for this set of problems have been accumulated above the diagonal of the
flow matrix; in other words, all flows between two machines are represented as
one flow from the machine with the lower index to the higher-numbered machine.
An optimal solution is obtained by simply placing machines around the loop in

the order that they are indexed.

A set of 24 problems was generated with the number of facilities (n) equal
to 8 through 15, and the number of parts (m) equal to 1, 2, and 3 times the

number of machines, respectively. Thus for each size of problem there were
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three versions based on different numbers of parts. The problems were gener-
ated with distance matrices corresponding to the part-circuit formulation, and
each problem was solved to optimality as well as by the heuristic method. The
results are summarized in part (a) of Table 2. For this set of problems, two ver-
sions of the heuristic method were used. The first employed the usual pairwise-
interchange formula (eqn. 4), while the second used the specialized interchange
formula (eqn. 5). The specialized pair-exchange procedure was effective in re-
ducing computation times by an average of over 20% as compared to the general
procedure. Hence all heuristic results for loop-layout systems reported in Table 2
and later in this paper are those obtained by using the specialized procedure.
The heuristic method found optimal solutions in 20 out of 24 cases, with aver-
age solutions within one-third of one percent of optimal. Even for the largest

problems of size 15, average results are within one percent of optimal.

An additional 15 problems were generated with 16 through 20 facilities, with
three versions of each as above. These problems were solved using the heuristic
method for the part-circuit formulation and results for the second set of problems

are presented in part (b) of Table 2 as the number of part circuits required.

3.2 Linear-track systems

The test problems for this section are the same as those used by Heragu and
Kusiak (1988). They generated flow data for a set of nine problems (labeled
HK1 through HK9 in this paper) with 4 facilities each, and specified a clearance
of one unit between machines. Dimensions are provided for these machines and
range from 2 to 6 unit squares. Flow data for another eight problems (with the
number of machines equal to 5, 6, 7, 8, 12, 15, 20 and 30) are taken from the
Nugent, Vollmann and Ruml (1968) article, and the clearance between machines
for this second set of problems is set at 0.01 unit. These problems will be referred

to as the NVRO5 through NVR30 problems. Machine dimensions for all these
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Table 2: Computational results for loop layouts

(a) Optimal and heuristic solutions

No. of | No. of Solution
machines | parts || Optimal® | Heuristic’
8 8 27 100.00
16 92 100.00
5 294 lig igggg (b) Heuristic solutions
18 143 100.00 No. of | No. of || Part
27 194 100.00 machines | parts || circuits
10 10 47 100.00 16 16 78
20 . 185 101.62 32 369
30 318 100.00 48 762
11 11 39 100.00 17 17 94
22 187 100.00 34 386
33 310 101.61 51 950
12 12 39 100.00 18 18 124
24 215 100.00 36 455
36 589 100.00 54 881
13 13 76 100.00 19 19 85
26 285 100.00 38 492
39 578 100.00 57 1247
14 14 88 100.00 20 20 129
28 249 101.20 40 593
42 811 100.00 60 1375
15 15 92 102.17
30 380 100.00
45 662 100.00
AVERAGE 100.28

“Number of part-circuits
bAs percentage of optimal

17




problems have also been selected and range from 0.01 to 0.09 unit squares.
Since the machines are square in shape, the dimension of interest for the layout

problem is the length of a side.

Single-row problems

The first set of 9 problems with 4 machines each, and the first seven problems
from the second set were solved by Heragu and Kusiak (HK) for single-row lay-
outs along linear tracks by their Algorithm 1. This algorithm is a “greedy”
constructive heuristic and starts by putting the two machines with fhe largest
interaction cost (computed as if they were adjacent) together. Then on the
same basis, the remaining machines are added to the ends of this chain one by
one, until all machines have been included in the solution. Thus the algorithm
provides a sequence, and the exact layout has to be constructed with the appro-
priate clearances separately later, much as in the QAP based heuristic described

in this paper.

These 16 problems were solved by the heuristic procedure called LTSR (for
linear-track single-row), described in the previous section. The 4-machine prob-
lems and the first four Nugent, Vollmann and Ruml problems were also solved
by using complete enumeration to obtain optimal solutions. Costs for heuristic
methods are, therefore, compared to these optimal solutions and are presented
in Table 3. Solution costs for the NVR12, 15 and 20 problems are compared
for the LTSR and HK heuristic procedures in Table 4. It is clear that LTSR
provides better solutions and its advantage grows with size. The results found
by the HK procedure for the seven NVR problems are worse than those found by
LTSR by an average of 23.86%, but for the largest three problems the average
performance is worse by 38.25%. The layout designed by LTSR for the NVR

problems is presented in Table 5 as the sequence in which machines are placed.
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Table 3: Single-row layout solutions compared to optimal

Heuristic solutions | Optimal | % deviation

Problem | LTSR HK solution | LTSR | HK
HK1 225.000 | 225.000 || 225.000 0.00 0.00
HK2 | 440.000 | 535.000 | 440.000 | 0.00 | +21.59
HK3 | 510.000 [ 510.000 || 510.000 [ 0.00 0.00
HK4 | 465.000 | 465.000 || 465.000 | 0.00 0.00
HK5 19.680 22.350 19.680 0.00 | +13.57
HK6 361.000 | 359.000 || 359.000 | +0.56 0.00
HK7 320.000 | 318.000 || 318.000 | +0.63 0.00
HK8 60.000 82.000 60.000 0.00 | +36.67
HK9 244.000 | 244.000 || 244.000 0.00 0.00
NVRO05 1.100 1.165 1.100 [ 0.00 | +5.91
NVRO06 1.990 2.085 1.990 0.00 | +4.77
NVRO7 4.730 5.420 4,730 | 0.00 | +14.59
NVRO08 6.295 7.995 6.295 | 0.00 | +27.01

Table 4: Comparison of heuristic solutions to single-row layout problems

Problem | Heuristic solutions ﬂ%ﬁ—sﬂ
LTSR HK percent
NVR12 | 23.865 31.525 | +32.10
NVRI15 | 45.740 62.624 | +36.91
NVR20 | 122.240 | 178.149 | +45.74

Table 5: Single-row layout designs by LTSR

Problem Machine sequence

NVRO5 (45123

NVRO6 654123

NVRO7 | 7365421

NVRO8 {76548123

NVR12 | 739121184121056

NVR15 |615103414513212891117

NVR20 |2071718419215812514161111013639
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Double-row problems

The heuristic procedure for solving double-row linear-track layout problems,
called LTDR, was used to solve the eight Nugent, Vollmann and Ruml (1968)
problems, and solution costs are compared with those found by Algorithm 2
of Heragu and Kusiak (1988). Their Algorithm 2 is similar to Algorithm 1 in
spirit, in the sense that solutions are constructed one machine at a time based
on a limited number of interactions. For Algorithm 1, the selection is made
based on interactions between pairs of machines, while Algorithm 2 considers
interactions between machine triples (the vertices of triangles). Once again, the
algorithm produces sequences from which the actual layouts must subsequently
be constructed. Also, Algorithm 2 generates as many sequences as the number

of machines, and the solution with the best cost is selected.

Heragu and Kusiak (1988) state that “the number of machines in each of
the two rows is as equal as possible.” We do not feel that any practical con-
siderations justify imposing such a constraint on solutions. In our method, the
location of dummy modules determines the relative alignment of rows as well
as the distribution of machines between the two rows. Comparative results are
presented in Table 6 and show that this policy, combined with the use of a so-
lution method based on the QAP, outperforms the Heragu and Kusiak solution
method by a significant margin. The HK results are worse than LTDR results
on the average by more than 40%, with results ranging from +25% to +63%
of LTDR results. The solutions found by LTDR are presented in Table 7. The
sequence of machines is provided for each row, and dummy machines are shown
only where necessary to specify the relative alignment of the two rows, starting
at the left end. For the purpose of illustration, Figure 2 shows actual layouts
for the NVRO8 problem in the single-row and double-row configurations, based

on the solutions given in Tables 5 and 7.
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Table 6: Comparison of heuristic solutions to double-row layout problems

Problem | Heuristic solutions [ Clearance for ﬂ(L—}%ﬂ—Dﬂ
LTDR HK dummy modules | percent
NVRO05 0.700 1.14 0.00 +62.86
NVRO06 1.395 2.01 0.50 +44.09
NVRO07 2.740 3.98 0.00-1.00 +45.26
NVRO08 3.875 4.95 0.00 +27.74
NVR12 | 13.110 17.91 0.25 +36.61
NVR15 | 24.850 34.98 0.00 +40.76
NVR20 | 63.970 91.47 0.00 +42.99
NVR30 | 183.155 228.30 0.25 +24.65

Table 7: Double-row layout designs by LTDR

Problem | Row no. Machine sequence®
NVRO05 1 dd523
2 41
NVRO06 1 321
2 d654
NVRO7 1 147
2 2563
NVRO08 1 ddd1487
2 3256
NVR12 1 dd17846
2 3291211510
NVR15 1 ddddd6413291
2 1015314512811 7
NVR20 1 201158121751910136
2 dddd7111642141839
NVR30 1 204302528161381072919921
2 dd2715141161723221224181523 26

“d denotes a dummy machine
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Figure 2: Layouts for the NVR08 problem
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3.3 Computation times

All computation times mentioned here are CPU times for a VAX 8650 using
FORTRAN programs.

Loop layouts. Times for loop layout designs are the average of the three
versions for each size of problem. The heuristic method for loop-layout problems
requires average computation times ranging from a fraction of one second for
small problems to less than 12 seconds for the largest problems with 20 machines.
Exact solutions to problems with 15 machines require an average solution time

of 118 minutes, while the heuristic procedure needed just over 3 seconds.

Linear layouts. The linear-track problems are much larger because the ef-
fective size of the problem is defined by the number of modules. This number
is 71 for the 20 - machine single-row problem, and solution time is under 7
minutes. The number of modules is as large as 106 (including dummies) for
the 30-machine double-row problem, and the computation time is just under 38

minutes.

4 Analysis and conclusions

In this paper we have shown how the layout design problem for Flexible Man-
ufacturing Systems can be modeled as a Quadratic Assignment Problem. The
two most common cases, loop-conveyor and linear-track conveyor systems, are
considered. Computational testing showed that our methods work well when
compared to optimal solutions for loop systems, and compared to results pub-
lished recently in the literature for linear-track systems. A detailed discussion

for each case follows.

. Loop-conveyor systems. A formulation of the layout problem for single-loop

conveyor flexible manufacturing systems was developed based on the alternate

23



equivalent objective of minimizing part circuits, and it was shown how the dis-
tance matrix of the traditional facilities layout problem can be modified to model
this objective. A heuristic method for the facilitiés layout problem was special-
ized to take advantage of the characteristics of this formulation, and the resulting
procedure was tested against an optimal solution method for problems with as
many as 15 machines. Average results were within one-third of one percent of

optimal solutions.

Linear-track systems. The solution procedures developed for this type of
problem require a transformation of the original problem into a larger problem
with equal sized modules that can be solved as a QAP, while ignoring clear-
ances. The solution to this modified problem can be translated into a solution
to the original problem, with appropriate clearances added. The two procedures
developed (LTSR and LTDR) are complete in the sense that they require as
input only flow data and the relevant machine dimensions. Subroutines then
decide on the appropriate module size, break up machines into modules, make
the necessary transformations to the flow data, create a distance matrix for the
modified problem, solve this problem, construct the actual layout for the original
problem, and compute the exact cost including clearances. It is understood, of
course, that the modified problem is a large facilities layout problem, but com-
putation times are reasonable in the context of a design problem for systems

that typically cost millions of dollars.

The results obtained by LTSR and LTDR are significantly better than those
found by Algorithms 1 and 2 of Heragu and Kusiak (1988). The reasons for
this are not hard to see. First, their methods gain no advantage over LTSR
and LTDR in terms of accuracy in handling clearances. Second, they develop
solutions based on a limited number of pairwise interactions, though the cost
of the layout does finally have to be calculated for all pairs of machines. The

methods presented in this paper, on the other hand, are based on solutions to
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the QAP underlying the layout problem. This feature probably accounts for

most of their superiority.
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